留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成兰铁路地应力测量与构造应力场分布规律研究

包林海 杜义 郭啟良 张彦山

包林海, 杜义, 郭啟良, 等, 2017. 成兰铁路地应力测量与构造应力场分布规律研究. 地质力学学报, 23 (5): 734-742.
引用本文: 包林海, 杜义, 郭啟良, 等, 2017. 成兰铁路地应力测量与构造应力场分布规律研究. 地质力学学报, 23 (5): 734-742.
BAO Linhai, DU Yi, GUO Qiliang, et al., 2017. IN-SITU STRESS MEASUREMENT AND RESEARCH ON TECTONIC STRESS FIELD DISTRIBUTION LAW OF CHENGDU-LANZHOU RAILWAY. Journal of Geomechanics, 23 (5): 734-742.
Citation: BAO Linhai, DU Yi, GUO Qiliang, et al., 2017. IN-SITU STRESS MEASUREMENT AND RESEARCH ON TECTONIC STRESS FIELD DISTRIBUTION LAW OF CHENGDU-LANZHOU RAILWAY. Journal of Geomechanics, 23 (5): 734-742.

成兰铁路地应力测量与构造应力场分布规律研究

基金项目: 

中国地质调查局项目 DD20160271

详细信息
    作者简介:

    包林海(1982-), 男, 硕士, 副研究员, 主要从事地应力测量方面的研究。E-mail:hailinbao@126.com

  • 中图分类号: P553

IN-SITU STRESS MEASUREMENT AND RESEARCH ON TECTONIC STRESS FIELD DISTRIBUTION LAW OF CHENGDU-LANZHOU RAILWAY

  • 摘要: 成兰铁路位于青藏高原东部边缘高山峡谷区,由于印度板块与欧亚板块碰撞,区域内构造变形强烈,构造应力场十分复杂。为研究成兰铁路工程区地应力分布规律及断层稳定性,在铁路沿线茂县、松潘县以及宕昌县境内4个深孔水压致裂地应力测量基础上,获得了不同位置区域地应力实测值的大小和方向,并建立工程区应力参数随深度分布规律。分析表明:工程区应力随深度变化呈现出较好的线性关系,在测试深度范围内,水平应力普遍高于垂直主应力,地应力值总体上属于中—高地应力级别,在750 m深度内,最大水平主应力达25 MPa,反映出工程区构造应力占主导地位,侧压系数随深度呈缓慢衰减趋势。成兰铁路在不同构造单元上最大水平主应力方向有所不同,在东昆仑断裂以北甘南块体内,最大水平主应力为北北东向,在东昆仑断裂以南川青块体内最大水平主应力为北西向。根据实测的地应力数据并结合库伦滑动摩擦准则,对工程区内的断层稳定性进行了分析。文中取得的认识对成兰铁路工程区的构造应力场、断裂活动性的研究以及隧道工程的建设具有重要的参考意义。

     

  • 图  1  区域地质构造与地应力测点

    Figure  1.  Regional geological structure and in-situ stress measurement points

    图  2  水压致裂地应力测量曲线

    Pb-破裂压力; Pr-重张压力; Ps-闭合压力

    Figure  2.  Pressure-time curves by hydraulic fracturing method

    图  3  主应力大小和应力比值随深度分布

    SH-最大水平重压力; Sh-最小水平重压力; SV-垂直重压力

    Figure  3.  Distributions of principal stresses and the stress ratios with depth-variant

    图  4  侧压系数随深度变化的回归分析

    Figure  4.  Regression analysis of lateral pressure coefficient values with depth-variant

    图  5  最大水平主应力方向随深度分布

    Figure  5.  Distribution of the maximum horizontal stress orientations with depth-variant

    图  6  青藏高原及邻区地壳水平运动特征

    Figure  6.  Characteristics of the crust horizontal motion in Qinghai-Tibet plateau and its adjacent areas

    图  7  基于实测数据的摩擦滑动计算结果

    S1-最大重应力值; P0-孔隙水压力; μ-摩擦系数

    Figure  7.  Calculation results based on measured in-situ stress data using frictional failure criterion

