留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断层力学科学范畴、发展脉络评论及未来发展思考

关成尧 赵国春 白相东 袁四化 张艳 刘晓燕

关成尧, 赵国春, 白相东, 等, 2018. 断层力学科学范畴、发展脉络评论及未来发展思考. 地质力学学报, 24 (4): 555-586. DOI: 10.12090/j.issn.1006-6616.2018.24.04.058
引用本文: 关成尧, 赵国春, 白相东, 等, 2018. 断层力学科学范畴、发展脉络评论及未来发展思考. 地质力学学报, 24 (4): 555-586. DOI: 10.12090/j.issn.1006-6616.2018.24.04.058
GUAN Chengyao, ZHAO Guochun, BAI Xiangdong, et al., 2018. REVIEW OF CATEGORY AND DEVELOPMENT CONTEXT OF FAULT MECHANICS. Journal of Geomechanics, 24 (4): 555-586. DOI: 10.12090/j.issn.1006-6616.2018.24.04.058
Citation: GUAN Chengyao, ZHAO Guochun, BAI Xiangdong, et al., 2018. REVIEW OF CATEGORY AND DEVELOPMENT CONTEXT OF FAULT MECHANICS. Journal of Geomechanics, 24 (4): 555-586. DOI: 10.12090/j.issn.1006-6616.2018.24.04.058

断层力学科学范畴、发展脉络评论及未来发展思考

doi: 10.12090/j.issn.1006-6616.2018.24.04.058
基金项目: 

河北省高等学校人文社会科学研究重点项目 SD162001

中央高校基本科研业务费团队项目 ZY20180104

中央高校科研基本业务费项目 SD162001

中国地震局教师科研基金 20150103

详细信息
    作者简介:

    关成尧(1976-), 男, 博士, 讲师, 主要从事盆地构造、地质力学、岩土力学研究。E-mail:gcywww@126.com

  • 中图分类号: P55

REVIEW OF CATEGORY AND DEVELOPMENT CONTEXT OF FAULT MECHANICS

  • 摘要: 为了看清断层力学的理论全貌,文章研究了断层力学的发展脉络、应有体系、框架性缺失,总结了学术各界关注点及研究内容差异。结果表明断层力学关联领域存在尺度差异和目标差异,断层力学是多学科纽带,却是"三不管"地带。岩石裂纹和含内部构造的断层之间存在尺度差异和变形速度差异。断层力学的百年发展经历了从外力研究断层-构造应力场-滑移线场研究断层三个阶段,这三个阶段总的发展方向就是逐渐简化、实用化,阻碍了定量理论的发展。"Mohr范式"是支撑,带有实用化、简单化特点,也阻碍了断层力学向机理化和定量化方向发展。断层研究存在正演和反演两类方法,正演主要包括实验断层力学和理论断层力学两类途径,正演和反演结合是未来发展方向。"地质力学"秉承"力学统一律",体现断层空间联系和力学联系,属于"广义断层力学"范畴。"广义断层力学"体系适用"统一发展,关注联系"发展途径,"狭义断层力学"体系适用"分散发展,各自攻克"发展途径。先存断层或薄弱带控制后生断层,并影响应力展布,"应力制约论"是重要方向。未来将产生"流变摩擦学"和"断层岩组构摩擦学"两个方向,"断层岩组构摩擦学"应整合显微构造学成就,研究岩石组构稳定特征、流变特征、广义摩擦特征等,需要将显微构造学唯象理论上升到大尺度断层力学理论中,将岩石组构引入到岩石力学实验中。不同尺度关注点不同、理论不同、取用参数不同,加剧了研究群体的隔离。断层内泥粒是可以迁移的,由此产生"断层泥粒迁移学"。断层闭锁的概念需要重新考虑,未来研究应立足"慢应变"和"大尺度"的断层摩擦延展力学。

     

  • 图  1  学术界各板块对断层研究的关注点和研究概况

    Figure  1.  Research focus and overview on fault of each Academic groups

    图  2  断层力学与岩石物理学、构造物理学的关系

    Figure  2.  Relationship between fault mechanics and rock physics, tectonophysics

    图  3  断层力学体系与正演及反演的结合

    Figure  3.  The combination of fault mechanics system with forward modeling and inversion

    图  4  近年断层力学微观(摩擦)机理方面基础理论研究

    Figure  4.  Basic research aspects of the microscopic mechanism of fault (friction) mechanics in recent years

    图  5  “慢应变体制下断层摩擦与延展力学”与其它领域之间联系

    Figure  5.  The relationship among "the fault friction and extension mechanics under the slow-strain system" and other academic fields

  • [1] Scholz C H. 地震与断层力学[M]. 马胜利, 译. 地震出版社, 1996: 1~471.

    Scholz C H. The Mechanics of Earthquakes and Faulting[M]. MA Shengli, trans. Beijing: China Earthquake Press, 1996: 1~471. (in Chinese)
    [2] Anderson E M. The Dynamics of Faulting and Dike Formation with Application to Britain[M]. 2nd ed. Edingburgh:Oliver and Boyd, 1951:1~206.
    [3] Richter C F. Elementary Seismology[M]. San Francisco:W H Freeman, 1958:1~768.
    [4] 黄福明.断层力学概论[M].北京:地震出版社, 2013:1~332.

    HUANG Fuming. Introduction to Fault Mechanicas[M]. Beijing:China Earthquake Press, 2013:1~332. (in Chinese)
    [5] 陶振宇.节理与断层岩石力学[M].北京:中国地质大学出版社, 1992:1~279.

    TAO Zhenyu. Mechanics of Joints and Faults[M]. Beijing:China University of Geoscience Press, 1992:1~279. (in Chinese)
    [6] B K阿特金森. 岩石断裂力学[M]. 尹祥础, 译. 北京: 地震出版社, 1992: 1~595.

    Atkinson B K. Fracture Mechanics of Rock[M]. YIN Xiangchu, trans. Beijing: China Earthquake Press, 1992: 1~595. (in Chinese)
    [7] 湛文武. 断层岩的工程性质与环境效应[D]. 兰州: 兰州大学, 2004: 1~188. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y605732

    ZHAN Wenwu. Engineering properties of fault rocks and environment effect[D]. Lanzhou: Lanchou University, 2004: 1~188. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y605732
    [8] 李兴唐.活动断裂研究与工程评价[M].北京:地质出版社, 1991:1~288.

    LI Xingtang. Activity Faults Research and Engineering Evaluation[M]. Beijing:China Geology Press, 1991:1~288. (in Chinese)
    [9] 马胜利, 马瑾.我国实验岩石力学与构造物理学研究的若干新进展[J].地震学报, 2003, 25(5):528~534. http://www.cqvip.com/qk/93548X/200305

    MA Shengli, MA Jin. Recent progress in studies of experimental rock mechanics and tectonophysics in China[J]. Acta Seismologica Sinica, 2003, 25(5):528~534. (in Chinese) http://www.cqvip.com/qk/93548X/200305
    [10] HE Changrong, WANG Zeli, YAO Wenming. Frictional sliding of gabbro gouge under hydrothermal conditions[J]. Tectonophysics, 2007, 445(3~4):353~362. http://www.sciencedirect.com/science/article/pii/S0040195107003150
    [11] 丁文镜.地震预报的力学问题[M].北京:清华大学出版社, 2012:1~96.

