RHEOLOGIC IMPLICATIONS OF CONJUGATE SHEAR ANGLES
-
摘要: 基于最大侧向位移速率假设(Maximum lateral displacement rate, 简称MLDR), 本文提出了一个关于共轭剪切角的流变学理论。根据这个假设, 无论是压应力或张应力作用在一个固体上, 剪切带总是沿着使得被剪切带分割的块体的侧向位移速率为最大的方向发育。换句话说, 如果平行于驱动应力的纵向位移速率或驱动应力的大小被看作为边界条件, 那些被剪开的块体总是以最快的可能速度从两侧挤出或饲入变形区。该理论的优点是:剪切位移的方向是可逆的。因此, 同一剪切带可以在挤压和拉张应力体系中活动。在各向同性固体中, 剪切带的方位和驱动应力方向之间的夹角θ由方程式 tan θ=
确定, 其中n为描述该固体塑性流动的幂指数。-
关键词:
- 共轭剪切角 /
- 最大侧向位移速率假设 /
- 流变学
Abstract: A rheologic theory on conjugate shear angles is proposed based on the maximum lateral displacement rate (MLDR)hypothesis, which states that when compressive or tensile stress is applied to a solid, shear bands are formed in the solid in the orientations that give rise to the maximum lateral displacement rates of the blocks divided by the shear bands.In other words, it is postulated that the sheared blocks are laterally extruded from or fed into the deformation domain at the greatest possible velocity.The merit of this theory is:the sense of shear displacement is reversible.Hence, the same shear bands can be activated in both compressive and tensile stress regimes.In an isotropic model, the angle θ between the driving stress and the shear bands formed is determined by the equation, tan θ= , where n is the power-law index of flow.-
Key words:
- conjugate shear angle /
- maximum lateral displacement rate /
- rheology
-
图 1 (a) 粗实线描绘地下1000m深处的矿柱上观察到的共轭剪切带, 其共轭角为109°和110°(Boulby煤矿, 克莱福兰, 英国)。垂直虚线指示挖矿用的铲子留下的沟痕, 它们已被沿着剪切带错开(据Watterson, 1999)[1]。(b)用于模拟伸展构造的砂箱实验中观察到的共轭剪切带, 砂层厚为3cm, 用常拉伸速率5×10-3 cm/sec, 通过一可伸长的弹性底层拉至46%的总伸展量。模拟实验的尺度比设计为约10-5, 模型中的1cm代表自然界中的1km。当伸展量超过20%时, 砂箱顶面出现图中所示的共轭剪切带, 测得其共轭角为109°(据Bahroudi et al., 2003)[3]。(c)加拿大西大省晚太古代花岗绿岩中发育的共轭剪切带方位的玫瑰图, 其共轭角也为109°(据Park, 1981)[4]。
Figure 1. (a)Shear bands (solid lines)with conjugate angles of 109°and 110°in a roof support pillar at depth of 1000 m, Boulby mine, Cleveland, UK.Vertical broken lines indicate grooves made by excavator shovel, which are offset along yield bands (after Watterson, 1999)[1].(b)Conjugate shear bands obtained in sandbox analogue modeling of extensional structures using a sand layer 3 cm thick extended at constant rate about 5 ×10-3 cm sec by a stretchable basement to a total extension of 46%(the length ratio of analogue modeling is designed to be about 10-5, implying that 1 cm in the model simulates 1km in nature).The conjugate shear bands with conjugate angles of 109°in the top view of sandbox merge as the amount of extension exceeds 20%(after Bahroudi et al., 2003)[3].(c)Rose diagram showing the orientations of conjugate shear bands measured at 15°intervals, in the later Archaean granite-greenstone terrain of the Western Superior Province, Canada, with a conjugate angle of 109°(after Park, 1981)[4].
图 2 描述最大侧向位移速率假设(MLDR)的示意图(a)挤压驱动应力情形; (b)拉张驱动应力情形。M LDR假设意味着让被剪切带切割的块体以最快的速度从变形区逃逸出来(在挤压情形, 称为挤出作用)或以最快的速度饲入变形区(在拉张情形, 称为颈缩作用)。
Figure 2. Diagrams showing the hypothesis of maximum lateral displacement rate (MLDR) in the cases of (a) compressive and (b)tensile driving stress applied to a solid.The MLDR hypothesis implies the fastest way for the blocks divided by conjugate shear bands to be laterally extruded from the deformation domain in the case of compressive driving stress, known as extrusion, or to be laterally fed into the deformation domain in the case of tensile driving stress, known as necking.
