留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘肃北山中泥盆世哈尔特尔德勒花岗岩体的地球化学特征及其构造意义

计波 余吉远 郭琳 过磊 卜涛

计波, 余吉远, 郭琳, 等, 2017. 甘肃北山中泥盆世哈尔特尔德勒花岗岩体的地球化学特征及其构造意义. 地质力学学报, 23 (3): 358-368.
引用本文: 计波, 余吉远, 郭琳, 等, 2017. 甘肃北山中泥盆世哈尔特尔德勒花岗岩体的地球化学特征及其构造意义. 地质力学学报, 23 (3): 358-368.
JI Bo, YU Ji-yuan, GUO Lin, et al., 2017. GEOCHEMISTRY CHARACTERISTICS AND TECTONIC SIGNIFICANCE OF THE HAERTEERDELE GRANITE MASS IN MIDDLE DEVONIAN IN BEISHAN, GANSU. Journal of Geomechanics, 23 (3): 358-368.
Citation: JI Bo, YU Ji-yuan, GUO Lin, et al., 2017. GEOCHEMISTRY CHARACTERISTICS AND TECTONIC SIGNIFICANCE OF THE HAERTEERDELE GRANITE MASS IN MIDDLE DEVONIAN IN BEISHAN, GANSU. Journal of Geomechanics, 23 (3): 358-368.

甘肃北山中泥盆世哈尔特尔德勒花岗岩体的地球化学特征及其构造意义

基金项目: 

中国地质大调查项目 12120113046400

详细信息
    作者简介:

    计波(1986-), 男, 工程师, 从事区域地质调查、沉积学、岩石地球化学研究。E-mail:46880421@qq.com

  • 中图分类号: P595;P588.121

GEOCHEMISTRY CHARACTERISTICS AND TECTONIC SIGNIFICANCE OF THE HAERTEERDELE GRANITE MASS IN MIDDLE DEVONIAN IN BEISHAN, GANSU

  • 摘要: 牛圈子哈尔特尔德勒岩体具有高硅(Si>72.2%)、高碱(AR=2.9~5.1,K2O=3.86%~5.49%,Na2O=3.04%~3.83%)和高FeOT/MgO值(3.29~13.47)、低Al2O3(11.48%~13.42%)、贫CaO(0.57%~2.27%)和MgO(0.14%~0.78%)、低FeOT(1.33%~2.34%)的特征,A/NK值为1.43~1.77,A/CNK值为1.35~1.4,为过铝质高钾钙碱性花岗岩。ΣREE较高,LREE略富集((La/Yb)N=4.9~16),轻重稀土元素分馏不明显,Eu负异常明显(δEu=0.12~0.21);相对富集Rb、K、Pb等大离子亲石元素,强烈亏损Ba、Sr、P、Ti,Eu,并弱亏损Ta、Nb等元素;同时具有与地壳更为接近的Nb/Ta与Nd/Th值,显示了A(A2)型花岗岩的特征。LA-ICP-MS锆石定年获得哈尔特尔德勒岩体的206Pb/238U年龄为371.7±2.9 Ma,代表该岩体的形成年龄,表明其为中泥盆世岩浆活动的产物。结合区域构造演化以及与区域同时代A型花岗岩的对比显示,该岩体形成于后碰撞伸展环境。

     

  • 图  1  甘肃北山哈尔特尔德勒岩体地质简图[13]

    Figure  1.  Geological sketch map of the granite mass in Haerteerdele area, Beishan, Gansu Province

    图  2  哈尔特尔德勒花岗岩类型判别图[15~16]

    Figure  2.  Discrimination diagrams of the Haerteerdele granite types

    图  3  哈尔特尔德勒花岗岩K2O-SiO2图解(a)[17]和A/NK—A/CNK图解(b)[18]

    Figure  3.  K2O-SiO2 diagram(a) and A/NK-A/CNK diagram (b) of the Haerteerdele granites

    图  4  哈尔特尔德勒花岗岩体稀土元素球粒陨石标准化分布模式图(a)和原始地幔标准化蛛网图(b)[19]

    Figure  4.  Chondrite-normalized REE patterns (a) and primitive mantle normalized spidergram (b) of the Haerteerdele granite mass

    图  5  哈尔特尔德勒岩体锆石特征和LA-ICP-MS测点位置

    Figure  5.  Zircon characteristics and LA-ICP-MS measuring points of the Haerteerdele granite mass