    DING Wenjing. Mechanical Problems in Earthquake Prediction[M]. Beijing:Tsinghua University Press, 2012:1~96. (in Chinese)
    [12] 邵顺妹.断层泥研究的现状和进展[J].高原地震, 1994, 6(3):51~56. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004012.htm

    SHAO Shunmei. Present condition and progress of fault gouge research[J]. Earthquake Research in Plateau, 1994, 6(3):51~56. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004012.htm
    [13] 马瑾, Moore D E, Summers R, 等.温度压力孔隙压力对断层泥强度及滑动性质的影响[J].地震地质, 1985, 7(1):15~24. http://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ199811000.htm

    MA Jin, Moore D E, Summers R, et al. The effect of temperature, pressure and pore pressure on the strength and sliding behavior of the gouges[J]. Seismology and Geology, 1985, 7(1):15~24. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ199811000.htm
    [14] 周永胜, 蒋海昆, 何昌荣.不同温压条件下居庸关花岗岩脆塑性转化与失稳型式的实验研究[J].中国地震, 2002, 18(4):389~400. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgzd200204009&dbname=CJFD&dbcode=CJFQ

    ZHOU Yongsheng, JIANG Haikun, HE Changrong. Experiments of brittle-plastic transition, modes of instability of Juyongguan granite at different T-P condition[J]. Earthquake Research in China, 2002, 18(4):389~400. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgzd200204009&dbname=CJFD&dbcode=CJFQ
    [15] 缪阿丽. 几种模拟断层泥摩擦滑动速度依赖性转换的实验研究[D]. 北京: 中国地震局地质研究所, 2011: 1~81. http://cdmd.cnki.com.cn/Article/CDMD-85402-1012266143.htm

    MIU Ali. Experimental study on velocity-dependence transition of friction for simulated fault gouges[D]. Beijing: Institute of Geology, China Earthquake Administration, 2011: 1~81. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-85402-1012266143.htm
    [16] Ramsay J G. 岩石的褶皱作用和断裂作用[M]. 单文琅, 译. 北京: 地质出版社, 1985: 1~387.

    Ramsay J G. Folding and Fracturing of Rocks[M]. SHAN Wenliang, trans. Beijing: China Geology Press, 1985: 1~387. (in Chinese).
    [17] B雅罗谢夫斯基. 断裂与褶曲构造学[M]. 李树菁, 译. 北京: 地震出版社, 1987: 1~233.

    Ярошевскйй B. Petrotectoic of Faults and Folds[M]. LI Shuqing, trans. Beijing: Earthquake Press, 1987: 1~233. (in Chinese)
    [18] 马杏垣.解析构造学[M].北京:地质出版社, 2004:1~463.

    MA Xingyuan. Analytical Structural Geology[M]. Beijing:China Geology Press, 2004:1~463. (in Chinese)
    [19] 李四光.地质力学方法[M].北京:科学出版社, 1976:1~259.

    LI Siguang. Introduction to Geomechanics[M]. Beijing:Science Press, 1976:1~259(in Chinese)
    [20] 张文佑.断块构造导论[M].北京:石油工业出版社, 1984:1~385.

    ZHANG Wenyou. Introduction to Fault-Block Structural Geology[M]. Beijing:Petroleum Industry Press, 1984:1~385. (in Chinese)
    [21] 童亨茂.岩石圈脆性断层作用力学模型[J].自然杂志, 2013, 35(1):56~63. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1620441

    TONG Hengmao. Mechanical model of brittle faulting in lithosphere[J]. Chinese Journal of Nature, 2013, 35(1):56~63. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1620441
    [22] 巴晶.岩石物理学进展与评述[M].北京:清华大学出版社, 2013:1~384.

    BA Jing. Progress and Review of Rock Physics[M]. Beijing:Tsinghua University Press, 2013:1~384. (in Chinese)
    [23] Koestler A G. Hydrocarbon Seal Quantification[M]. Amsterdam:Elsevier, 2002:1~253.
    [24] Nollet S. Fracture Sealing Processes in Sedimentary Basins:A Mutli-Scale Approach[M]. Aachen:Sharker Verlag, 2006:1~116.
    [25] 席道瑛, 徐松林.岩石物理学基础[M].合肥:中国科学技术大学出版社, 2012:1~350.

    XI Daoying, XU Songlin. Rock Physics[M]. Hefei:Press of University of Science and Technology of China, 2012:1~350. (in Chinese)
    [26] 马瑾.构造物理学概论[M].北京:地震出版社, 1987:1~394.

    MA Jin. Outline of the Tectonophysics[M]. Beijing:Seismological Press, 1987:1~394. (in Chinese)
    [27] 马胜利, 马瑾.岩石的流变性质与断层模型[J].地球物理学进展, 1995, 10(3):21~42. http://www.cqvip.com/QK/98047X/199503/1654055.html

    MA Shengli, MA Jin. Rheology of rocks and fault models[J]. Progress in Geophysics, 1995, 10(3):21~42. (in Chinese) http://www.cqvip.com/QK/98047X/199503/1654055.html
    [28] 高祥林.地震断层力学的多尺度问题[J].地学前缘, 2005, 12(2):187~188. http://www.oalib.com/paper/4876955

    GAO Xianglin. Multiscale Problems in earthquake fault mechanics[J]. Earth Science Frontiers, 2005, 12(2):187~188. (in Chinese) http://www.oalib.com/paper/4876955
    [29] 郭本禹.科恩的科学范式论与心理科学革命[J].南京师大学报(社会科学版), 1993, (3):60~63. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2509741

    GUO Benyu. On Cohen's scientific paradigm and psychological science revolution[J]. Acta Nanjing Normal University (Social Science Edition), 1993, (3):60~63. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2509741
    [30] Nádai A. Theory of Flow and Fracture of Solids[M]. New York:McGraw-hill, 1950:1~572
    [31] Parry R H G. Mohr Circles, Stress Paths and Geotechnics[M]. New York:Spon Press, 2004:264.
    [32] 阮怀宁.滑移线场理论与断层力学研究进展[J].河海科技进展, 1993, 13(1):22~28. http://www.oalib.com/paper/4876955

    YUAN Huaining. Progress in slip line field theory and fault mechanics[J]. Technology Advances in Rivers and Sea, 1993, 13(1):22~28. (in Chinese) http://www.oalib.com/paper/4876955
    [33] Hafner W. Stress distributions and faulting[J]. GSA Bulletin, 1951, 62(4):373~398. doi: 10.1130/0016-7606(1951)62[373:SDAF]2.0.CO;2
    [34] 安欧.构造应力场[M].北京:地震出版社. 1992:1~747.

    An Ou. Tectonic Stress Field[M]. Beijing:Seismological Press, 1992:1~747. (in Chinese)
    [35] Prandtl, L. "Vber die Härte plastischer Körper. " Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen[C]. Mathematisch-physikalische Klasse aus dem Jahre. Berlin. 1920: 74~85.
    [36] 郑颖人, 邓楚键, 王敬林.基于非关联流动法则的滑移线场及上限法研究[J].中国工程科学, 2010, 12(8):56~69. https://www.wenkuxiazai.com/doc/98cf5577580216fc700afd99.html

    ZHENG Yingren, DENG Chujian, WANG Jinglin. The study of slip line field and upper bound method based on the non-associated flow rule[J]. Engineering Science, 2010, 12(8):56~69. (in Chinese) https://www.wenkuxiazai.com/doc/98cf5577580216fc700afd99.html
    [37] 俞茂宏, 杨松岩, 刘春阳, 等.统一平面应变滑移线场理论[J].土木工程学报, 1997, 30(2):14~26, 41. http://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200802018.htm

    YU Maohong, YANG Yansong, LIU Chunyang, et al. Unified plane-etrain slip line field theory system[J]. Journal of Civil Engineering, 1997, 30(2):14~26, 41. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200802018.htm
    [38] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12):611~616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    [39] YIN An. Mechanics of wedge-shaped fault blocks. 1. an elastic solution for compressional wedges[J]. Journal of Geophysical Research, 1993, 98(B8):14245~14256. doi: 10.1029/93JB00555
    [40] Lohrmann J. Identification of parameters controlling the accretive and tectonically erosive mass-transfer mode at the South-Central and North Chilean Forearc using Scaled 2D sandbox Experiments[D]. Berlin: Berlin University, 2002: 1~233.
    [41] Kellner A. Different styles of deformation of the fore-arc wedge along the Chilean convergent margin: Insights from 3D numerical experiments[D]. Potsdam, Germany: University of Potsdam, 2007: 1~150.
    [42] Sanz P F, Borja R I, Pollard D D. Mechanical aspects of thrust faulting driven by far-field compression and their implications for fold geometry[J]. Acta Geotechnica, 2007, 2(1):17~31. doi: 10.1007%2Fs11440-007-0025-0
    [43] Ip K W. Bearing capacity for foundation near slope[D]. Concordia, Canada: Concordia University, 2005: 1~110. http://core.ac.uk/display/11079750
    [44] Deshpande A A. Improved understanding of metal cutting based on slip-line field theory[D]. Wichita: Wichita State University, 2012: 1~126. http://hdl.handle.net/10057/5576
    [45] Dundur S T. Slipline field analysis of deformation in metal machining with worn tool with adhesion friction in contact regions[D]. Deemed: Deemed University, 2001: 1~213. https://www.researchgate.net/publication/37394149_Slipline_Field_Analysis_of_Deformation_In_Metal_Machining_with_Worn_Tool_with_Adhesion_Friction_in_Contact_Regions
    [46] 吕延防, 张发强, 吴春霞等.断层涂抹层分布规律的物理模拟实验研究[J].石油勘探与开发, 2001, 28(1):30~32. https://www.researchgate.net/profile/Qiu_Dengfeng2/publication/272826853_Numerical_Simulation_of_the_Tectonic_Stress_Field_in_the_Tazhong_Area/links/54f1195b0cf2f9e34efd5119.pdf?origin=publication_list