    表  1  地应力测量结果

    Table  1.   In-situ stress measurement data

    孔号 测试深度/m 主应力量值/MPa 应力方向
    SH Sh SV
    ZK1 511.76 18.02 12.52 13.30
    543.44 19.83 13.33 14.12
    576.85 20.66 13.66 14.99 N22°E
    604.32 22.93 14.93 15.70 N42°E
    630.05 23.68 15.68 16.37
    648.96 25.36 16.36 16.86 N33°E
    ZK2 420.90 11.13 8.71 10.93
    468.85 12.81 8.56 12.18
    516.10 20.37 13.35 13.40 N37°W
    531.53 16.80 12.43 13.80
    570.30 17.22 12.59 14.81 N32°W
    602.90 18.00 13.68 15.66
    612.00 19.25 13.10 15.89 N35°W
    630.00 20.83 14.57 16.36
    ZK3 163.40 7.87 5.12 4.32
    208.80 10.08 6.23 5.52
    245.10 10.40 7.55 6.48
    345.00 16.62 10.65 9.12 N70°W
    372.20 17.11 10.62 9.84 N62°W
    390.40 20.14 12.87 10.33
    426.70 14.90 10.43 11.29 N57°W
    454.00 15.90 10.83 12.01
    476.50 15.10 11.61 12.60
    485.30 18.64 12.48 12.84
    ZK4 410.69 15.20 9.96 10.67
    484.65 17.09 11.65 12.59 N31°W
    521.63 26.28 16.62 13.55
    558.61 18.38 12.91 14.51
    595.59 18.84 12.99 15.47 N28°W
    669.55 22.81 15.48 17.39
    743.51 24.05 16.26 19.31 N34°W
    下载: 导出CSV
  • [1] 郭长宝, 张永双, 屈科, 等.大瑞铁路保山至瑞丽段及邻区地壳稳定性定量评价[J].地质力学学报, 2014, 20(1):70~81. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20140107&flag=1

    GUO Changbao, ZHANG Yongshuang, QU Ke, et al. Quantitative evaluation of crustal stability along the Baoshan-Ruili section of Dali-Ruili railway and its adjacent region[J]. Journal of Geomechanics, 2014, 20(1):70~81. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20140107&flag=1
    [2] 黄禄渊, 张贝, 瞿武林, 等. 2010智利Maule特大地震的同震效应[J].地球物理学报, 2017, 60(3):972~984. doi: 10.6038/cjg20170312

    HUANG Luyuan, ZHANG Bei, QU Wulin, et al. The co-seismic effects of 2010 Maule earthquake[J]. Chinese Journal of Geophysics, 2017, 60(3):972~984. (in Chinese with English abstract) doi: 10.6038/cjg20170312
    [3] 黄禄渊, 张贝, 程惠红, 等. 2015年智利Illapel Mw8.3地震同震效应及其对南美大陆地震危险性影响[J].地球物理学报, 2017, 60(1):163~173. http://www.cqvip.com/QK/94718X/201701/671126141.html

    HUANG Luyuan, ZHANG Bei, CHENG Huihong, et al. The co-seismic effect of the 2015 Chile Illapel Mw8.3 earthquake and its effect on seismic risk of South America[J]. Chinese Journal of Geophysics, 2017, 60(1):163~173. (in Chinese with English abstract) http://www.cqvip.com/QK/94718X/201701/671126141.html
    [4] 郭书太, 崔少东, 王成虎, 等地下水封油库工程中三维地应力测量及其应用[J].地质力学学报, 2016, 22(1):114~124. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20160112&flag=1

    GUO Shutai, CUI Shaodong, WANG Chenghu, et al. 3D in-situ stress crustal stress measurement and its application to underground water-sealed oil storage cave engineering[J]. Journal of Geomechanics, 2016, 22(1):114~124. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20160112&flag=1
    [5] 肖本职, 罗超文, 刘元坤.鄂西地应力测量与隧道岩爆预测分析[J].岩石力学与工程学报, 2005, 24(24):4472~4477. doi: 10.3321/j.issn:1000-6915.2005.24.012

    XIAO Benzhi, LUO Chaowen, LIU Yuankun. In-situ stress measurement and prediction analysis of tunnel rockburst in west Hubei[J], Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24):4472~4477. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.24.012
    [6] 郭啟良, 伍法权, 钱卫平, 等.乌鞘岭长大深埋隧道围岩变形与地应力关系的研究[J].岩石力学与工程学报, 2006, 25(11):2194~2199. doi: 10.3321/j.issn:1000-6915.2006.11.005

    GUO Qiliang, WU Faquan, QIAN Weiping, et al. Study on relationship between deformation of surrounding rock and in-situ stress in Wushaoling deep-buried railway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11):2194~2199. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.11.005
    [7] 杜宇本, 袁传保, 王彦东, 等.成兰铁路主要地质灾害与地质选线[J].铁道工程学报, 2012, 19(8):11~15. http://d.wanfangdata.com.cn/Periodical/tdgcxb201208003

    DU Yuben, YUAN Chuanbao, WANG Yandong, et al. Major geological hazard and geological alignment of Chengdu-Lanzhou railway[J]. Journal of Railway Engineering Society, 2012, 29(8):11~15. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/tdgcxb201208003
    [8] 许志琴, 侯立玮, 王宗秀, 等.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社, 1992.