    图  6  单颗粒锆石的谐和图及206Pb/238U加权平均年龄直方图

    Figure  6.  Concordia diagram and 206Pb/238U weighted average age histogram of single-grain zircon

    图  7  哈尔特尔德勒花岗岩按Sr-Yb分类图(a)[42]和A型花岗岩亚类判别图(b和c)[43]

    Figure  7.  Sr-Yb classification chart (a) and discrimination diagrams of the subdivision of the Haerteerdele A-type granite(b & c)

    图  8  哈尔特尔德勒花岗岩体构造环境判别图解[45~46]

    Figure  8.  Tectonic environment discrimination diagrams of the Haerteerdele granite mass

    表  1  哈尔特尔德勒二长花岗岩主量元素及稀土、微量元素分析结果

    Table  1.   Analysis results of major elements, rare earth elements and trace elements of the Haerteerdele monzonitic granite

    样品 YQ-3 YQ-21 YQ-32 YQ-6 YQ-9 YQ-23 YQ-41 YQ-1 YQ-15 YQ-26
    SiO2 78.0 74.59 76.15 76 76.28 75.66 77.0 75.6 74.98 72.2
    Al2O3 11.5 13.31 12.38 12.34 12.19 12.33 12.1 12.5 12.58 13.42
    Fe2O3 0.01 0.01 0.01 0.58 0.06 0.24 0.01 0.01 0.1 0.01
    FeO 1.32 1.74 1.96 1.02 1.45 1.6 1.33 2.33 1.82 2.3
    CaO 0.74 0.57 0.8 0.67 0.84 0.7 0.6 0.89 1.24 2.27
    MgO 0.21 0.33 0.22 0.2 0.14 0.15 0.14 0.21 0.42 0.78
    K2O 4.37 5.49 4.92 4.86 4.59 5.32 5.05 4.84 4.52 3.86
    Na2O 3.2 3.83 3.14 3.35 3.5 3.04 3.07 3.35 3.25 3.72
    TiO2 0.12 0.17 0.16 0.14 0.13 0.15 0.12 0.14 0.22 0.24
    P2O5 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.04 0.04 0.06
    MnO 0.02 0.02 0.03 0.02 0.04 0.04 0.03 0.03 0.04 0.04
    LOI 0.7 0.76 0.74 0.77 0.75 1.06 0.63 1.08 0.79 1.69
    Pb 34.2 22 29.7 38.3 34 26.8 39.7 36.3 25.4 26.3
    Cr 6.49 9.46 15.2 8.5 4.31 11.6 2.16 4.24 7.71 9.14
    Ni 1.87 3.49 6.21 4.77 1.55 2.42 0.83 1.94 3.14 5.38
    Co 1.08 2.72 1.29 2.16 0.87 1.94 0.62 1.1 2.66 3.2
    Rb 273 164 251 214 339 182 191 222 199 209
    Cs 3.54 1.58 2.38 4.14 11 2.33 1.74 4.02 2.22 4.64
    Sr 41.4 77.4 74.5 45.8 27.1 69.1 40.4 39.4 80.7 174
    Ba 121 350 297 150 114 414 145 151 404 366
    Sc 1.83 7.22 3.63 2.62 1.6 7.46 2.66 1.54 8.91 6.05
    Nb 14.6 10.2 12.9 17.4 19.5 12.8 11.3 14.5 13.1 15.2
    Ta 1.15 0.85 1.03 1.28 1.54 0.94 0.93 1.14 0.95 1.3
    Zr 130 241 265 220 203 235 178 160 201 156
    Hf 5.45 6.86 7.43 6.62 7.28 6.71 5.8 5.59 6.21 5.04
    U 3.76 1.86 1.83 2.75 4.9 1.58 1.92 1.76 2.34 2.36
    Th 45.3 18.8 25.5 25.6 29.7 19.5 18.2 25.9 20 21
    La 49.9 82.1 103 73.8 53.3 112 42.7 54.1 58.8 46.4
    Ce 110 175 195 150 120 209 83.4 117 132 97.5
    Pr 12.7 20.2 20.9 18.4 13.7 22.5 9.54 13.7 15.8 12
    Nd 48.8 78.2 78.2 69.8 53.6 85.7 34.3 53 64.3 47
    Sm 10.5 14.8 15.8 14.4 12.2 15.2 8.33 11.5 15.5 11.4
    Eu 0.4 0.64 0.74 0.56 0.41 0.82 0.53 0.48 0.72 0.62
    Gd 9.9 11.8 14.9 12.9 12.3 13.2 6.98 10.9 16.6 11.8
    Tb 1.7 1.78 2.41 2.14 2.07 2.04 1.09 1.8 2.75 2.08
    Dy 9.98 9.08 13.5 11.4 12.6 10.8 5.89 10.4 15.6 12.5
    Ho 1.96 1.66 2.58 2.28 2.51 2.12 1.18 2.02 2.98 2.52
    Er 5.56 4.4 6.78 6.22 7.27 5.76 3.18 5.63 7.83 7.1
    Tm 0.87 0.64 0.96 0.9 1.09 0.82 0.49 0.85 1.09 1.08
    Yb 5.31 3.73 5.55 5.32 7.05 5.02 3.17 5.26 6.3 6.74
    Lu 0.77 0.53 0.75 0.78 0.97 0.73 0.51 0.78 0.85 0.93
    Y 57.3 37.8 69.4 60.2 74.3 54.4 27.7 55.1 85.3 74.7
    LREE 232.3 370.94 413.64 326.96 253.21 445.22 178.8 249.78 287.12 214.92
    HREE 36.05 33.62 47.43 41.94 45.86 40.49 22.49 37.64 54 44.75
    δEu 0.12 0.14 0.15 0.12 0.1 0.17 0.21 0.13 0.14 0.16
    下载: 导出CSV