    LV Yanfang, ZHANG Faqiang, Wu Chunxia, et al. Simulation experiment on distribution of fault smear layer[J]. Petroleum Exploration and Development, 2001, 28(1):30~32. (in Chinese) https://www.researchgate.net/profile/Qiu_Dengfeng2/publication/272826853_Numerical_Simulation_of_the_Tectonic_Stress_Field_in_the_Tazhong_Area/links/54f1195b0cf2f9e34efd5119.pdf?origin=publication_list
    [47] Gudmundsson A, Simmenes T H, Larsen B, et al. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones[J]. Journal of Structural Geology, 2010, 32(11):1643~1655. doi: 10.1016/j.jsg.2009.08.013
    [48] Evans J P, Forster C B, Goddard J V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones[J]. Journal of Structural Geology, 1997, 19(11):1393~1404. doi: 10.1016/S0191-8141(97)00057-6
    [49] Corti G. Evolution and characteristics of continental rifting:Analog modeling-inspired view and comparison with examples from the East African Rift System[J]. Tectonophysics, 2012, 522~523:1~33. https://www.sciencedirect.com/science/article/pii/S0040195111002265
    [50] 童亨茂, 蔡东升, 吴永平, 等.非均匀变形域中先存构造活动性的判定[J].中国科学:地球科学, 2011, 41(2):158~168. http://www.oalib.com/paper/4152988

    TONG Hengmao, Cai Dongsheng, Wu Yongping, et al. Activity criterion of pre-existing fabrics in non-homogeneous deformation domain[J]. Chinese Science China Earth Sciences, 2010, 53(8):1115~1125. http://www.oalib.com/paper/4152988
    [51] Versfelt J, Rosendahl B R. Relationships between pre-rift structure and rift architecture in Lakes Tanganyika and Malawi, east Africa[J]. Nature, 1989, 337(6205):354~356 doi: 10.1038/337354a0
    [52] Morley C K, Haranya C, Phoosongsee W, et al. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style:Examples from the rifts of Thailand[J]. Journal of Structural Geology, 2004, 26(10):1803~1829. doi: 10.1016/j.jsg.2004.02.014
    [53] 童亨茂, 聂金英, 孟令箭, 等.基底先存构造对裂陷盆地断层形成和演化的控制作用规律[J].地学前缘, 2009, 16(4):97~104. http://mall.cnki.net/magazine/Article/DXQY200904012.htm

    TONG Hengmao, NIE Jinying, MENG Lingjian, et al. The law of basement pre-existing fabric controlling fault formation and evolution in rift basin[J]. Earth Science Frontiers, 2009, 16(4):97~104. (in Chinese) http://mall.cnki.net/magazine/Article/DXQY200904012.htm
    [54] Smith M, Mosley P. Crustal heterogeneity and basement influence on the development of the Kenya rift, east Africa[J]. Tectonics, 1993, 12(2):591~606. doi: 10.1029/92TC01710
    [55] 童亨茂. "不协调伸展"作用下裂陷盆地断层的形成演化模式[J].地质通报, 2011, 29(11):1606~1613. doi: 10.3969/j.issn.1671-2552.2010.11.002

    TONG Hengmao. Fault formation and evolution model under uncoordinated extension in rift basin[J]. Geological Bulletin of China, 2010, 29(11):1606~1613. (in Chinese) doi: 10.3969/j.issn.1671-2552.2010.11.002
    [56] Morley C K. How successful are analogue models in addressing the influence of pre-existing fabrics on rift structure?[J]. Journal of Structural Geology, 1999, 21(8~9):1267~1274. https://www.sciencedirect.com/science/article/pii/S0191814199000759
    [57] Dunbar J A, Sawyer D S. Continental rifting at pre-existing lithosphere weaknesses[J]. Nature, 1988, 333(6172):450~452. doi: 10.1038/333450a0
    [58] TONG Hengmao, Koyi H, Huang S, et al. The effect of multiple pre-existing weaknesses on formation and evolution of faults in extended sandbox models[J]. Tectonophysics, 2014, 626:197~212. doi: 10.1016/j.tecto.2014.04.046
    [59] TONG Hengmao, AN Yin. Reactivation tendency analysis:A theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 2011, 503(3~4):195~200. https://www.sciencedirect.com/science/article/pii/S0040195111000825
    [60] NIU Yaoling. Geological understanding of plate tectonics:Basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny, 2014, 10(1):23~46. http://dro.dur.ac.uk/15761/
    [61] Akai K, Hayashi M, Nishimatsu Y. Weak Rock: Soft, Fractured and Weathered Rock[C]. Rotterdam: A. A. Balkema, 1981.
    [62] Withjack M O, Baum M S, Schlische R W. Influence of preexisting fault fabric on inversion-related deformation:A case study of the inverted Fundy rift basin, southeastern Canada[J]. Tectonics, 2010, 29(6):TC6004. doi: 10.1029/2010TC002744/full
    [63] Moir H, Lunn R J, Shipton Z K, et al. Simulating brittle fault evolution from networks of pre-existing joints within crystalline rock[J]. Journal of Structural Geology, 2010, 32(11):1742~1753. doi: 10.1016/j.jsg.2009.08.016
    [64] 李四光.旋捲构造及其他有关中国西北部大地构造体系复合问题[J].科学通报, 1955, (7):53~56, 85. http://www.cnki.com.cn/Article/CJFDTotal-DZXE197301004.htm

    LI Siguang. Coiling structure and other related issues related to the tectonic system in northwest China[J]. Scientific Bulletin, 1955, (7):53~56, 85. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-DZXE197301004.htm
    [65] 乐光禹, 杜思清, 黄继钧, 等.构造复合联合原理-川黔构造组合叠加分析[M].成都:成都科技大学出版社, 1996:1~281.

    YUE Guangyu, DU Siqing, HUANG Jijun, et al. Principle of Structural Compounding-Combine[M]. Chengdu:Chengdu University of Science and Technology Press, 1996:1~281. (in Chinese)
    [66] 童亨茂, 王建君, 赵海涛, 等. "摩尔空间"及其在先存构造活动性预测中的应用[J].中国科学:地球科学, 2014, 44(9):1948~1957. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199002003.htm

    TONG Hengmao, WANG Jianjun, ZHAO Haitao, et al. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China Earth Sciences, 2014, 57(7):1595~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199002003.htm
    [67] 童亨茂, 陈正乐, 刘瑞珣.广义剪切活动准则[J].自然杂志, 2015, 37(6):441~447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201506007

    TONG Hengmao, CHEN Zehngle, LIU Ruixun. Generalized shear activation criterion[J]. Chinese Journal of Nature, 2015, 37(6):441~447. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201506007
    [68] Engelder T, Fischer M P. Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh in overpressured parts of sedimentary basins[J]. Geology, 1994, 22(10):949~952. doi: 10.1130/0091-7613(1994)022<0949:IOPBOT>2.3.CO;2
    [69] 关成尧, 漆家福, 邱楠生, 等.应力比影响下的破裂角、闭锁角、摩擦系数及其耦合关系[J].岩土力学, 2012, 33(12):3570~3576. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201302012.htm

