RESEARCH ON THE INFLUENCE OF THE COUPLING EFFECT OF SEEPAGE AND STRESS ON RESERVOIR FRACTURES
-
摘要: 裂缝是影响储层高产、稳产的重要因素,而储层处在复杂的地质环境中,裂缝的形成和发育受众多因素的影响,研究各因素间的耦合作用对储层裂缝发育的影响,对指导油气勘探开发具有重要意义。为此,针对任丘油田任11井区雾迷山组碳酸盐岩储层进行了渗流-应力耦合作用对储层裂缝发育的影响研究。研究结果表明:未考虑渗流-应力耦合作用时,研究区最大水平主应力范围为82~100 MPa,从西南到东北逐渐增大;最小水平主应力范围为72~88 MPa,从研究区中心向西南、东北两侧逐渐递增;考虑耦合作用后,研究区最大水平主应力范围为84~102 MPa,最小水平主应力范围为76~91 MPa,最大及最小水平主应力增加。渗流-应力耦合作用后,研究区裂缝发育指数分布在0.027~1.156之间,山头顶部和近东西向断层的内部区域裂缝发育指数在0.7左右,为裂缝较发育区域;而研究区西南和东北边缘区域裂缝发育指数在0.2以下,为裂缝欠发育区域。随着耦合作用时间的增长,储层裂缝发育指数逐渐增大,在注入井和产油井附近区域的裂缝发育指数增大幅度尤为明显;储层裂缝线密度也呈增大趋势,仅产油井周围的裂缝线密度呈现为先减小后增大的趋势;未考虑耦合作用时的储层裂缝参数小于考虑耦合作用后的裂缝参数,说明仅考虑应力场进行储层裂缝预测所得结果偏小。Abstract: Fracture is an important factor affecting the high and stable yield of reservoir, which lies in a complex geological environment. The formation and development of fractures are influenced by numerous factors; therefore, it is of great significance to study the effect of coupling among factors on reservoir fracture development for guiding petroleum exploration and development. In this study, the effect of seepage-stress coupling on fracture development of Wumishan Formation carbonate reservoir in Well Ren 11 area of Renqiu Oilfield is studied, and the results show that:Without considering the seepage-stress coupling effect, the maximum horizontal principal stress in the study area ranges from 82 MPa to 100 MPa, which gradually increases from southwest to northeast; the minimum horizontal principal stress ranges from 72 MPa to 88 MPa, which gradually increases from the center of the study area to the southwest and northeast. After considering the coupling effect, the maximum horizontal principal stress ranges from 84 MPa to 102 MPa, and the minimum from 76 MPa to 91 MPa. The horizontal principal stress increases after seepage-stress coupling is considered. After the coupling effect, fracture development index of the study area is mainly distributed between 0.027 and 1.156. The fracture development index of the top of the hilltop and the inner area of near the W-E fault is about 0.7, which is a relatively developed area, while the fracture development index of southwest and northeast marginal areas is less than 0.2, which is considered to be an underdeveloped area. With the increase of coupling time, the reservoir fracture development index increases gradually and it increases obviously in the area near the injection well and the oil production well. The fracture linear density of the whole reservoir also shows an increasing trend, only the fracture linear density around the oil production well shows a tendency to decrease first and then increase; The fracture parameters in the reservoir without consideration of coupling effect are smaller than that with consideration, which indicates that the results obtained from fracture prediction only based on stress field are on the small side.