    表  2  哈尔特尔德勒二长花岗岩(TW07) 锆石U-Pb同位素分析结果

    Table  2.   LA-ICP-MS U-Pb zircons dating results of Haerteerdele monzonitic granites (TW07)

    Analysis Th U Th/U Pb207/Pb206 Pb207/U235 Pb206/U238 Pb208/Th232 Pb207/U235 Pb206/U238 Pb208/Th232
    ratio 1sigma ratio 1sigma ratio 1sigma ratio 1sigma ratio 1sigma ratio 1sigma ratio 1sigma
    TW7-1 185.31 357.06 0.52 0.05393 0.00261 0.44243 0.01727 0.05949 0.00092 0.01816 0.00042 372 12.16 372.5 5.62 363.7 8.38
    TW7-4 120.70 330.65 0.37 0.05399 0.00303 0.44027 0.0211 0.05913 0.00101 0.01947 0.00062 370.4 14.87 370.3 6.16 389.8 12.2
    TW7-5 183.47 462.75 0.40 0.0539 0.00249 0.4371 0.01587 0.05881 0.00089 0.01904 0.00045 368.2 11.21 368.4 5.4 381.2 8.97
    TW7-6 219.49 743.12 0.30 0.05385 0.00208 0.43574 0.01158 0.05867 0.0008 0.01985 0.0004 367.2 8.19 367.5 4.9 397.3 7.97
    TW7-9 212.08 493.50 0.43 0.054 0.00233 0.44641 0.01452 0.05995 0.00087 0.01837 0.00039 374.8 10.19 375.3 5.31 367.9 7.74
    TW7-10 255.38 619.72 0.41 0.05482 0.0024 0.4409 0.01468 0.05832 0.00086 0.01855 0.00041 370.9 10.34 365.4 5.22 371.4 8.05
    TW7-20 354.68 1074.24 0.33 0.05414 0.00242 0.45062 0.01556 0.06037 0.0009 0.01959 0.00049 377.7 10.89 377.8 5.48 392.2 9.68
    TW7-22 132.62 357.72 0.37 0.05462 0.00363 0.43867 0.02606 0.05825 0.00113 0.0197 0.00077 369.3 18.4 365 6.9 394.3 15.22
    TW7-25 281.59 842.06 0.33 0.05411 0.0022 0.44406 0.01303 0.05953 0.00084 0.01909 0.0004 373.1 9.16 372.8 5.14 382.2 7.99
    TW7-26 70.35 180.46 0.39 0.05413 0.00374 0.44357 0.02759 0.05944 0.00117 0.01646 0.00068 372.8 19.41 372.2 7.14 329.9 13.51
    TW7-27 261.00 730.45 0.36 0.05416 0.00195 0.44916 0.01012 0.06016 0.0008 0.02093 0.00034 376.7 7.09 376.6 4.88 418.6 6.75
    TW7-30 177.79 600.40 0.30 0.05378 0.00256 0.43647 0.01657 0.05886 0.00091 0.0192 0.00053 367.8 11.72 368.7 5.55 384.5 10.58
    TW7-31 76.48 212.91 0.36 0.05403 0.00295 0.44391 0.02056 0.0596 0.00101 0.01977 0.0006 373 14.46 373.2 6.12 395.7 11.99
    TW7-32 258.61 957.70 0.27 0.05418 0.00185 0.44755 0.00886 0.05992 0.00078 0.02023 0.00032 375.6 6.21 375.2 4.76 404.9 6.32
    下载: 导出CSV
  • [1] 龚全胜, 刘明强, 梁明宏, 等.北山造山带大地构造相及构造演化[J].西北地质, 2003, 36(1):11~17. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200301002.htm