    GUAN Chengyao, QI Jiafu, QIU Nansheng, et al. Crack angle, lock angle, friction coefficient under stress ratio affection and their coupling relationship in a compression-shear crack[J]. Rock and Soil Mechanics, 2012, 33(12):3570~3576. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201302012.htm
    [70] Byerlee J D. Friction of rocks[J]. Pure and Applied Geophysics Pageoph, 1978, 116(4):615~626. https://www.researchgate.net/publication/248786151_Time-Dependent_Friction_in_Rocks
    [71] Henza A A, Withjack M O, Schlische R W. How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension?[J]. Journal of Structural Geology, 2011, 33(9):1312~1324. doi: 10.1016/j.jsg.2011.06.010
    [72] Morley C K, Gabdi S, Seusutthiy K. Fault superimposition and linkage resulting from stress changes during rifting:Examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 2007, 29(4):646~663. doi: 10.1016/j.jsg.2006.11.005
    [73] Adam J, Klinkmüller M, Schreurs G, et al. Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation:Integration of X-ray computed tomography and digital volume correlation techniques[J]. Journal of Structural Geology, 2013, 55:127~149. doi: 10.1016/j.jsg.2013.07.011
    [74] Marques F O, Cobbold P R. Topography as a major factor in the development of arcuate thrust belts:insights from sandbox experiments[J]. Tectonophysics, 2002, 348(4):247~268. doi: 10.1016/S0040-1951(02)00077-X
    [75] 钟嘉猷.实验构造地质学及其应用[M].北京:科学出版社, 1998.

    ZHONG Jiayou. Experimental Structural Geology and Its Applications[M]. Beijing:Science Press, 1998. (in Chinese)
    [76] 周建勋, 周建生.渤海湾盆地新生代构造变形机制:物理模拟和讨论[J].中国科学D辑:地球科学, 2006, 36(6):507~519. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410066020.htm

    ZHOU Jianxun, ZHOU Jiansheng. Mechanisms of Cenozoic deformation in the Bohai Basin, Northeast China:Physical modelling and discussions[J]. Science in China Series D, 2006, 49(3):258~271. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410066020.htm
    [77] Cosgrove J W, Engelder T. The Initiation, Propagation, and Arrests of Joints and Other Fractures[M]. London:The Geological Society London, 2004:1~327.
    [78] Bahat D. Tectonofractography[M]. Berlin:Springer, 1991.
    [79] Price N J. Fault and Joint Development, in Brittle and Semi-Brittle Rock[M]. New York:Pergamon Press, 1966:1~176.
    [80] Rossmanith H R. Mechanics of Jointed and Faulted Rock[M]. Balkema:CRC Press, 1990.
    [81] Pollard D D, Aydin A. Progress in understanding jointing over the past century[J].Geological Society of America Bulltin.1988, 100:1181~1204. doi: 10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
    [82] Pollard D D, Bergbauer S, Mynatt I. Using differential geometry to characterize and analyse the morphology of joints[J]. Geological Society, London, Special Publications, 2004, 231:153~182. doi: 10.1144/GSL.SP.2004.231.01.10
    [83] Snow D T. Rock fracture spacings, openings, and porosities[J]. Journal of Soil Mechanics & Foundation Division, 1968, 94(SM1):73~91. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0015464
    [84] Bai T, Pollard D D. Closely spaced fracture in layered rocks:initiation mechanism and propagation kinematics[J]. Journal of structural geology.2000, 22:1409~1425. doi: 10.1016/S0191-8141(00)00062-6
    [85] Germanovich L N, Salganik R L, Dyskin A V, et al. Mechanisms of brittle fracture of rock with pre-existing cracks in compression[J]. Pure and Applied Physics, 1994, 143(1~3):117~149. doi: 10.1007%2FBF00874326
    [86] BAI Taixu, Pollard D D. Fracture spacing in layered rocks:a new explanation based on the stress transition[J]. Journal of Structural Geology, 2000, 22(1):43~57. doi: 10.1016/S0191-8141(99)00137-6
    [87] WU Haiqing, Pollard D D. An experimental study of the relationship between joint spacing and layer thickness[J]. Journal of Structural Geology, 1995, 17(6):887~905. doi: 10.1016/0191-8141(94)00099-L
    [88] Cross M R. The origin and spacing of cross joints:Examples from the Monterey formation, Santa Barbara coastline, California[J]. Journal of Structural Geology, 1993, 15(6):737~751. doi: 10.1016/0191-8141(93)90059-J
    [89] Sabljic D B, Wilkinson D S. Influence of a damage zone on high temperature crack growth in brittle materials[J]. Acta Metallurgica et Materialia, 1995, 43(11):3937~3945. doi: 10.1016/0956-7151(95)00095-D
    [90] Eichhubl P, Aydin A, Lore J. Opening-mode fracture in siliceous mudstone at high homologous temperature-effect of surface forces[J]. Geological Research Letters, 2001, 28(7):1299~1302. https://www.deepdyve.com/lp/elsevier/non-linear-growth-kinematics-of-opening-mode-fractures-V1alCGobNV
    [91] Holder J, Olson J E, Philip Z. Experimental determination of subcritical crack growth parameters in sedimentary rock[J]. Geological Research Letters, 2001, 28(4):599~602. doi: 10.1029/2000GL011918/full
    [92] Sheldon P. some observations and experiments on joint planes[J]. The Journal of Geology, 1912, 20(1):53~70. doi: 10.1086/621931
    [93] Sanderson D J, ZHANG Xing. Stress-controlled localization of deformation and fluid flow in fractured rocks[J]. Geological Society, London, Special Publications, 2004, 231:299~314. doi: 10.1144/GSL.SP.2004.231.01.18
    [94] Halls H C, Fahrig W F. Mafic Dyke Swarms[R]. The Geological Association of Canada, Special Papers 34, 1987.
    [95] Bahat D, Engelder T. Surface morphology on cross-fold joints of the Appalachian Plateau, New York and Pennsylvania[J]. Tectonophysics, 1984, 104(3~4):299~313. https://www.sciencedirect.com/science/article/pii/0040195184901288
    [96] Jolly R J H, Sanderson D J. A Mohr Circle construction for the opening of a pre-existing fracture[J]. Journal of Structural Geology, 1997, 19(6):887~892. doi: 10.1016/S0191-8141(97)00014-X
    [97] 李先炜.岩块力学性质[M].北京:煤炭工业出版社, 1983:1~302.

    LI Xianwei. Mechanics Properties of Rock Bulk[M]. Beijing:Coal Industry Press, 1983:1~302. (in Chinese)
    [98] 杨圣奇.裂隙岩石力学特性研究及时间效应分析[M].北京:科学出版社, 2011:1~338.

    YANG Shengqi. Fractured Rock Mechanical Properties and Time Effect[M]. Beijing:Science Press, 2011:1~338. (in Chinese)
    [99] Spyropoulos C, Griffith W J, Scholz C H, et al. Experimental evidence for different strain regimes of crack populations in a clay model[J]. Geophysical Research Letters, 1999, 26(8):1081~1084. doi: 10.1029/1999GL900175
    [100] Ackermann R V, Schlische R W, Withjack M O. The geometric and statistical evolution of normal fault systems:an experimental study of the effects of mechanical layer thickness on scaling laws[J]. Journal of Structural Geology, 2001, 23(11):1803~1819. doi: 10.1016/S0191-8141(01)00028-1
    [101] Bonnet E, Bour O, Odling N E, et al. Scaling of fracture systems in geological media[J]. Reviews of Geophysics, 2001, 39(3):347~383. doi: 10.1029/1999RG000074
    [102] Aydin A, Berryman J G. Analysis of the growth of strike-slip faults using effective medium theory[J]. Journal of Structural Geology, 2010, 32(11):1629~1642. doi: 10.1016/j.jsg.2009.11.007
    [103] Schultz R A, Klimczak C, Fossen H, et al. Statistical tests of scaling relationships for geologic structures[J]. Journal of Structural Geology, 2013, 48:85~94. doi: 10.1016/j.jsg.2012.12.005
    [104] 周建勋, 漆家福, 童亨茂.盆地构造研究中的砂箱模拟实验方法[M].北京:地震出版社, 1999:1~123.

    ZHOU Jianxun, QI Jiafu, TONG Hengmao. Experimental Method of Sandbox Simulation in the Study of Basin Structure[M]. Beijing:Earthquake Publishing House, 1999:1~123. (in Chinese)
    [105] 单家增.构造模拟实验在石油地质学中的应用[M].北京:石油工业出版社, 1996.