-
Key words:
- coupling effect /
- reservoir fractures /
- seepage /
- stress
-
表 1 模型参数取值
Table 1. Parameter values of the model
区域 力学参数 渗流参数 弹性模量
/MPa泊松比 密度
/(kg/m3)孔隙度
/%渗透率
/×10-3 μm2流体密度
/(kg/m3)流体粘度
/(mPa·s)断层 23090.04 0.258 2070 9.75 124.34 888.7 8.21 研究区内非断层 28862.55 0.224 2300 6.50 1.2434 888.7 8.21 研究区外围 34625.06 0.180 2530 6.50 1.2434 888.7 8.21 表 2 任28井雾迷山组裂缝密度与深度关系表
Table 2. The relationship between the crack density and depth of the Well Ren28
井段/
m孔隙度/
%缝洞面孔率/
%缝密度/
条/m统计结果[19] 3212~3274 3.45 3.28 135 3274~3321 1.27 0.74 92 模拟结果 3170~3330 107 -
[1] MURRAY G H. Quantitative fracture study, Sanish pool, Mckenzie county, North Dakota[J]. AAPG Bulletin, 1968, 52(1):57-65. http://cn.bing.com/academic/profile?id=ce57aad47595063c87587ff1dfd28c55&encoded=0&v=paper_preview&mkt=zh-cn [2] 季宗镇, 戴俊生, 王军, 等.塔河油田二叠系火山岩储集层裂缝参数模拟[J].新疆石油地质, 2010, 31(2):142-145. http://d.old.wanfangdata.com.cn/Periodical/xjsydz201002010JI Zongzhen, DAI Junsheng, WANG Jun, et al. Simulation of fracture parameters of Permian volcanic reservoir in Tahe oil field, Tarim basin[J]. Xinjiang Petroleum Geology, 2010, 31(2):142-145. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/xjsydz201002010 [3] 宋璠, 苏妮娜, 冯建伟, 等.基于摩擦效应的砂岩裂缝密度定量预测[J].中国石油大学学报(自然科学版), 2014, 38(6):1-8. doi: 10.3969/j.issn.1673-5005.2014.06.001SONG Pan, SU Nina, FENG Jianwei, et al. Quantitative prediction of fracture density based on friction effect[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(6):1-8. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-5005.2014.06.001 [4] 雷刚林, 戴俊生, 马玉杰, 等.库车坳陷克深三维区现今地应力场及储层裂缝数值模拟[J].大庆石油地质与开发, 2015, 34(1):18-23. doi: 10.3969/J.ISSN.1000-3754.2015.01.004LEI Ganglin, DAI Junsheng, Ma Yujie, et al. Numerical simulation of the current stress field and reservoir fracture in Keshen 3D area of Kuqa depression[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(1):18-23. (in Chinese with English abstract) doi: 10.3969/J.ISSN.1000-3754.2015.01.004 [5] 祖克威, 程秀申, 罗周亮, 等.复杂碳酸盐岩储层裂缝预测方法对比性研究[J].地质力学学报, 2018, 24(4):465-473. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20180403&flag=1ZU Kewei, CHENG Xiushen, LUO Zhouliang, et al. The comparative analysis of different methods for fracture prediction in complex carbonate rock reservoir[J]. Journal of Geomechanics, 2018, 24(4):465-473. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20180403&flag=1 [6] 赵向原, 胡向阳, 肖开华, 等.川西彭州地区雷口坡组碳酸盐岩储层裂缝特征及主控因素[J].石油与天然气地质, 2018, 39(1):30-39, 152. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201801004ZHAO Xiangyuan, HU Xiangyang, XIAO Kaihua, et al. Characteristics and major control factors of natural fractures in carbonate reservoirs of Leikoupo Formation in Pengzhou area, western Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(1):30-39, 152. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201801004 [7] 周巨标, 石先达, 丁玉盛, 等.金湖凹陷天96断块阜二段储层裂缝多参数定量预测[J].地质力学学报, 2015, 21(3):341-350. doi: 10.3969/j.issn.1006-6616.2015.03.004ZHOU Jubiao, SHI Xianda, DING Yusheng, et al. The multi-parameter quantitative prediction of Reservoir fracture of fu-2 member in Tian 96 fault block of Jinhu sag[J]. Journal of Geomechanics, 2015, 21(3):341-350. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2015.03.004 [8] 王珂, 戴俊生, 冯阵东, 等.砂泥岩间互地层等效岩石力学参数计算模型及其应用[J].地质力学学报, 2013, 19(2):143-151. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20130204&flag=1WANG Ke, DAI Junsheng, FENG Zhendong, et al. Calculating model of equivalent rock mechanical parameters of sand-mud interbed and its application[J]. Journal of Geomechanics, 2013, 19(2):143-151. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20130204&flag=1 [9] 张冲, 周文, 谢润成, 等.大牛地气田马五1-2致密碳酸盐岩储层平缓构造带裂缝预测[J].