    XU Zhiqin, HOU Liwei, WANG Zongxiu, et al. Orogenic processes of the Songpan Ganze orogenic belt of China[M]. Beijing:Geological Publishing House, 1992. (in Chinese)
    [9] 许志琴, 李化启, 侯立炜, 等.青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制[J].地质通报, 2007, 26(10):1262~1276. doi: 10.3969/j.issn.1671-2552.2007.10.005

    XU Zhiqin, LI Huaqi, HOU Liwei, et al. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau:Large-scale detachment faulting and extrusion mechanism[J]. Geological Bulletin of China, 2007, 26(10):1262~1276. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2007.10.005
    [10] 周荣军, 李勇, Densmore A L, 等.青藏高原东缘活动构造[J].矿物岩石, 2006, 26(2):40~51. http://d.wanfangdata.com.cn/Periodical/kwys200602007

    ZHOU Rongjun, LI Yong, Densmore A L, et al. Active tectonics of the eastern margin of the Tibet Plateau[J]. Journal of Mineralogy and Petrology, 2006, 26(2):40~51. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/kwys200602007
    [11] HubbertM K, Willis D G. Mechanics of hydraulic fracturing[J]. AIME, 1957, 210:153~168. http://d.wanfangdata.com.cn/Periodical/mtxb201408041
    [12] 郭啟良, 王成虎, 马洪生, 等.汶川Ms8.0级大震前后的水压致裂原地应力测量[J].地球物理学报, 2009, 52(5):1395~1401. http://www.cnki.com.cn/Article/CJFDTotal-DQWX200905030.htm

    GUO Qiliang, WANG Chenghu, MA Hongsheng, et al. In-situ hydro-fracture stress measurement before and after the Wenchuan Ms8.0 earthquake of China[J]. Chinese Journal of Geophysics, 2009, 52(5):1395~1401. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DQWX200905030.htm
    [13] 丰成君, 陈群策, 吴满路, 等.水压致裂应力测量数据分析-对瞬时关闭压力Ps的常用判读方法讨论[J].岩土力学, 2012, 33(7):2149~2159. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx201207036&dbname=CJFD&dbcode=CJFQ

    FENG Chengjun, CHEN Qunce, WU Manlu, et al. Analysis of hydraulic fracturing stress measurement data-Discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 2012, 33(7):2149~2159. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx201207036&dbname=CJFD&dbcode=CJFQ
    [14] 王成虎, 郭啟良, 丁立丰, 等.工程区高地应力判据研究及实例分析[J].岩土力学, 2009, 30(8):2359~2364. http://d.wanfangdata.com.cn/Periodical/ytlx200908029

    WANG Chenghu, GUO Qiliang, DING Lifeng, et al. High in-situ stress criteria for engineering area and a case analysis[J]. Rock and Soil Mechanics, 2009, 30(8):2359~2364. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/ytlx200908029
    [15] 陈菲, 何川, 邓建辉.高地应力定义及其定性定量判据[J].岩土力学, 2015, 36(4):971~980. http://d.wanfangdata.com.cn/Thesis/D019167

    CHEN Fei, HE Chuan, DENG Jianhui. Concept of high geostress and its qualitative and quantitative definitions[J]. Rock and Soil Mechanics, 2015, 36(4):971~980. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Thesis/D019167
    [16] 杨树新, 姚瑞, 崔效锋, 等.中国大陆与各活动地块、南北地震带实测应力特征分析[J].地球物理学报, 2012, 55(12):4207~4217. doi: 10.6038/j.issn.0001-5733.2012.12.032

    YANG Shuxin, YAO Rui, CUI Xiaofeng, et al. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt[J]. Chinese Journal of Geophysics, 2012, 55(12):4207~4217. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.12.032
    [17] 王艳华, 崔效锋, 胡幸平, 等.基于原地应力测量数据的中国大陆地壳上部应力状态研究[J].地球物理学报, 2012, 55(9):3016~3027. doi: 10.6038/j.issn.0001-5733.2012.09.020

    WANG Yanhua, CUI Xiaofeng, HU Xingping, et al. Study on the stress state in upper crust of China mainland based on in-situ stress measurements[J]. Chinese Journal of Geophysics, 2012, 55(9):3016~3027. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.09.020
    [18] Brown E T, Hoek E. Trends in relationship between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4):211~215. http://www.sciencedirect.com/science/article/pii/0148906278912275
    [19] 沈正康, 王敏, 甘卫军, 等.中国大陆现今构造应变率场及其动力学成因研究[J].地学前缘, 2008, 10(S1):93~100. http://d.wanfangdata.com.cn/Periodical/dxqy2003z1015

    SHEN Zhengkang, WANG Min, GAN Weijun, et al. Contemporary tectonic strain rate field of Chinese continent and its geodynamic implications[J]. Earth Science Frontiers, 2008, 10(S1):93~100. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dxqy2003z1015
    [20] 朱守彪, 蔡永恩, 石耀霖.青藏高原及邻区现今地应变率场的计算及其结果的地球动力学意义[J].地球物理学报, 2005, 48(5):1053~1061. http://d.wanfangdata.com.cn/Periodical/dqwlxb200505011