    SHAN Jiazeng. The Application of Structural Simulation Experiments in Petroleum Geology[M]. Beijing:Petroleum Industry Press, 1996. (in Chinese)
    [106] Hubbert M K. Theory of scale models as applied to the study of geologic structures[J]. GSA Bullitin, 1937, 48(10):1459~1520. doi: 10.1130/GSAB-48-1459
    [107] Hubbert M K. Mechanical basis for certain familiar geologic structures[J]. GSA Bullitin, 1951, 62(4):355~372. doi: 10.1130/0016-7606(1951)62[355:MBFCFG]2.0.CO;2
    [108] Buchanan et al., 1991. Sandbox experiments of inverted listric and planar fault systems[J].Tectonophysics, 188(1~2):97~115. https://www.sciencedirect.com/science/article/pii/004019519190317L
    [109] 沈礼, 贾东, 尹宏伟, 等.构造物理模拟和PIV有限应变分析对构造裂缝预测的启示[J].高校地质学报, 2016, 22(1):171~182. http://www.cnki.com.cn/Article/CJFDTotal-GXDX201601017.htm

    SHEN Li, JIA Dong, YIN Hongwei, et al. Structural analogue modeling and PIV finite strain analysis:implications to tectonic fracture prediction[J]. Geological Journal of China Universities, 2016, 22(1):171~182. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GXDX201601017.htm
    [110] Adam J, Urai J L, Wieneke B, et al. Shear localisation and strain distribution during tectonic faulting——new insights from granular-flow experiments and high-resolution optical image correlation techniques[J]. Journal of Structural Geology, 2005, 27(2):283~301. doi: 10.1016/j.jsg.2004.08.008
    [111] 孙其诚, 厚美瑛, 金峰.颗粒物质物理与力学[M].北京:科学出版社, 2011:191~193.

    SUN Qicheng, HOU Meiying, JIN Feng. Particle Physics and Mechanics[M]. Beijing:Science Press, 2011:191~193. (in Chinese)
    [112] 关成尧, 漆家福, 邱楠生, 等.疏松砂岩层宏观弹性模量计算模型研究[J].武汉理工大学学报, 2013, 35(5):84~89, 139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb201305017

    GUAN Chengyao, QI Jiafu, QIU Nansheng, et al. Macroscopic Elastic Modulus model of particle packing sandstone[J]. Journal of Wuhan University of Technology, 2013, 35(5):84~89, 139. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb201305017
    [113] Das S, Scholz C H. Theory of time-dependent rupture in the earth[J]. Journal of Geophysical Research, 1981, 86(B7):6039~6051. doi: 10.1029/JB086iB07p06039
    [114] Cowie P A, Sornette D, Vanneste C. Multifractal Scaling properties of a growing fault population[J]. Geophysical Journal International, 1995, 122(2):457~469. doi: 10.1111/gji.1995.122.issue-2
    [115] П И波卢欣. 塑性变形的物理基础[M]. 黄克琴, 译. 北京: 冶金工业出版社, 1989: 1~536.

    Полухин П И. Physical Basis of Plastic Deformation[M]. HUANG Keqin, trans. Beijing: Metallurgical Industry Press, 1989: 1~536. (in Chinese)
    [116] Houwink R, Decker H K. Elasticity, Plasticity and Structure of Matter[M]. Cambridge:Cambridge University Press, 1971.
    [117] 孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报, 2007, 26(6):1081~1106. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y843338

    SUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6):1081~1106. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y843338
    [118] 孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999:1~715.

    SUN Jun. Geomaterials Evolution and Engineering Applications[M]. Beijing:China Building Industry Press, 1999:1~715. (in Chinese)
    [119] 袁龙蔚, 智荣斌, 李之达.流变断裂学基础[M].北京:国防工业出版社, 1992:1~188.

    YUAN Longwei, ZHI Rongbin, LI Zhida. Fundamentals of Rheological Fracture[M]. Beijing:National Defense Industry Press, 1992:1~188. (in Chinese)
    [120] 章根德, 何鲜, 朱维耀.岩石介质流变学[M].北京:科学出版社, 1999:1~378.

    ZHANG Gende, HE Xian, ZHU Weiyao. Rheology of Rock Media Materials[M]. Beijing:Science Press, 1999:1~378. (in Chinese)
    [121] 袁龙蔚.流变力学[M].北京:科学出版社, 1986:1~738.

    YUAN Longwei. Rheological Mechanics[M]. Beijing:Science Press, 1986:1~738. (in Chinese)
    [122] Eirich F R. Rheology Theory and Application (Volume 1~Volume 5)[M]. London:Academic Press, 1956~1969:1~761.
    [123] 黄克智, 余寿文.弹塑性断裂力学[M].北京:清华大学出版社, 1985:1~402.

    HUANG Kezhi, YU Shouwen. Plastic fracture mechanics. Beijing:Tsinghua University Press, 1985:1~402. (in Chinese)
    [124] Hirth J P, Lothe J. Theory of Dislocations[M]. New York:McGraw-Hill Press, 1968:1~780.
    [125] Barrett C S, Massalski T B. Structure of Metals:Crystallographic Methods, Principles and Data[M]. 3rd ed. Oxford:Pergamon Press, 1980:1~654.
    [126] Smith R A. Fatigue Crack Growth:30 Years of Progress[M]. Oxford:Pergamon Press, 1986:1~146.
    [127] 冯端.金属物理学(第三卷):金属力学性质[M].北京:科学出版社, 1999:1~604.

    FENG Duan. Metal Physics (Vol. 3):Mechanical Properties of Metals[M]. Beijing:Science Press, 1999:1~604. (in Chinese)
    [128] Boyle J T, Spence J. Stress Analysis for Creep[M]. London:Butterworths Press, 1983:1~147.
    [129] 葛庭燧.固体内耗理论基础:晶界弛豫与晶界结构[M].北京:科学出版社, 2000:1~688.

