留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砂泥岩地层地应力纵向分布特征与规律

张东涛 童亨茂 赵海涛 吕雪 张昊

张东涛, 童亨茂, 赵海涛, 等, 2014. 砂泥岩地层地应力纵向分布特征与规律. 地质力学学报, 20 (4): 352-362.
引用本文: 张东涛, 童亨茂, 赵海涛, 等, 2014. 砂泥岩地层地应力纵向分布特征与规律. 地质力学学报, 20 (4): 352-362.
ZHANG Dong-tao, TONG Heng-mao, ZHAO Hai-tao, et al., 2014. CHARACTERISTICS AND REGULARITY OF LONGITUDINAL GEOSTRESS DISTRIBUTION IN SAND-MUDSTONE STRATA. Journal of Geomechanics, 20 (4): 352-362.
Citation: ZHANG Dong-tao, TONG Heng-mao, ZHAO Hai-tao, et al., 2014. CHARACTERISTICS AND REGULARITY OF LONGITUDINAL GEOSTRESS DISTRIBUTION IN SAND-MUDSTONE STRATA. Journal of Geomechanics, 20 (4): 352-362.

砂泥岩地层地应力纵向分布特征与规律

基金项目: 

国家自然科学基金项目 41272160

国家自然科学基金项目 40772086

国家油气重大专项 2011ZX05006-006-02-01

国家油气重大专项 2011ZX05023-004-012

详细信息
    作者简介:

    张东涛, 男, 硕士生, 中石油浙江油田分公司助理工程师

    通讯作者:

    童亨茂, E-mail:tonghm@cup.edu.cn, tong-hm@163.com

  • 中图分类号: P553

CHARACTERISTICS AND REGULARITY OF LONGITUDINAL GEOSTRESS DISTRIBUTION IN SAND-MUDSTONE STRATA

  • 摘要: 以实际沉积地层中抽象出来的砂泥岩地层概念模型为研究对象, 在盆地构造力学、岩石力学性质分析的基础上, 采用应力场数值模拟法研究分析砂泥岩地层中的纵向地应力分布特征和规律。研究结果表明, 水平主应力在砂泥岩的分界面发生突变, 变化程度主要与两侧岩石的力学性质差异相关, 也与区域构造应力有一定关联; 杨氏模量对最大水平主应力影响程度大于对最小水平主应力的影响, 泊松比对地层最小水平主应力影响程度大于对最大水平主应力的影响。杨氏模量和泊松比对最大水平主应力的影响, 在伸展应力状态下前者影响相对较小, 走滑应力状态下, 影响程度基本相同, 挤压应力状态下, 前者影响程度相对较大; 而对于最小水平主应力的影响, 在三种应力状态下, 泊松比的影响均大于杨氏模量。地层的岩性变化方式(渐变或突变)对地层最小水平应力差产生显著影响, 厚度变化对地层最小水平应力差大小无影响。上述认识可以指导砂泥岩地层的压裂和储层改造, 改善压裂效果。

     

  • 图  1  模型Ⅰ网格剖分加载

    Figure  1.  Numerical modelⅠwith boundary conditions

    图  2  模型Ⅱ网格剖分加载

    Figure  2.  Numerical modelⅡwith boundary conditions

    图  3  伸展应力状态下杨氏模量与水平主应力关系

    Figure  3.  Relationship between Young modulus and horizontal principal stress under extensional stress state

    图  4  伸展应力状态下泊松比与水平主应力关系

    Figure  4.  Relationship between Poisson ratio and horizontal principal stress under extensional stress state

    图  5  在伸展应力状态下,模型Ⅰa水平主应力等值线分布

    Figure  5.  Contour of horizontal principal stress for model Ⅰa under extensional stress state

    图  6  走滑应力状态下杨氏模量与水平主应力关系

    Figure  6.  Relationship between Young modulus and horizontal principal stress under strike-slip stress state

    图  7  走滑应力状态下泊松比与水平主应力关系

    Figure  7.  Relationship between Poisson ratio and horizontal principal stress under strike-slip stress state

