留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于断层测量的温度补偿光纤外腔型法布里-珀罗位移传感器

彭华 马秀敏 王震 崔留住 江毅

彭华, 马秀敏, 王震, 等, 2013. 用于断层测量的温度补偿光纤外腔型法布里-珀罗位移传感器. 地质力学学报, 19 (3): 315-324.
引用本文: 彭华, 马秀敏, 王震, 等, 2013. 用于断层测量的温度补偿光纤外腔型法布里-珀罗位移传感器. 地质力学学报, 19 (3): 315-324.
PENG Hua, MA Xiu-min, WANG Zhen, et al., 2013. A FIBRE OPTIC EXTRINSIC FABRY-PEROT INTERFEROMETER WITH TEMPERATURE COMPENSATION FOR FAULT MEASUREMENT. Journal of Geomechanics, 19 (3): 315-324.
Citation: PENG Hua, MA Xiu-min, WANG Zhen, et al., 2013. A FIBRE OPTIC EXTRINSIC FABRY-PEROT INTERFEROMETER WITH TEMPERATURE COMPENSATION FOR FAULT MEASUREMENT. Journal of Geomechanics, 19 (3): 315-324.

用于断层测量的温度补偿光纤外腔型法布里-珀罗位移传感器

基金项目: 

科技支撑计划项目“汶川地震断裂带科学钻探——井中科学探测”课题及“地震断裂带的应力环境、应变能的分布及其与地震关系”课题;中国地质调查局地调项目 1212010916064

公益性行业专项基金项目 201008009

详细信息
    作者简介:

    彭华(1964-), 男, 研究员, 长期从事地应力、地应力测量与监测、地学仪器设备研制、岩石力学等方面的研究工作。E-mail:ph68486797@yahoo.com.cn

  • 中图分类号: TH744.3

A FIBRE OPTIC EXTRINSIC FABRY-PEROT INTERFEROMETER WITH TEMPERATURE COMPENSATION FOR FAULT MEASUREMENT

  • 摘要: 针对光纤EFPI传感器通常尺寸很小,而断层尺寸相对较大,导致光纤EFPI传感器在待测断层处安装不便的情况,提出了一种可用于断层测量的光纤外腔型法布里-珀罗位移传感器。两根陶瓷插芯从陶瓷套管的两端插入构成EFPI结构,通过使用金属内管和金属外管,增大了光纤EFPI位移传感器的尺寸;并且金属外管的两端采用O型圈密封,因此该EFPI位移传感器能够防水防尘。为了消除温度对EFPI位移传感器的影响,两根金属内管采用了不同热膨胀系数的材料在结构上进行温度补偿。在温度连续变化的环境下,对腔长为718.39 m的EFPI位移传感器进行了测量。测量结果显示,经过温度补偿设计后,位移传感器的温度系数由0.14 μm/℃下降到了-0.04 μm/℃,并呈现过补偿。

     

  • 图  1  EFPI位移传感器结构

    Figure  1.  Structure of the EFPI displacement sensor

    图  2  温度补偿的结构原理

    Figure  2.  Principle diagram of temperature compensation

    图  3  实验结构原理,EFPI位移传感器及位移平台

    Figure  3.  Experiment setup, the EFPI displacement sensor and the linear stage

    图  4  WLI采集到的EFPI位移传感器的白光光谱

    Figure  4.  White-light optical spectrum of the EFPI displacement sensor obtained by WLI

    图  5  使用白光干涉解调仪得到的位移测量结果

    Figure  5.  Displacement measurement results of the WLI

    图  6  无温度补偿时腔长-温度的关系

    Figure  6.  Cavity lengths without the temperature compensation in different temperatures

    图  7  有温度补偿情况下腔长-温度的关系(初始腔长716.23 m)

    Figure  7.  The cavity length with the temperature compensation in different temperatures

    图  8  温度连续变化时有温度补偿的EFPI位移传感器的腔长变化

    Figure  8.  Change of the cavity length with the temperature compensation, when the temperature is continuously changed

  • [1] Bhatia V, Murphy K A, Claus R O, et al. Recent developments in optical-fiber-based extrinsic Fabry-Perot interferometric strain sensing technology[J]. Smart Materials and Structures, 1995, 4(4):246~251. doi: 10.1088/0964-1726/4/4/004
    [2] Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2):57~79. doi: 10.1016/S1068-5200(02)00527-8
    [3] Murphy K A, Gunther M F, May R G, et al. EFPI sensor manufacturing and applications[C]//Crowe C R. Smart Structures and Materials 1996:Industrial and commercial applications of smart structures technologies. San Diego:The International Society for Optical Engineering, 1996:476~482.
    [4] Xiao H, Deng J D, Wang Z Y, et al. Fiber optic pressure sensor with self-compensation capability for harsh environment applications[J]. Optical Engineering, 2005, 44(5):544~547. https://www.netl.doe.gov/File%20Library/Events/2014/crosscutting/Crosscutting_20140521_1600A_Clemson.pdf
    [5] Ferreira L A, Ribeiro A B L, Santos J L, et al. Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating[J]. IEEE Photonics Technology Letters, 1996, 8(11):1519~1521. doi: 10.1109/68.541569
    [6] Ferreira L A, Ribeiro A B L, Santos J L, et al. Simultaneous displacement and temperature sensing using a white light interrogated low finesse cavity in line with a fiber Bragg grating[J]. Smart Materials and Structures, 1998, 7(2):189~194. doi: 10.1088/0964-1726/7/2/006
    [7] Liu T, Fernando G F, Rao Y J, et al. Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry-Perot sensor[C]//Claus R O. Smart structures and materials 1997:Smart Sensing, Processing, and Instrumentation. San Diego:The International Society for Optical Engineering, 1997:203~212.
    [8] Bremer K, Lewis E, Moss B, et al. Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature[J]. Journal of Physics:Conference Series, 2009, 178(1):12~16. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE00645252
    [9] Bremer K, Lewis E, Leen G, et al. 2011 Temperature compensated miniature all-glass fibre optic pressure sensor[C]//Institute of Electrical and Electronics Engineers. Sensors. Piscataway:IEEE, 2011:105~108.
    [10] Liu T, Fernando G F, Zhang Z Y, et al. Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fiber sensors[J]. Sensors and Actuators A:Physical, 2000, 80(3):208~215. doi: 10.1016/S0924-4247(99)00309-X
    [11] Zhang Z Y, Grattan K T V, Palmer A W, et al. Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000℃[J]. Review of Scientific Instruments, 1997, 68(7):2759~2763. doi: 10.1063/1.1148191
    [12] Xu J C, Wang X W, Cooper K L, et al. Miniature temperature-insensitive Fabry-Perot fiber-optic pressure sensor[J]. Photonics Technology Letters, 2006, 18(10):1134~1136. doi: 10.1109/LPT.2006.873361
    [13] Jiang Y. 2008 Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Pérot Interferometric sensors[J]. Photonics Technology Letters, 20(2):75~77. doi: 10.1109/LPT.2007.912567
    [14] Jiang Y, Tang C J. High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors[J]. Smart Materials and Structures, 2008, 17(5):55~67. doi: 10.1007/s13320-010-0014-z
  • 加载中
图(8)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  81
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-11
  • 刊出日期:  2013-09-01

目录

    /

    返回文章
    返回