    GE Tingsui. Theoretical Basis of Solid Friction:The Grain Boundary Relaxation and Grain Boundary Structure[M]. Beijing:Science Press, 2000:1~688. (in Chinese)(未找到本条文献英文信息, 请核对)
    [130] Ugiansky G M, Payer J H. Stress Corrosion Cracking-The Slow Strain-Rate Technique[M]. Southampton:American Society of Testing and Materials, 1979:1~442.
    [131] Blenkinsop T G. Deformation Microstructures and Mechanisms in Minerals and Rocks[M]. New York:Kluwer Academic Publishers, 2002.
    [132] Ramsay J G. Shear zone geometry:a review[J]. Journal of Structural Geology, 1980, 2(1~2):83~89. https://www.sciencedirect.com/science/article/pii/0191814180900383
    [133] Paterson M S. Experimental Rock Deformation:The Brittle Field[M]. Berlin:Springer Verlag, 1978.
    [134] GAO Jianping, Luedtke W D, Gourdon D, et al. Frictional forces and Amonton's Law:from the molecular to the macroscopic scale[J]. The Journal of Physical Chemistry, 2004, 108(11):3410~3425. doi: 10.1021/jp036362l
    [135] Tse S T, Rice J R. Crustal earthquake instability in relation to the depth variation of frictional slip properties[J]. Journal of Geophysical Research, 1986, 91(B9):9452~9472. doi: 10.1029/JB091iB09p09452
    [136] Scholz C H. The Mechanics of Earthquakes and Faulting[J]. New York:Cambridge University Press, 1990. https://www.amazon.com/Mechanics-Earthquakes-Faulting-2nd/dp/0521655404
    [137] Meissner R, Strehlau J. Limits of stresses in continental crusts and their relation to the depth-frequency distribution of shallow earthquakes[J]. Tectonics, 1982, 1(1):73~89. doi: 10.1029/TC001i001p00073
    [138] Blenkinsop T G. Thickness-displacement relationships for deformation zones:Discussion[J]. Journal of Structural Geology, 1989, 11(8):1051~1053. doi: 10.1016/0191-8141(89)90056-4
    [139] Blenkinsop T G. Cataclasis and processes of particle size reduction[J]. Pure and Applied Geophysics, 1991, 136(1):59~86. doi: 10.1007/BF00878888
    [140] Paterson M S. Problems in the extrapolation of laboratory rheological data[J]. Tectonophysics, 1987, 133(1~2):33~43. https://www.sciencedirect.com/science/article/pii/0040195187902782
    [141] Passchier C W. The reliability of asymmetric c-axis fabrics of quartz to determine sense of vorticity[J]. Tectonophysics, 1983, 99(1):T9~T18. doi: 10.1016/0040-1951(83)90166-X
    [142] Carter N L, Officer C B, Drake C L. Dynamic deformation of quartz and feldspar:clues to causes of some natural crises[J]. Tectonophysics, 1990, 171(1~4):373~391. https://www.sciencedirect.com/science/article/pii/004019519090111K
    [143] Johnson S E, Vernon R H. Inferring the timing of porphyroblast growth in the absence of continuity between inclusion trails and matrix foliations:can it be reliably done?[J]. Journal of Structural Geology, 1995, 17(8):1203~1206. doi: 10.1016/0191-8141(95)00021-5
    [144] Borradaile J G, Bayly M B, Powell C M A. Atlas of Deformational and Metamorphic Rock Fabrics[M]. Berlin Heidelberg:Springer, 1982.
    [145] Hacker B R, Kirby S H. High-pressure deformation of calcite marble and its transformation to aragonite under non-hydrostatic conditions[J]. Journal of Structural Geology, 1993, 15(9~10):1207~1222. https://pubs.er.usgs.gov/publication/70017468
    [146] Park Y, Means W D. Direct observation of deformation processes in crystal mushes[J]. Journal of Structural Geology, 1996, 18(6):847~858. doi: 10.1016/S0191-8141(96)80017-4
    [147] Benn K, Allard B. Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros[J]. Journal of Petrology, 1989, 30(4):925~946. doi: 10.1093/petrology/30.4.925
    [148] Green Ⅱ H W, Burnley P C. A new self-organizing mechanism for deep-focus earthquakes[J]. Nature, 1989, 341(6244):733~737. doi: 10.1038/341733a0
    [149] Cox S F. Antitaxial crack-seal vein microstructures and their relationship to displacement paths[J]. Journal of Structural Geology, 1987, 9(7):779~787. doi: 10.1016/0191-8141(87)90079-4
    [150] Gilotti J A, Hull J M. Phenomenological superplasticity in rocks[J]. Geological Society, London, Special Publications, 1990, 54:229~240. doi: 10.1144/GSL.SP.1990.054.01.22
    [151] Rushmer T. An experimental deformation study of partially molten amphibolite:application to low-melt fraction segregation[J]. Journal of Geophysical Research, 1995, 100(B8):15681~15695. doi: 10.1029/95JB00077
    [152] Rutter E H, Neumann D H K. Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas[J]. Journal of Geophysical Research, 1995, 100(B8):15697~15715. doi: 10.1029/94JB03388
    [153] Mancktelow N S. On volume change and mass transport during the development of crenulation cleavage[J]. Journal of Structural Geology, 1994, 16(9):1217~1231. doi: 10.1016/0191-8141(94)90065-5
    [154] Erslev E A, Ward D J. Non-volatile element and volume flux in coalesced slaty cleavage[J]. Journal of Structural Geology, 1994, 16(4):531~553. doi: 10.1016/0191-8141(94)90096-5
    [155] Knipe R J. Deformation mechanisms-recognition from natural tectonites[J]. Journal of Structural Geology, 1989, 11(1~2):127~146. https://www.researchgate.net/publication/223180727_Deformation_mechanisms_Recognition_from_natural_tectonites
    [156] Lister G S, Snoke A W. S-C mylonites[J]. Journal of Structural Geology, 1984, 6(6):617~638. doi: 10.1016/0191-8141(84)90001-4
    [157] Burg J-P. Quartz shape fabric variations and c-axis fabrics in a ribbon-mylonite:arguments for an oscillating foliation[J]. Journal of Structural Geology, 1986, 8(2):123~131. doi: 10.1016/0191-8141(86)90103-3
    [158] Ten Brink C E, Passchier C W. Modelling of mantled porphyroclasts using non-Newtonian rock analogue materials[J]. Journal of Structural Geology, 1995, 17(1):131~146. doi: 10.1016/0191-8141(94)E0032-T
    [159] Wenk H-R, Christie J M. Comments on the interpretation of deformation textures in rocks[J]. Journal of Structural Geology, 1991, 13(10):1091~1110. doi: 10.1016/0191-8141(91)90071-P
    [160] Price N J, Cosgrove J W. Analysis of Geological Structures[M]. Cambridge:Cambridge University Press, 1990.
    [161] Durtsche J S. Sliding friction and fracture of rocks[D]. New Mexico: New Mexico Institute of Mining and Technology, 1973: 1~294.
    [162] Carpinteri A, Paggi M. Size-scale effects on the friction coefficient[J]. International Journal of Solids and Structures, 2005, 42(9~10):2901~2910. https://www.sciencedirect.com/science/article/pii/S0020768304005670
    [163] 关成尧, 杜成旺, 刘广虎, 等.异质材料凸起切向变形动摩擦研究[J].科学技术与工程, 2018, (2):86~92. https://www.doc88.com/p-9731335461658.html

    GUAN Chengyao, DU Chengwang, LIU Guanghu, et al. Dynamic tribology of heterogeneous materials based on asperities tangential deformation[J]. Science Technology and Engineering, 2018, (2):86~92. (in Chinese) https://www.doc88.com/p-9731335461658.html
    [164] GUAN Chengyao, QI Jiafu, QIU Nansheng, et al. The relationship between the friction coefficient and the asperities original inclination angle[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6(11):1906~1910. doi: 10.19026/rjaset.6.3803
    [165] 关成尧, 漆家福, 邱楠生, 等.裂缝三级摩擦因数及影响因素研究(以砂岩(颗粒胶结体)为例)[J].应用数学和力学, 2013, 34(2):209~216. http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=yysxhlx&yearIssue=2013_2

    GUAN Chengyao, QI Jiafu, QIU Nansheng, et al. Three levels friction coefficients of cracks and their influencing factors-taking the sandstone (particle packing layers) as an example[J]. Applied Mathematics and Mechanics, 2013, 34(2):209~216. (in Chinese) http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=yysxhlx&yearIssue=2013_2
    [166] Johnson K J. Contact Mechanics[M]. Cambridge:Cambridge University Press, 1985:1~448.
    [167] Streit J E. Low frictional strength of upper crustal faults:A model[J]. Journal of Geophysical Research, 1997, 102(B11):24619~24626. doi: 10.1029/97JB01509
    [168] Sibson R H. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 1977, 133(3):191~213. doi: 10.1144/gsjgs.133.3.0191
    [169] G S乌帕达耶, R K杜布. 冶金热力学与动力学的应用计算[M]. 金宝忠, 阎庆甲, 译. 北京: 冶金工业出版社, 1981: 1~222.

    Upadhyaya G S, Dube R K. Problems in Metallurgical Thermodynamics and Kinetics[M]. JIN Baozhong, YAN Qingjia, trans. Beijing: Metallurgical Industry Press, 1981: 1~222. (in Chinese)
    [170] 汪凌云.金属塑性变形力学[M].重庆:重庆出版社, 1986:1~339.

    WANG Lingyun. Metal Plastic Deformation Mechanics[M]. Chongqing:Chongqing Publishing House, 1986:1~339. (in Chinese)(未找到本条文献信息, 请核对)
    [171] 葛世荣, 朱华.摩擦学中的分形[M].北京:机械工业出版社, 2005:1~338.

