CHARACTERISTICS AND REGULARITY OF LONGITUDINAL GEOSTRESS DISTRIBUTION IN SAND-MUDSTONE STRATA
-
摘要: 以实际沉积地层中抽象出来的砂泥岩地层概念模型为研究对象, 在盆地构造力学、岩石力学性质分析的基础上, 采用应力场数值模拟法研究分析砂泥岩地层中的纵向地应力分布特征和规律。研究结果表明, 水平主应力在砂泥岩的分界面发生突变, 变化程度主要与两侧岩石的力学性质差异相关, 也与区域构造应力有一定关联; 杨氏模量对最大水平主应力影响程度大于对最小水平主应力的影响, 泊松比对地层最小水平主应力影响程度大于对最大水平主应力的影响。杨氏模量和泊松比对最大水平主应力的影响, 在伸展应力状态下前者影响相对较小, 走滑应力状态下, 影响程度基本相同, 挤压应力状态下, 前者影响程度相对较大; 而对于最小水平主应力的影响, 在三种应力状态下, 泊松比的影响均大于杨氏模量。地层的岩性变化方式(渐变或突变)对地层最小水平应力差产生显著影响, 厚度变化对地层最小水平应力差大小无影响。上述认识可以指导砂泥岩地层的压裂和储层改造, 改善压裂效果。Abstract: Based on the analysis of basin geomechanics and mechanical properties of rocks, the characteristics and regularity of geostress distribution in the sand-mudstone strata are studied with numerical modeling by using the conceptual model of sand-mudstone strata abstracted from actual sedimentary strata. The results showed that horizontal principal stress mutates at the interface of sand-mudstone strata, and the change degree is mainly related to the difference of mechanical property of rock on both sides, then the regional tectonic stress. The effect of Young Modulus on the horizontal maximum principal stress is greater than that on the horizontal minimum principal stress; while the effect of Poisson Ratio on the horizontal minimum principal stress is higher than that on the horizontal maximum principal stress. The effect of Young Modulus and Possion Ratio on the horizontal maximum principal stress is different in different stress state. In extensional strike-slip and compressional stress state, Possion Ratio has greater roughly equivalent and samller effect on the horizontal maximum principal stress respectively. While, the effect of Possion Ratio on the horizontal minimum principal stress is always greater than that of Young Modulus in different stress state. The way of lithology changes in strata (mutations or gradient) has remarkable influence on the stress difference of horizontal principal stress, while the thicknesses no effect. The above understanding is valuable for effective reservoir hydraulic fracturing and reformation.
-
Key words:
- geostress distribution /
- numerical simulation /
- Poisson Ratio /
- Young Modulus /
- sand-mudstone
-
表 1 模型Ⅰa、Ⅰb岩石力学参数分布
Table 1. Parameters of rock mechanics for modelⅠa andⅠb
Ⅰa层位 杨氏模量/
GPa泊松比 Ⅰa层位 杨氏模量/
GPa泊松比 Ⅰb层位 杨氏模量/
GPa泊松比 Ⅰb层位 杨氏模量/
GPa泊松比 1 15 0.3 7 33 0.3 1 30 0.15 7 30 0.33 2 18 0.3 8 36 0.3 2 30 0.18 8 30 0.36 3 21 0.3 9 39 0.3 3 30 0.21 9 30 0.39 4 24 0.3 10 42 0.3 4 30 0.24 10 30 0.42 5 27 0.3 11 45 0.3 5 30 0.27 11 30 0.45 6 30 0.3 6 30 0.30 表 2 模型Ⅱ岩石力学参数分布
Table 2. Parameters of rock mechanics for model Ⅱ
模型Ⅱ编号 旋回号 层位号 层厚度/m 泊松比 杨氏模量/GPa Ⅱa(旋回是由砂岩突变到泥岩构成) 3 1 12.5 0.20 20 2 12.5 0.28 25 2 3 12.5 0.2 20 4 12.5 0.28 25 1 5 12.5 0.20 20 6 12.5 0.28 25 Ⅱb(旋回由砂岩渐变过渡到泥岩,其中过渡带地层是等厚的) 3 1 5 0.20 20 2 5 0.22 22 3 5 0.24 23 4 5 0.26 24 5 5 0.28 25 2 6 5 0.20 20 7 5 0.22 22 8 5 0.24 23 9 5 0.26 24 10 5 0.28 25 1 11 5 0.20 20 12 5 0.22 22 13 5 0.24 23 14 5 0.26 24 15 5 0.28 25 Ⅱc(旋回由砂岩渐变过渡到泥岩,其中过渡带地层不等厚) 3 1 8 0.20 20 2 7 0.22 22 3 5 0.24 23 4 3 0.26 24 5 2 0.28 25 2 6 2 0.20 20 7 3 0.22 22 8 5 0.24 23 9 7 0.26 24 10 8 0.28 25 1 11 10 0.20 20 12 6 0.22 22 13 4 0.24 23 14 3 0.26 24 15 2 0.28 25 -
[1] Brown E T, Hoek E. Trends in relationships between measured in-situ stresses and depth [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211~215. http://linkinghub.elsevier.com/retrieve/pii/0148906278912275 [2] Stacey T R, Wesseloo J. Updated in situ stress database for Southern Africa [M]. Proceedings and Monographs in Engineering, Water and Earth Sciences, 2006: 467~471. [3] Fuchs K, Muller B. World stress map of the earth: A key to tectonic processes and technological applications[J]. Natrwissen-schaften, 2001, 88: 357~371. doi: 10.1007/s001140100253 [4] Worotniki G, Denham D. The state stress in the upper part of the earth's crust in Australia according to measurements in tunnels and mines and from seismic observation[C]//Investigation of Stress in Rock-Advances in Stress Measurement. Sydney: Int. Soc. Rock Mech. Symp., 1976: 71~82. [5] 朱焕春, 陶振宇.