    GONG Quan-sheng, LIU Ming-qiang, LIANG Ming-hong, et al. The tectonic facies and tectonic evolution of Beishanorogenic belt, Gansu[J]. Northwestern Geology, 2003, 36(1):11~17. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200301002.htm
    [2] 何世平, 周会武, 任秉琛, 等.甘肃内蒙古北山地区古生代地壳演化[J].西北地质, 2005, 38(3):6~15. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200503001.htm

    HE Shi-ping, ZHOU Hui-wu, REN Bing-chen, et al. Crustal evolution of Palaeozoic in Beishan area, Gansu and Inner Mongolia, China[J]. Northwestern Geology, 2005, 38(3):6~15. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200503001.htm
    [3] 左国朝, 何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990, 1~226.

    ZUO Guo-chao, HE Guo-qi. Plate tectonics and metallogenic regularities in Beishan region[M]. Beijing:Peking University Press, 1990, 1~226.
    [4] 左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1~15. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm

    ZUO Guo-chao, LIU Yi-ke, LIU Chun-yan. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang autonomous region and inner Mongolia autonomous region[J]. Acta Geologica Gansu, 2003, 12(1):1~15. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm
    [5] 李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版), 2009, 39(4):584-605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm

    LI Jin-yi, ZHANG Jin, YANG Tian-nan, et al. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(4):584~605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
    [6] 杨合群, 李英, 赵国斌, 等.北山蛇绿岩特征及构造属性[J].西北地质, 2010, 43(1):26~36. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201001003.htm

    YANG He-qun, LI Ying, ZHAO Guo-bin, et al. Character and structural attribute of the Beishanophiolite[J]. Northwestern Geology, 2010, 43(1):26~36. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201001003.htm
    [7] 杨合群, 李英, 李文明, 等.北山成矿构造背景概论[J].西北地质, 2008, 41(1):22~28. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200801001.htm

    YANG He-qun, LI Ying, LI Wen-ming, et al. General discussion on metallogenitic tectonic setting of Beishan Mountainnorthwestern China[J]. Northwestern Geology, 2008, 41(1):22~28. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200801001.htm
    [8] 何世平, 任秉琛, 姚文光, 等.甘肃内蒙古北山地区构造单元划分[J].西北地质, 2002, 35(4):30~40. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204003.htm

    HE Shi-ping, REN Bing-chen, YAO Wen-guang, et al. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwestern Geology, 2002, 35(4):30~40. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204003.htm
    [9] 余吉远, 郭琳, 过磊, 等. 甘肃牛圈子地区六幅1: 5万区域地质调查报告[R]. 西安: 中国地质调查局西安地质调查中心, 2017.

    YU Ji-yuan, GUO Lin, GUO Lei, et al. Six of 1:50000 regional geological survey report in Niuquanzi, Gansu[R]. Xi'an:China Geological Survey Xi'an, Xi'an Geological Survey Center, 2017.
    [10] 李舢, 王涛, 童英, 等.北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义[J].岩石矿物学杂志, 2009, 28(5):407~422. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200905000.htm

    LI Shan, WANG Tao, TONG Ying, et al. Identification of the early devonian Shuangfengshan A-type granites in Liuyuan area of Beishan and its implications to tectonic evolution[J]. ActaPetrologicaetMineralogica, 2009, 28(5):407~422. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200905000.htm
    [11] 王立社, 杨建国, 谢春林, 等.甘肃北山火石山哈尔根头口布花岗岩年代学、地球化学及其地质意义[J].地质学报, 2009, 83(3):377~387. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903008.htm