    GE Shirong, ZHU Hua. Fractal in Tribology[M]. Beijing:Machinery Industry Press, 2005:1~338. (in Chinese)
    [172] 张秉良, 方仲景, 李建国, 等.根据断层泥的微观特征探讨断层的活动性[J].地质力学学报, 1996, 2(2):41~46. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19960219&journal_id=dzlxxb

    ZHANG Dingliang, FANG Zhongjing, LI Jianguo, et al. Activities of faults as determined from the microstructural features of the clay gouge[J]. Journal of Geomechanics, 1996, 2(2):41~46. (in Chinese) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19960219&journal_id=dzlxxb
    [173] 杨主恩, 胡碧茹, 洪汉净.活断层中断层泥的石英碎砾的显微特征及其意义[J].科学通报, 1984, 29(8):484~486. http://www.oalib.com/paper/4344206

    YANG Zhu'an, HU Biru, HONG Hanjing. Microscopic characteristics of quartz gains in fault gouges from active faults and their implication[J]. Chinese Science Bulletin, 1984, 29(8):484~486. (in Chinese) http://www.oalib.com/paper/4344206
    [174] Mwabanwa L K. Brittle tectonics in the Lufilian fold-and-thrust belt and its foreland. An insight into the stress field record in relation to moving plates (Katanga, DRC)[D]. Katholieke: Katholieke Universiteit, 2013: 1~161.
    [175] Katz Y, Weinberger R, Aydin A. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah[J]. Journal of Structural Geology, 2004, 26(3):491~501. doi: 10.1016/j.jsg.2003.08.003
    [176] 何昌荣, 陶青峰, 王泽利.高温高压条件下辉长岩的摩擦强度及其速率依赖性[J].地震地质, 2004, 26(3):450~460. http://www.cqvip.com/QK/95728X/200403/10648037.html

    HE Changrong, TAO Qingfeng, WANG Zeli. Frictional strength and rate dependence of gabbro gouge under elevated temperature and pressure[J]. Seismology and Geology, 2004, 26(3):450~460. (in Chinese) http://www.cqvip.com/QK/95728X/200403/10648037.html
    [177] 唐户俊一. 流变与地球动力学[M]. 何昌荣, 译. 北京: 地震出版社, 2005: 6~14.

    Ichro K S. Rheology and Eodynamics[M]. HE Changrong, trans. Beijing: Seismological Press, 2005: 6~14. (in Chinese)
    [178] Mescall J, Weiss V. Material Behavior Under High Stress and Ultrahigh Loading Rates[M]. New York:Plenum Press, 1983:1~326.
    [179] Ahlgren S G. The nucleation and evolution of Riedel shear-zones as deformation bands in porous sandstone[J]. Journal of Structural Geology, 2001, 23(8):1203~1214. doi: 10.1016/S0191-8141(00)00183-8
    [180] 姚孝新. 断层泥的研究动向[J]. 四川地震, 1985, (3): 26~27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjdzdt201206233

    YAO Xiaoxin. Research trend of fault gouge[J]. Sichuan Earthquake, 1985, (3): 26~27. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjdzdt201206233
    [181] 皇甫岗, 马瑾. 非粘土断层泥带厚度与断层错距关系的实验研究[J]. 中国地震, 1990, 6(3): 62~69. http://www.cqvip.com/QK/95750X/199003/410655.html

    HUANG Fugang, MA Jin. Experimental study on the relationship of fault displacement to the thickness of non-clay gouge layer[J]. Earthquake Research in China, 1990, 6(3): 62~69. (in Chinese) http://www.cqvip.com/QK/95750X/199003/410655.html
    [182] 皇甫岗, 马瑾. 断层泥极限粒度存在的可能机理及其意义[J]. 西北地震学报, 1990, 12(4): 30~35. http://www.cnki.com.cn/Article/CJFDTotal-SCHZ198801007.htm

    HUANG Fugang, Ma Jin. A Possible mechanism of fault gouge limit grain size and its significance[J]. Northwestern Seismological Journal, 1990, 12(4): 30~35. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-SCHZ198801007.htm
    [183] Engelder J T. Cataclasis and the generation of fault gouge[J]. GSA Bulletin, 1974, 85(10): 1515~1522. doi: 10.1130/0016-7606(1974)85<1515:CATGOF>2.0.CO;2
    [184] 刘泉声, 崔先泽, 张程远. 基于变孔隙率的多孔介质中悬浮颗粒沉积渗透率衰减模型研究[J]. 岩石力学与工程学报, 2016, 35(Z1): 3308~3314. http://www.cqvip.com/QK/96026X/2016A01/669168053.html

    LIU Quansheng, CUI Xianze, ZHANG Chengyuan. Permeability reduction model of particles deposit in porous medium considering changeable porosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Z1): 3308~3314. (in Chinese) http://www.cqvip.com/QK/96026X/2016A01/669168053.html
    [185] XU Peng, YU Boming. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 31(1): 74~81. doi: 10.1016/j.advwatres.2007.06.003
    [186] 李琪. 悬浮微小颗粒在饱和多孔介质中运移特性的理论及试验研究[D]. 天津: 天津大学, 2014: 1~114. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D655272

    LI Qi. A theoretical and experimental study on the moving characteristics of suspended particles in saturated porous media[D]. Tianjin: Tianjin University, 2014: 1~114. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D655272
    [187] 王路珍. 变质量破碎泥岩渗透性的加速试验研究[D]. 徐州: 中国矿业大学, 2014: 1~221. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D564064

    WANG Luzhen. Accelerated experimental study on permeability for broken mudstone with mass loss[D]. Xuzhou: China University of Mining and Technology, 2014: 1~221. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D564064
    [188] Bedrikovetsky P, Siqueira F D, Furtado C A, et al. Modified particle detachment model for colloidal transport in porous media[J]. Transport in Porous Media, 2011, 86(2): 353~383. doi: 10.1007/s11242-010-9626-4
    [189] 陈星欣, 白冰, 蔡奇鹏. 饱和多孔介质中颗粒释放-迁移问题的理论求解[J]. 中国科学: 技术科学, 2014, 44(6): 610~618. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183368.htm

    CHEN XingXin, BAI Bing, CAI Qipeng. Theoretical solution of particle release-transport in saturated porous media[J]. Scientia Sinica (Technologica), 2014, 44(6): 610~618. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183368.htm
    [190] 杨雯, 郝丹丹, 徐东昊, 等. 生物炭颗粒在饱和多孔介质中的迁移与滞留[J]. 土壤通报, 2017, 48(2): 304~312. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2608312

    YANG Wen, HAO Dandan, XU Donghao, et al. Transport and retention of biochar particles in saturated porous media[J]. Chinese Journal of Soil Science, 2017, 48(2): 304~312. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2608312
    [191] 刘泉声, 赵军, 张程远. 考虑尺寸排除效应颗粒迁移模型的建立[J]. 岩土力学, 2012, 33(8): 2265~2268. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201208005

    LIU Quansheng, ZHAO Jun, ZHANG Chengyuan. Establishment of particulate transport: size exclusion effect[J]. Rock and Soil Mechanics, 2012, 33(8): 2265~2268. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201208005
    [192] YAO Kuanmu, Habibian M T, O’Melia C R. Water and waste water filtration. Concepts and applications[J]. Environmental Science & Technology, 1971, 5(11): 1105~1112. doi: 10.1021/es60058a005
    [193] 刘泉声, 崔先泽, 张程远. 多孔介质中悬浮颗粒迁移-沉积特性研究进展[J]. 岩石力学与工程学报, 2015, 34(12): 2410~2427. https://www.cnki.com.cn/lunwen-1017058678.html

    LIU Quansheng, CUI xianze, ZHANG Chengyuan. Research advances in the characterization of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2410~2427. (in Chinese) https://www.cnki.com.cn/lunwen-1017058678.html
    [194] 王新亮. 石油储层微通道纳米颗粒吸附法双重减阻机制研究[D]. 上海: 上海大学, 2013: 1~139. http://cdmd.cnki.com.cn/Article/CDMD-10280-1013326123.htm

    WANG Xinliang. The mechanical-chemical drag reduction mechanism with nanoparticles adsorption method in reservoir micro-channels[D]. Shanghai: Shanghai University, 2013: 1~139. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10280-1013326123.htm
    [195] 蒋官澄, 鄢捷年, 吴学诗. 计算完井液中固相颗粒侵入储层深度的数学模型[J]. 钻井液与完井液, 1995, 12(2): 66~73. http://www.cnki.com.cn/Article/CJFDTotal-JHSX199301012.htm