    图  8  挤压应力状态下杨氏模量与水平主应力关系

    Figure  8.  Relationship between Young modulus and horizontal principal stress under compressive stress state

    图  9  挤压应力状态下泊松比与水平主应力的关系

    Figure  9.  Relationship between Poisson ratio and horizontal principal stress under compressive stress state

    图  10  模型Ⅱ最小水平主应力等值线分布

    Figure  10.  Contour of minimum horizontal principal stress for model Ⅱ

    表  1  模型Ⅰa、Ⅰb岩石力学参数分布

    Table  1.   Parameters of rock mechanics for modelⅠa andⅠb

    Ⅰa层位杨氏模量/
    GPa
    泊松比Ⅰa层位杨氏模量/
    GPa
    泊松比Ⅰb层位杨氏模量/
    GPa
    泊松比Ⅰb层位杨氏模量/
    GPa
    泊松比
    1150.37330.31300.157300.33
    2180.38360.32300.188300.36
    3210.39390.33300.219300.39
    4240.310420.34300.2410300.42
    5270.311450.35300.2711300.45
    6300.36300.30
    下载: 导出CSV

    表  2  模型Ⅱ岩石力学参数分布

    Table  2.   Parameters of rock mechanics for model Ⅱ

    模型Ⅱ编号旋回号层位号层厚度/m泊松比杨氏模量/GPa
       Ⅱa(旋回是由砂岩突变到泥岩构成)3112.50.2020
    212.50.2825
    2312.50.220
    412.50.2825
    1512.50.2020
    612.50.2825
       Ⅱb(旋回由砂岩渐变过渡到泥岩,其中过渡带地层是等厚的)3150.2020
    250.2222
    350.2423
    450.2624
    550.2825
    2650.2020
    750.2222
    850.2423
    950.2624
    1050.2825
    11150.2020
    1250.2222
    1350.2423
    1450.2624
    1550.2825
       Ⅱc(旋回由砂岩渐变过渡到泥岩,其中过渡带地层不等厚)3180.2020
    270.2222
    350.2423
    430.2624
    520.2825
    2620.2020
    730.2222
    850.2423
    970.2624
    1080.2825
    111100.2020
    1260.2222
    1340.2423
    1430.2624
    1520.2825
    下载: 导出CSV
  • [1] Brown E T, Hoek E. Trends in relationships between measured in-situ stresses and depth [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211~215. http://linkinghub.elsevier.com/retrieve/pii/0148906278912275
    [2] Stacey T R, Wesseloo J. Updated in situ stress database for Southern Africa [M]. Proceedings and Monographs in Engineering, Water and Earth Sciences, 2006: 467~471.
    [3] Fuchs K, Muller B. World stress map of the earth: A key to tectonic processes and technological applications[J]. Natrwissen-schaften, 2001, 88: 357~371. doi: 10.1007/s001140100253
    [4] Worotniki G, Denham D. The state stress in the upper part of the earth's crust in Australia according to measurements in tunnels and mines and from seismic observation[C]//Investigation of Stress in Rock-Advances in Stress Measurement. Sydney: Int. Soc. Rock Mech. Symp., 1976: 71~82.
    [5] 朱焕春, 陶振宇.不同岩石中地应力分布[J].地震学报, 1994, 16(1):50~62. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB401.006.htm

    ZHU Huan-chun, TAO Zhen-yu. Geostress distribution in different rocks [J]. Acta Seismologica Sinica, 1994, 16(1): 50~62. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB401.006.htm
    [6] 景锋, 盛谦, 余美万. 地应力与岩石弹性模量随埋深变化及相互影响[C]//第十次全国岩石力学与工程学术大会论文集. 2010: 70~73.