东北石油大学学报, 2014, 38(3):9-17. doi: 10.3969/j.issn.2095-4107.2014.03.002ZHANG Chong, ZHOU Wen, XIE Runcheng, et al. Fracture prediction of the Ma51-2 tight carbonate reservoir in gentle structure zone, Daniudi gas field[J]. Journal of Northeast Petroleum University, 2014, 38(3):9-17. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-4107.2014.03.002 [10] 赵延林, 曹平, 赵阳升, 等.双重介质温度场-渗流场-应力场耦合模型及三维数值研究[J].岩石力学与工程学报, 2007, 26(S2):4024-4031. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2007S2063.htmZHAO Yanlin, CAO Ping, ZHAO Yangsheng, et al. Dual media model for thermo-hydro-mechanical coupling and 3D numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2):4024-4031. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSLX2007S2063.htm [11] 张彦洪, 柴军瑞.岩体离散裂隙网络渗流应力耦合分析[J].应用基础与工程科学学报, 2012, 20(2):253-262. doi: 10.3969/j.issn.1005-0930.2012.02.009ZHANG Yanhong, CHAI Junrui. Stress-fluid coupling analysis in fractured rock mass with the theory of discrete fracture networks[J]. Journal of Basic Science and Engineering, 2012, 20(2):253-262. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-0930.2012.02.009 [12] 柴军瑞.岩体渗流-应力-温度三场耦合的连续介质模型[J].红水河, 2003, 22(2):18-20. doi: 10.3969/j.issn.1001-408X.2003.02.005CHAI Junrui. Continuum model for coupled seepage, stress and temperature fields in rock mass[J]. Hongshui River, 2003, 22(2):18-20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-408X.2003.02.005 [13] 王瑞, 沈振中, 陈孝兵.基于COMSOL Multiphysics的高拱坝渗流-应力全耦合分析[J].岩石力学与工程学报, 2013, 32(S2):3197-3204. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2013z2028WANG Rui, SHEN Zhenzhong, CHEN Xiaobing. Full coupled analysis of seepage-stress fields for high arch dam based on COMSOL Multiphysics[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2):3197-3204. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2013z2028 [14] 季宗镇, 戴俊生, 汪必峰, 等.构造裂缝多参数定量计算模型[J].中国石油大学学报(自然科学版), 2010, 34(1):24-28. http://d.old.wanfangdata.com.cn/Periodical/sydxxb201001005JI Zongzhen, DAI Junsheng, WANG Bifeng, et al. Multi-parameter quantitative calculation model for tectonic fracture[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(1):24-28. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/sydxxb201001005 [15] 李静.任丘潜山型碳酸盐岩储层微观分析及裂缝预测研究[D].青岛: 中国石油大学(华东), 2011.LI Jing. Research on microcosmic analysis and fracture prediction of carbonate reservoirs, Renqiu buried hills[D]. Qingdao: China University of Petroleum (East China), 2011. (in Chinese with English abstract) [16] 王定一, 梁苏娟.任丘大油田形成与变换带演化[J].石油与天然气地质, 2001, 22(1):9-12. doi: 10.3321/j.issn:0253-9985.2001.01.002WANG Dingyi, LIANG Sujuan. Evolution of transformation belt and formation of big oilfield in Renqiu[J]. Oil & Gas Geology, 2001, 22(1):9-12. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-9985.2001.01.002 [17] 陈国达, 费宝生.任丘潜山油田的基本地质特征及其形成的大地构造背景[J].石油实验地质, 1983, 5(4):241-249. http://www.cnki.com.cn/Article/CJFDTotal-SYSD198304000.htmCHEN Guoda, FEI Baosheng. Typical features and geqtectonic background of the formation of the Renqiu buried-hill oilfield[J]. Experimental Petroleum Geology, 1983, 5(4):241-249. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYSD198304000.htm [18] 费宝生, 汪建红.中国海相油田勘探实例之三-渤海湾盆地任丘古潜山大油田的发现与勘探[J].海相油气地质, 2005, 10(3):43-50. doi: 10.3969/j.issn.1672-9854.2005.03.007FEI Baosheng, WANG Jianhong. Cases of discovery and exploration of marine fields in China (part 3):Renqiu buried-hill oilfield, Bohaiwan basin[J]. Marine Origin Petroleum Geology, 2005, 10(3):43-50. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9854.2005.03.007 [19] 余家仁.任丘古潜山碳酸盐岩储集层缝洞孔分布规律的探讨[J].石油勘探与开发, 1987, 14(3):52-61. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198703007.htmYU Jiaren. A discussion on the distribution pattern of fissures, vugs and pores in Renqiu buried hill carbonate reservoir[J]. Petroleum Exploration and Development, 1987, 14(3):52-61. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198703007.htm