    WANG Li-she, YANG Jian-guo, XIE Chun-lin, et al. Geochronology and geochemistry of Haergentoukoubu granites in the Beishan Area, Gansu, China and their geological significance[J]. ActaGeologicaSinica, 2009, 83(3):377~387. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903008.htm
    [12] 殷先明.甘肃北山地区中生代A型花岗岩特征与成矿作用[J].甘肃地质, 2010, 19(4):13~19. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201004005.htm

    YIN Xian-ming. Characteristics and metallogenesis of Mesozoic A-type granitoid in Beishan region of Gansu Province[J]. Gansu Geology, 2010, 19(4):13~19. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201004005.htm
    [13] 郑荣国, 吴泰然, 张文, 等.甘肃北山中带早泥盆世的构造——岩浆作用:来自公婆泉花岗岩体年代学和地球化学证据[J].北京大学学报(自然科学版), 2012, 48(4):603~616. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201204010.htm

    ZHENG Rong-guo, WU Tai-ran, ZHANG Wen, et al. Early Devonian Tectono-magmatic events in the Middle Beishan, Gansu Province:Evidence from chronology and geochemistry of Gongpoquan granite[J]. ActaScientiarumNaturaliumUniversitatisPekinensis, 2012, 48(4):603~616. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201204010.htm
    [14] YuanHL, GaoS, LiuXM, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353~370. doi: 10.1111/ggr.2004.28.issue-3
    [15] Whalen J B, Currie K L, Chappell B W. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407~419. doi: 10.1007/BF00402202
    [16] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189~200. doi: 10.1007/BF00374895
    [17] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, northern Turkey[J]. Contributions to Mineralogy andPetrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745
    [18] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101(5):635~643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    [19] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[A]. Saunders A D, Norry MJ. Magmatism in the Ocean Basin[M]. Geological Society, London, Special Publications, 1989, 42(1):313~345.
    [20] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneouszircon:Trace element composition as anindicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602~622. doi: 10.1007/s00410-002-0364-7
    [21] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm

    WU Yuan-bao, ZHENG Yong-fei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554~1569. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
    [22] 龚全胜, 梁明宏, 刘明强, 等. 马鬃山幅K47C0030011/25万区域地质调查报告[R]. 甘肃: 甘肃省地质调查院, 2001.

    GONG Quan-sheng, LIANG Ming-hong, LIU Ming-qiang, et al. 1:250000 regional geological survey report in Mazongshan, Gansu[R]. Gansu:Geology investigation institute in gansu province, 2001.
    [23] 王磊, 杨建国, 王小红, 等.甘肃北山营毛沱地区花岗岩类LA-ICP-MS锆石U-Pb定年及地质意义[J].矿物岩石地球化学通报, 2015, 34(3):583~591. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201503019.htm

    WANG Lei, YANG Jian-guo, WANG Xiao-hong, et al. LA-ICP-MS zircon U-Pb dating and its geological implications of Yingmaotuo granitic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(3):583~591. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201503019.htm
    [24] 张旗. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑[J].岩石矿物学杂志, 2013, 32(2):267~274. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201302014.htm

    ZHANG Qi. The criteria and discrimination for A-type granites:A reply to the question put forward by Wang Yang and some other persons for "A-type granites:What is the essence?"[J]. Acta PetrologicaetMineralogica, 2013, 32(2):267~274. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201302014.htm
    [25] Turner SP, Foden J D, MorrisonR S. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2):151~179. doi: 10.1016/0024-4937(92)90029-X
    [26] Beyth M, Stern R J, Altherr R, et al. The Late Precambrian Timnaigneous complex, Southern Israel:Evidence for comagmatic-type sanukitoidmonzodiorite and alkali granite magma[J]. Lithos, 1994, 31(3/4):103~124. http://adsabs.harvard.edu/abs/1994Litho..31..103B
    [27] Han B F, Wang S G, Jahn B M, et al. Depleted-mantlesource for the Ulungur River A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4):135~159. http://www.sciencedirect.com/science/article/pii/S000925419700003X
    [28] Mushkin A, Navon O, Halicz L, et al. The petrogenesis of A-type magmas from the Amram Massif, southern Israel[J]. Journal of Petrology, 2003, 44(5):815~832. doi: 10.1093/petrology/44.5.815
    [29] 邱检生, 王德滋, McInnesBIA.浙闽沿海地区Ⅰ型-A型复合花岗岩体的地球化学及成因[J].岩石学报, 1999, 15(2):237~246. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.009.htm