-
[1] Watterson J.The future of failure:stress or strain?[J].Journal of Structural Geology, 1999, 21:939~948. doi: 10.1016/S0191-8141(99)00012-7 [2] Ramsay JG.Shear zone geometry:a review[J]. Journal of Structural Geology, 1980, 2:83~89. doi: 10.1016/0191-8141(80)90038-3 [3] Bahroudi A, Koyi HA, Talbot CJ.Effect of ductile and frictional decollements on style of extension[J].Journal of Structural Geology, 2003, 25:1401~1423. doi: 10.1016/S0191-8141(02)00201-8 [4] Park RG.Shear-zone deformation and bulk strain in granite-greenstone terrain of the Western Superior Provinces, Canada[J]. Precambrian Research, 1981, 14:31~47. doi: 10.1016/0301-9268(81)90034-6 [5] Robertson EC. Viscoelasticity of Rocks. In: State of Stress in the Earth' s Crust, W. R. Judd (ed. )[M]. New York: Elsevier, 1964. 181~233. [6] Zhang Y. Rheologic implications of the geometry of ductile shear zones. In: Maximum Lateral Displacement Rate Theory, Chapter 2. Nanjing, 2005, 123p. [7] Zhang Y. Rheologic implications of the geometry of low-angle normal faults. In: Maximum Lateral Displacement Rate Theory, Chapter 3. Nanjing, 2006, 123p. 期刊类型引用(17)
1. 孙炜锋,黄火林,孙东生,孟文,陈群策. 雅鲁藏布江断裂带东段现今地应力测量与断层活动性分析. 岩土力学. 2024(04): 1129-1141 . 百度学术
2. 李洪超,刘轩泽,付俊,李社,吴灿萍,梁瑞. 藏北多龙矿集区某金铜矿地应力特征及断裂稳定性分析. 安全与环境学报. 2024(12): 4659-4668 . 百度学术
3. 王丹彤,李传生,于翠翠,刘宏伟. 山东安丘-莒县断裂莒县盆地段地应力测试及断裂活动性研究. 山东国土资源. 2023(04): 51-57 . 百度学术
4. 蔡美峰. 深井地壳活动综合观测技术略谈. 地质力学学报. 2023(03): 301-312 . 本站查看
5. 陈东升,纪洪广,袁永忠,李芹涛. 岩石非均质程度对水压致裂地应力测试方法影响的分析与讨论. 地质力学学报. 2023(03): 365-374 . 本站查看
6. 张斌,孙尧,马秀敏,彭华,姜景捷,毛佳睿,张文汇,翟玉栋. 东构造结墨脱关键区域地应力场特征及其构造稳定性分析. 地质力学学报. 2023(03): 388-401 . 本站查看
7. 朱明德,王照亚,张月征,李文光,侯奎奎,纪洪广,尹延天,付桢,郝英杰. 基于水压致裂法的三山岛深竖井工程区地应力测量与反演分析. 地质力学学报. 2023(03): 430-441 . 本站查看
8. 秦向辉,陈群策,孟文,张重远,孙东生,杨跃辉,陈虹,李冉. 喜马拉雅东构造结北缘通麦—波密段现今地应力场特征研究. 地质学报. 2023(07): 2126-2140 . 百度学术
9. 付俊,周罕,王凯,郭国祥,吴灿萍,余璨. 玉维高速科色特长隧道地应力特征及工程地质意义. 科学技术与工程. 2023(23): 10106-10111 . 百度学术
10. 宋春华,郁飞,施刚. 上海张堰-金山卫隐伏活动断层活动特征及综合地球物理证据. 地质力学学报. 2023(06): 888-897 . 本站查看
11. 李彬,张文,文冉. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析. 地质力学学报. 2022(02): 191-202 . 本站查看
12. 周亚博,柏杨,赵学平,郭奇峰,张杰,张利伟. 阿尔哈达铅锌矿深部地应力分布特征及其应用. 矿业研究与开发. 2022(06): 85-89 . 百度学术
13. 王建秀,杨天亮,王宇轩,史玉金,黄鑫磊,赵团芝,吴凡. 滨海软土超大城市地质环境健康度表征方法、评价体系及应用. 工程地质学报. 2022(05): 1629-1639 . 百度学术
14. 刘建,惠晨,樊建明,吕文雅,王继伟,尹陈,王浩南. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议. 地质力学学报. 2021(01): 31-39 . 本站查看
15. 张浩,施刚,巫虹,邵磊,宋春华,郁飞. 上海罗店-周浦隐伏断裂第四纪活动性综合探测与研究. 地质力学学报. 2021(02): 267-279 . 本站查看
16. 李雪,曾毓燕,郁飞,施刚. 基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价. 地质力学学报. 2021(06): 998-1010 . 本站查看
17. 郑红军,周道容,殷启春,熊强青,王中鹏,方朝刚,滕龙,邵威,王元俊. 下扬子页岩气地质调查新进展及突破难点思考. 地质力学学报. 2020(06): 852-871 . 本站查看
其他类型引用(5)
-