不同岩石中地应力分布[J].地震学报, 1994, 16(1):50~62. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB401.006.htmZHU Huan-chun, TAO Zhen-yu. Geostress distribution in different rocks [J]. Acta Seismologica Sinica, 1994, 16(1): 50~62. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB401.006.htm [6] 景锋, 盛谦, 余美万. 地应力与岩石弹性模量随埋深变化及相互影响[C]//第十次全国岩石力学与工程学术大会论文集. 2010: 70~73.JING Feng, SHENG Qian, YU Mei-wan. Change and rule of the geostress and the slastic modulus of rock with depth and their mutual impact[C]//Symposium of The 11th National Conference on Rock Mechanics and Engineering. 2010: 70~73. [7] 李新平, 汪斌, 周桂龙.我国大陆实测深部地应力分布规律研究[J].岩土力学与工程学报, 2012:31(增1):2875~2880. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1035.htm [8] 赵德安, 陈志敏, 蔡小林, 等.中国地应力场分布规律统计分析[J].岩石力学与工程学报, 2007, 26(6):1266~1270. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706024.htmZHAO De'an, CHEN Zhi-min, CAI Xiao-lin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1266~1270. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706024.htm [9] 康红普, 林键, 张晓, 等.潞安矿区井下地应力测量及分布规律研究[J].岩土力学, 2010, 31(3):828~831. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201003030.htmKANG Hong-pu, LIN Jian, ZHANG Xiao, et al. In-situ stress measurements and distribution laws in Lu'an underground coal mines[J]. Rock and Soil Mechanics, 2010, 31(3): 828~831. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201003030.htm [10] 秦向辉, 谭成轩, 孙进忠, 等.地应力与岩石弹性模量关系试验研究[J].岩土力学, 2012, 33(6):1690~1694. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206013.htmQIN Xiang-hui, TAN Cheng-xuan, SUN Jin-zhong, et al. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 2012, 33(6): 1690~1694. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201206013.htm [11] 景锋, 盛谦, 张勇慧, 等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报, 2007, 26(10):2057~2060. http://cdmd.cnki.com.cn/Article/CDMD-80005-2009156820.htmJING Feng, SHENG Qian, ZHANG Yong-hui, et al. Research on distribution rule of shallow crustal geostress in China mainland[J]. Chinese Journal of Rock Machanics and Engineering, 2007, 26(10):2057~2060. http://cdmd.cnki.com.cn/Article/CDMD-80005-2009156820.htm [12] Gudmundsson A. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes[J]. Earth-Science Reviews, 2006, 79: 1~31. doi: 10.1016/j.earscirev.2006.06.006 [13] Gudmundsson A, Simmenes T H, Larsen B, et al. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones[J]. Journal of Structural Geology, 2010, 32: 1643~1655. doi: 10.1016/j.jsg.2009.08.013 [14] Gudmundsson A. Rock fractures in geological processes[M]. Cambridge University Press, 2011: 1~570. [15] 李道品, 张连春.开发低渗透油田莫失良机[J].中国石油企业, 2004, (12):44~45. doi: 10.3969/j.issn.1672-4267.2004.12.013LI Dao-pin, ZHANG Lian-chun. Prospects for developing low permeability oilfields[J]. Chinese Petroleum Corporation, 2004, (12): 44~45. doi: 10.3969/j.issn.1672-4267.2004.12.013 [16] Tong H, Yin A. Reactivation tendency analysis: A theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 2011, 503: 195~200. doi: 10.1016/j.tecto.2011.02.012 [17] Tong H, Wang J, Zhao H, et al. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China: Earth Sciences, 2014, 57: 1~10. doi: 10.1007%2Fs11430-014-4860-1.pdf [18] 陈子光.岩石力学性质与构造应力场[M].北京:地质出版社, 1986.CHEN Zi-guang. Mechanical properties of rock and tectonic stress field[M]. Beijing: Geological Publishing House, 1986: 6~15. [19] 甘舜仙.有限元技术与程序[M].北京:北京理工大学出版社, 1988:243~299.GAN Shun-xian. Finite element techniques and procedures[M]. Beijing: Beijing Institute of Technology Press, 1988: 243~299. [20] 潘别桐, 黄润秋.工程地质数值法[M].北京:地质出版社, 1994:6~52.PAN Bie-tong, HUANG Run-qiu. Engineering geological numerical method[M]. Beijing: Geological Publishing House, 1994: 6~52. [21] 童亨茂.断层开启和封闭的定量分析方法[J].石油与天然气地质, 1998, 19(3):215~220. doi: 10.11743/ogg19980308TONG Heng-mao. Quantitative analysis of fault opening and sealing [J]. Oil and Gas geology, 1998, 19(3): 215~220. doi: 10.11743/ogg19980308