    QIU Jian-sheng, WANG De-zi, McInnesBIA. Geochemistry and petrogenesis of the Ⅰ-and A-type composite granite masses in the coastal area of Zhejiang and Fujian Province[J]. ActaPetrologicaSinica, 1999, 15(2):237~246. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.009.htm
    [30] Mingram B, Trumbull R B, Littman S, et al. A petrogeneticstudy of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia:Evidence for mixing of crust and mantle-derived components[J]. Lithos, 2000, 54(1/2):1~22. http://www.sciencedirect.com/science/article/pii/S0024493700000335
    [31] Yang J H, Wu F Y, Chung S L, et al. Ahybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2):89~106. http://www.sciencedirect.com/science/article/pii/S0024493705002264
    [32] Konopelko D, Biske G, Seltmann R, et al. Hercynian post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan[J]. Lithos, 2007, 97(1/2):140~160. http://www.academia.edu/9647500/Hercynian_post-collisional_A-type_granites_of_the_Kokshaal_Range_Southern_Tien_Shan_Kyrgyzstan
    [33] Clemens J D, Holloway J R, White A J R. Origin of an A-type granite:Experimental constraints[J]. American Mineralogist, 1986, 71(3/4):317~324. http://www.minsocam.org/ammin/AM71/AM71_317.pdf
    [34] King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371~391. doi: 10.1093/petroj/38.3.371
    [35] Hofmann A W. Chemical differentiation of the earth:The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3):297~314. doi: 10.1016/0012-821X(88)90132-X
    [36] Green T H. Significance of Nb/Ta as an Indicator of geochemical processes in the Crust-Mantle System[J]. Chemical Geology, 1995, 120(3/4):347~359. http://www.doc88.com/p-9455294174057.html
    [37] Taylor S R, McLennan S M. The continental crust:its composition and evolution[M]. Oxford:Blackwell, 1985, 91~92.
    [38] Bea F, Arzamastsev A, Montero P, et al. Anomalous alkaline rocks of Soustov, Kola:Evidence of mantle-derived metasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy and Petrology, 2001, 140(5):554~566. doi: 10.1007/s004100000211
    [39] Rudnick R L, Fountain D M. Nature and composition of the continental crust:A lower crustal perspective[J].Reviews of Geophysics, 1995, 33(3):267~309. doi: 10.1029/95RG01302
    [40] 王中刚, 于学元, 赵振华, 等.稀土元素地球化学[M].北京:科学出版社, 1989, 223~224.

    WANG Zhong-gang, YU Xue-yuan, ZHAO Zhen-hua, et al. Rare earth elements geochemistry[M]. Beijing:Science Press, 1989, 223~224.
    [41] 赵振华, 王中刚, 邹天人, 等.阿尔泰花岗岩类型与成岩模型的REE及O、Pb、Sr、Nd同位素组成依据[J].矿物岩石地球化学通报, 1991, 10(3):176~178. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH199103024.htm

    ZHAO Zhen-hua, WANG Zhong-gang, ZOU Tian-ren, et al. The REE, isotopic composition of O, Pb, Sr, Nd and diagenetic model of granitoids in Altai region[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1991, 10(3):176~178. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH199103024.htm
    [42] 张旗, 金惟俊, 李承东, 等.再论花岗岩按照Sr-Yb的分类:标志[J].岩石学报, 2010, 26(4):985~1015. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004002.htm

    ZHANG Qi, JIN Wei-jun, LI Cheng-dong, et al. Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb content:Index[J]. ActaPetrologicaSinica, 2010, 26(4):985~1015. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004002.htm
    [43] Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641~644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
    [44] 余吉远, 李向民, 梁积伟, 等.甘新蒙北山地区古生代构造演化研究——北山古生代洋盆开启、闭合时限最新进展[J].新疆地质, 2012, 30(2):205~209. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201202021.htm

    YU Ji-yuan, LI Xiang-min, LIANG Ji-wei, et al. Evolution of the geological structure in Beishan area across Gansu Province, Xinjiang autonomous region and Inner Mongolia autonomous region-constraints on the timing of opening and closing of the Beishan Paleozoic oceanic basin[J]. Xinjiang Geology, 2012, 30(2):205~209. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201202021.htm
    [45] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956~983. doi: 10.1093/petrology/25.4.956
    [46] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationicparameters[J]. Chemical Geology, 1985, 48(1/4):43~55.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  115
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 刊出日期:  2017-06-01

目录

    /

    返回文章
    返回