    ZHU Shoubiao, CAI Yong'en, SHI Yaolin. Computation of the present-day strain rate field of the Qinghai-Tibetan plateau and its geodynamic implications[J]. Chinese Journal of Geophysics, 2005, 48(5):1053~1061. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dqwlxb200505011
    [21] 谢富仁, 崔效锋, 赵建涛, 等.中国大陆及邻区现代构造应力场分区[J].地球物理学报, 2004, 47(4):654~662. http://d.wanfangdata.com.cn/Periodical/dqwlxb200404016

    XIE Furen, CUI Xiaofeng, ZHAO Jiantao, et al. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 2004, 47(4):654~662. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dqwlxb200404016
    [22] 陈群策, 丰成君, 孟文, 等. 5.12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报, 2012, 55(12):3923~3932. doi: 10.6038/j.issn.0001-5733.2012.12.005

    CHEN Qunce, FENG Chengjun, MENG Wen, et al. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(12):3923~3932. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.12.005
    [23] 陈群策, 范桃园, 李绪深, 等.中国南海海域北部地区现今地应力实测及综合分析研究[J].地球物理学报, 2014, 57(8):2518~2529. doi: 10.6038/cjg20140813

    CHEN Qunce, FAN Taoyuan, LI Xushen, et al. In situ measurements and comprehensive research on the present crustal stress of Northern South China Sea[J]. Chinese Journal of Geophysics, 2014, 57(8):2518~2529. (in Chinese with English abstract) doi: 10.6038/cjg20140813
    [24] 李宏, 谢富仁, 王海忠, 等.乌鲁木齐市断层附近地应力特征与断层活动性[J].地球物理学报, 2012, 55(11):3690~3698. doi: 10.6038/j.issn.0001-5733.2012.11.016

    LI Hong, XIE Furen, WANG Haizhong, et al. Characteristics of in-situ stress measurements near the fault and fault activity in Urumqi City[J]. Chinese Journal of Geophysics, 2012, 55(11):3690~3698. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.11.016
    [25] 王成虎, 宋成科, 郭启良, 等.利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J].地球物理学报, 2014, 57(1):102~114. doi: 10.6038/cjg20140110

    WANG Chenghu, SONG Chengke, GUO Qiliang, et al. Stress build-up in the shallow crust before the Lushan Earthquake based on the in-situ stress measurements[J]. Chinese Journal of Geophysics, 2014, 57(1):102~114. (in Chinese with English abstract) doi: 10.6038/cjg20140110
    [26] Anderson E M. The dynamics of faulting and Dyke formation with application to Britain[M]. Edinburgh:Oliver and Boyd, 1942.
    [27] Jeager J C, Cook N G. Fundamentals of rock mechanics[M]. London:Chapman and Hall Press, 1969.
    [28] Byerlee J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4~5):615~626. doi: 10.1007/BF00876528
    [29] 苏恺之, 李方全, 张伯崇, 等.长江三峡坝区地壳应力与孔隙水压力综合研究[M].北京:地震出版社, 1996.

    SU Kaizhi, LI Fangquan, ZHANG Bochong, et al. Integrated research on the crustal stress and pore water pressure at the dam site of the Three Gorges[M]. Beijing:Earthquake Press, 1996. (in Chinese)
    [30] 姚路, 马胜利.断层同震滑动的实验模拟——岩石高速摩擦实验的意义、方法与研究进展[J].地球物理学进展, 2013, 28(2):607~623. doi: 10.6038/pg20130210

    YAO Lu, MA Shengli. Experimental simulation of coseismic fault sliding-significance, technological methods and research progress of high-velocity frictional experiments[J]. Progress in Geophysics, 2013, 28(2):607~623. (in Chinese with English abstract) doi: 10.6038/pg20130210
    [31] 张雷, 何昌荣.粘土矿物的摩擦滑动特性及对断层力学性质的影响[J].地球物理学进展, 2014, 29(2):620~629. doi: 10.6038/pg20140220

    ZHANG Lei, HE Changrong. Frictional properties of clay minerals and their effect on fault behavior[J]. Progress in Geophysics, 2014, 29(2):620~629. (in Chinese with English abstract) doi: 10.6038/pg20140220
    [32] Sibson R H. Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief[J]. Nature, 1973, 243(126):66~68. http://d.wanfangdata.com.cn/Periodical/zgxwyxkx200911022
    [33] Rice J R. Heating and weakening of faults during earthquake slip[J]. Journal of Geophysical Research, 2006, 111(B5):B05311. doi: 10.1029-2005JB004006/
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  191
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回