    JIANG Guancheng, YAN Jienian, WU Xueshi. mathematical model for the calculation of invasion depth of solid particles of completion fluid into reservoir[J]. Drilling Fluid and Completion Fluid, 1995, 12(2): 66~73. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JHSX199301012.htm
    [196] Jakob A. Matrix Diffusion for Performance Assessment Experimental Evidence, Modelling Assumptions and Open Issues[M]. Paul Scherrer Institut, Villigen PSI, 2004: 1~87.
    [197] Bullen T D, Wang Y. Water Rock Interaction[C]. London: Taylor & Francis, 2007: 1~849.
    [198] 谢一婷. 疏松砂岩油藏适度出砂井近井地层渗透率变化规律研究[D]. 重庆: 西南石油大学, 2013: 1~140. http://cdmd.cnki.com.cn/Article/CDMD-10615-1017256562.htm

    XIE Yiting. Research on changes of in-situ permeability near wellbore in unconsolidated sandstone reservoir with sand management[D]. Chongqing: Southwest Petroleum University, 2013: 1~140. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10615-1017256562.htm
    [199] 鞠斌山. 油藏渗流系统物性变化机理与数学模拟研究[D]. 北京: 中国地质大学(北京), 2006: 1~191. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006060315.htm

    JU Binshan. Study of mechanism and mathematical simulation on the changes in physical properties of flow system in oil reservoirs[D]. Beijing: China University of Geosciences (Beijing), 2006: 1~191. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-11415-2006060315.htm
    [200] 苏崇华. 疏松砂岩储层伤害机理及应用[D]. 重庆: 西南石油大学, 2011: 1~155. http://cdmd.cnki.com.cn/Article/CDMD-10615-1012252672.htm

    SU Chonghua. Loose sand reservoir damage mechanism and its application to HND-1/2 oilfield[D]. Chongqing: Southwest Petroleum University, 2011: 1~155. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10615-1012252672.htm
    [201] 王正茂. 油藏含砂流体渗流机理及流固耦合单井数值模拟研究[D]. 重庆: 西南石油大学, 2004: 1~160. http://cdmd.cnki.com.cn/Article/CDMD-10615-2005012766.htm

    WANG Zehngmao. The study of fluid flow mechanism with sand erosion and sand particulates migration in the reservoir and fluid-solid coupling single-well numerical simulation[D]. Chongqing: Southwest Petroleum University, 2004: 1~160. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10615-2005012766.htm
    [202] 王嘉荫. 应力矿物概论[M]. 北京: 地质出版社, 1978.

    WANG Jiayin. Introduction to Stress Minerals[M]. Beijing: Geological Publishing House, 1978. (in Chinese)
    [203] 施尔畏, 陈之战, 元如林. 水热结晶学[M]. 北京: 科学出版社, 2004.

    SHI Erwei, CHEN Zhizhan, YUAN Rulin. Hydrothermal Crystallology[M]. Beijing: Science Press, 2004. (in Chinese)
    [204] Lehner F K. Thermodynamics of rock deformation by pressure solution[A]. Barber D J, Meredith P G. Deformation Processes in Minerals, Ceramics and Rocks. London: Unwin Hyman, 1990: 296~333.
    [205] Chilingarian G V. Developments in Sedimentology 18B: Compaction of Coarse-Grained Sediments, Ⅱ[M]. New York: Elsevier Scientific Publishing Company, 1976: 1~808.
    [206] Ingerson E. Clay and clay minerals[A]. Proceedings of the Sixth National Conference on Clays and Clay Minerals[C]. London: Pergamon Press, 1957.
    [207] Ruhovets N, Fert W H. Volumes, types, and distribution of clay minerals in reservoir rocks based on well logs[R]. SPE 10796, 1982.
    [208] 刘新宇. 泥岩涂抹变形机制的物理实验模拟研究[D]. 大庆: 东北石油大学, 2015: 1~51. http://cdmd.cnki.com.cn/Article/CDMD-10220-1015362680.htm

    LIU Xinyu. The physical simulation experiments for formation and evolution of clay smear[S]. Daqing: Northeast Petroleum University, 2015: 1~51. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10220-1015362680.htm
    [209] 裴伟. 地壳应力状态[M]. 国家地震局地震地质大队情报资料室, 译. 北京: 地震出版社, 1978: 1~103.

    Пейве A B. Crustal stress state[M]. National Earthquake Bureau Geological Team Information Reference Room, trans. Beijing: China Earthquake Press, 1978: 1~103. (in Chinese)
    [210] 苏生瑞, 黄润秋, 王士天. 断裂构造对地应力场的影响及其工程应用[M]. 北京: 科学出版社, 2002: 1~175.

    SU Shengrui, HUANG Runqiu, WANG Shitian. The Influence of Fracture Structure on Ground Stress Field and Its Engineering Application[M]. Beijing: Science Press, 2002: 1~175. (in Chinese)
    [211] Means W D. Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists[M]. New York: Springer-Verlag, 1976: 1~339.
    [212] Reinecker J, Tingay M, Müller B, et al. Present-day stress orientation in the Molasse Basin[J]. Tectonophysics, 2010, 482(1~4): 129~138. http://www.sciencedirect.com/science/article/pii/S0040195109004119
    [213] Zoback M D, Barton C A, Brudy M, et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7~8): 1049~1076. http://www.sciencedirect.com/science/article/pii/S1365160903001175
    [214] Bonini M. Mud volcanoes: Indicators of stress orientation and tectonic controls[J]. Earth-Science Reviews, 2012, 115(3): 121~152. doi: 10.1016/j.earscirev.2012.09.002
    [215] Reches Z, Lockner D A. Nucleation and growth of faults in brittle rocks[J]. Journal of Geophysical Research, 1994, 99(B9): 18159~18173. doi: 10.1029/94JB00115
    [216] 皇甫岗. 断层泥的厚度、粒度与断层错距的关系[J]. 四川地震, 1988, (1): 50~56. http://www.cqvip.com/QK/95750X/199003/410655.html

    HUANG Pugang. Relationship between gouge thickness, size and faulting distance[J]. Sichuan Earthquake, 1988, (1): 50~56. (in Chinese) http://www.cqvip.com/QK/95750X/199003/410655.html
    [217] 童亨茂. 断层开启与封闭的定量分析[J]. 石油与天然气地质, 1998, 19(3): 215~220. doi: 10.11743/ogg19980308

    TONG Hengmao. Quantitative analysis of fault opening and sealing[J]. Oil & Gas Geology, 1998, 19(3): 215~220. (in Chinese) doi: 10.11743/ogg19980308
    [218] WANG Chiyuan. Internal Structure of Fault Zones[M]. Boston: Birkhäuser Verlag, 1986: 1~373.
    [219] Seminsky K Z. Internal structure of fault zones: spatial and temporal evolution studies on clay models[J]. Geodynamics and Tectonophysic, 2012, 3(3): 183~194. doi: 10.5800/GT-2012-3-3-0070
    [220] Bullock R J, De Paola N, Holdsworth R E, et al. Lithological controls on the deformation mechanisms operating within carbonate-hosted faults during the seismic cycle[J]. Journal of Structural Geology, 2014, 58: 22~42. doi: 10.1016/j.jsg.2013.10.008
    [221] Holland M, Urai J L, van der Zee W, et al. Fault gouge evolution in highly overconsolidated claystones[J]. Journal of Structural Geology, 2006, 28(2): 323~332. doi: 10.1016/j.jsg.2005.10.005
    [222] 黄筑平. 连续介质力学基础[M]. 北京: 高等教育出版社, 2003: 1~441.

    HUANG Zhuping. Fundamentals of Continuum Mechanics[M]. Beijing: Higher Education Press, 2003: 1~441. (in Chinese)
    [223] 戚承志, 钱七虎. 岩体动力变形与破坏的基本问题[M]. 北京: 科学出版社, 2009: 1~371.

    QI Chengzhi, QIAN Qihu. Basic Problems of Dynamic Deformation and Fracture of Rock Mass[M]. Beijing: Science Press, 2009: 1~371. (in Chinese)
    [224] 王思敬. 坝基岩体工程地质力学分析[M]. 北京: 科学出版社, 1990: 1~371.

    WANG Sijing. Dam Foundation Rock Mass Engineering Geological Mechanics Analysis[M]. Beijing: Science Press, 1990: 1~371. (in Chinese)
  • 加载中
图(5)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  152
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-08
  • 修回日期:  2018-06-29
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回