    JING Feng, SHENG Qian, YU Mei-wan. Change and rule of the geostress and the slastic modulus of rock with depth and their mutual impact[C]//Symposium of The 11th National Conference on Rock Mechanics and Engineering. 2010: 70~73.
    [7] 李新平, 汪斌, 周桂龙.我国大陆实测深部地应力分布规律研究[J].岩土力学与工程学报, 2012:31(增1):2875~2880. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1035.htm
    [8] 赵德安, 陈志敏, 蔡小林, 等.中国地应力场分布规律统计分析[J].岩石力学与工程学报, 2007, 26(6):1266~1270. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706024.htm

    ZHAO De'an, CHEN Zhi-min, CAI Xiao-lin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1266~1270. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706024.htm
    [9] 康红普, 林键, 张晓, 等.潞安矿区井下地应力测量及分布规律研究[J].岩土力学, 2010, 31(3):828~831. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201003030.htm

    KANG Hong-pu, LIN Jian, ZHANG Xiao, et al. In-situ stress measurements and distribution laws in Lu'an underground coal mines[J]. Rock and Soil Mechanics, 2010, 31(3): 828~831. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201003030.htm
    [10] 秦向辉, 谭成轩, 孙进忠, 等.地应力与岩石弹性模量关系试验研究[J].岩土力学, 2012, 33(6):1690~1694. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206013.htm

    QIN Xiang-hui, TAN Cheng-xuan, SUN Jin-zhong, et al. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 2012, 33(6): 1690~1694. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206013.htm
    [11] 景锋, 盛谦, 张勇慧, 等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报, 2007, 26(10):2057~2060. http://cdmd.cnki.com.cn/Article/CDMD-80005-2009156820.htm

    JING Feng, SHENG Qian, ZHANG Yong-hui, et al. Research on distribution rule of shallow crustal geostress in China mainland[J]. Chinese Journal of Rock Machanics and Engineering, 2007, 26(10):2057~2060. http://cdmd.cnki.com.cn/Article/CDMD-80005-2009156820.htm
    [12] Gudmundsson A. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes[J]. Earth-Science Reviews, 2006, 79: 1~31. doi: 10.1016/j.earscirev.2006.06.006
    [13] Gudmundsson A, Simmenes T H, Larsen B, et al. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones[J]. Journal of Structural Geology, 2010, 32: 1643~1655. doi: 10.1016/j.jsg.2009.08.013
    [14] Gudmundsson A. Rock fractures in geological processes[M]. Cambridge University Press, 2011: 1~570.
    [15] 李道品, 张连春.开发低渗透油田莫失良机[J].中国石油企业, 2004, (12):44~45. doi: 10.3969/j.issn.1672-4267.2004.12.013

    LI Dao-pin, ZHANG Lian-chun. Prospects for developing low permeability oilfields[J]. Chinese Petroleum Corporation, 2004, (12): 44~45. doi: 10.3969/j.issn.1672-4267.2004.12.013
    [16] Tong H, Yin A. Reactivation tendency analysis: A theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 2011, 503: 195~200. doi: 10.1016/j.tecto.2011.02.012
    [17] Tong H, Wang J, Zhao H, et al. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China: Earth Sciences, 2014, 57: 1~10. doi: 10.1007%2Fs11430-014-4860-1.pdf
    [18] 陈子光.岩石力学性质与构造应力场[M].北京:地质出版社, 1986.

    CHEN Zi-guang. Mechanical properties of rock and tectonic stress field[M]. Beijing: Geological Publishing House, 1986: 6~15.
    [19] 甘舜仙.有限元技术与程序[M].北京:北京理工大学出版社, 1988:243~299.

    GAN Shun-xian. Finite element techniques and procedures[M]. Beijing: Beijing Institute of Technology Press, 1988: 243~299.
    [20] 潘别桐, 黄润秋.工程地质数值法[M].北京:地质出版社, 1994:6~52.

    PAN Bie-tong, HUANG Run-qiu. Engineering geological numerical method[M]. Beijing: Geological Publishing House, 1994: 6~52.
    [21] 童亨茂.断层开启和封闭的定量分析方法[J].石油与天然气地质, 1998, 19(3):215~220. doi: 10.11743/ogg19980308

    TONG Heng-mao. Quantitative analysis of fault opening and sealing [J]. Oil and Gas geology, 1998, 19(3): 215~220. doi: 10.11743/ogg19980308
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  63
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-04
  • 刊出日期:  2014-12-28

目录

    /

    返回文章
    返回