THE CORRELATIONS BETWEEN GEOLOGICAL STRESS AND CASING DAMAGE AND BETWEEN ROCK MECHANICS PARAMETERS AND CASING DAMAGE IN SANDSTONE RESERVOIR
-
摘要: XMAC测井仪能够在井下进行连续测量, 不仅能测得储层各沉积单元的最大和最小水平主应力以及最大水平主应力方位, 而且可以取得密度、破裂压力、泊松比、杨氏模量、剪切模量等岩性及力学参数, 从而有助于研究储层纵横向岩石力学特征, 进而为确立地应力与套管损坏之间以及岩石力学参数与套管损坏之间的相关性提供技术支持。研究结果显示, 与非套损区对比, 标准层成片套损区的主应力及破裂压力很高, 泊松比很大, 剪切模量很小, 这种力学特征可用来确立标准层成片套损区的形成或存在; 与正常井区相比, 油层部位套损集中区的主应力及破裂压力偏高, 泊松比比较大, 剪切模量比较小, 主应力方位发生偏转, 可利用这种力学特征判断油层部位套损集中区的形成或存在; 破裂压力变高、泊松比变大、剪切模量变小、差异应力较大是导致标准层部位发生套损的内在原因, 而区域之间的平面应力差异是导致标准层部位发生套损的外在推动力; 泊松比大、剪切模量小、破裂压力高等岩石本身力学特征是油层部位发生套损的内因, 而地应力场和地层压力场的改变是油层部位发生套损的外因, 油层部位套管损坏是内因、外因共同作用的结果。Abstract: XMAC logging tool is able to continuously measure in underground. For every reservoir sedimentary unit, it can not only measure the maximum horizontal principal stress, minimum horizontal principal stress, the maximum horizontal principal stress orientation, but the lithology mechanical parameters can be obtained, such as density, fracture pressure, poisson's ratio, young's modulus, and shear modulus. It will help us to study rock mechanical characteristics of the reservoir. So the technical supports will be provided for us to determine the correlation between geological stress and casing damage, and to establish the correlation between rock mechanical parameters and casing damage. Compared with non-casing-damage area, the principal stress and fracture pressure was very high, poisson's ratio was large, and the shear modulus was small in the larger index bed casing-damage area. So the mechanical characteristics can be used to establish the formation or existence of casing damage area in the standard layer. Compared with the normal well area, the principal stress and fracture pressure were higher, poisson's ratio was larger, the shear modulus was small, and the principal stress orientation was deflected. So the mechanical characteristics can be used to establish the formation or existence of casing damage area in reservoir section. Higher fracture pressure, bigger poisson's ratio, smaller shear modulus, and greater differences in stress are internal cause of casing damage in N2 index bed. Plane stress differences between regions are standard parts of the external impetus of casing damage. The rock mechanical characteristics which bigger poisson's ratio, smaller shear modulus, fracture pressure is higher, and so on, are the internal causes of casing damage in reservoir section. The changes of geological-stress field and formation-pressure-field are the external causes of casing damage in reservoir section. The casing damage in reservoir section is the result of the effect of internal and external causes.
-
表 1 不同油层部位地应力及力学参数在套损井区与非套损井区的对比统计
Table 1. The comparative table of geological stress and mechanical parameters in different reservoir intervals between casing-damage well area and non-casing-damage well area
层位 范围 最大水平主应力/
MPa最小水平主应力/
MPa差异应力/
MPa破裂压力/
MPa泊松比 剪切模量/
GPa方位/
(°)S0, Ⅰ夹 非套损井区 21.50 18.56 2.94 22.36 0.394 2.32 89 套损井区 22.86 19.85 3.01 23.27 0.396 2.28 17 SⅠ1 非套损井区 19.24 16.50 2.74 19.46 0.356 3.92 73 套损井区 18.95 17.18 1.78 20.38 0.366 3.24 9 SⅠ1, 2夹 非套损井区 21.20 18.53 2.66 21.66 0.380 2.66 93 套损井区 21.21 19.70 1.51 22.54 0.383 2.37 52 SⅠ2 非套损井区 18.95 16.59 2.36 19.38 0.352 4.13 87 套损井区 19.49 17.93 1.57 20.85 0.370 2.92 49 SⅠ4+5 非套损井区 18.95 16.01 2.94 19.20 0.350 3.83 83 套损井区 17.32 15.62 1.70 19.51 0.355 3.85 82 SⅠ, Ⅱ夹 非套损井区 23.08 19.67 3.41 23.46 0.395 2.01 89 套损井区 22.22 20.37 1.85 23.96 0.396 1.97 89 PⅠ4 非套损井区 20.21 17.41 2.80 21.43 0.343 4.28 88 套损井区 20.51 17.92 2.59 21.73 0.346 4.02 29 PⅠ6 非套损井区 20.40 17.50 2.90 21.37 0.337 4.26 103 套损井区 21.35 18.67 2.68 22.63 0.355 4.25 128 -
[1] 文淑敏, 曾祥智, 宋杰.XMAC地应力测井资料在油田注水开发中的应用初探[J].国外测井技术, 2005, 20(2): 26~28.WEN Shu-min, ZENG Xiang-zhi, SONG Jie. The discussion for application XMAC geological stress logging data in water-flooding oilfield[J]. World Well Logging Technology, 2005, 20(2): 26~28. [2] 宋杰, 曾祥智, 刘静.用XMAC测井资料揭示砂岩油藏地应力分布特征及影响因素[J].国外测井技术, 2006, 21(5): 28~30.SONG Jie, ZENG Xiang-zhi, LIU Jing. Using XMAC logging data to reveal geological stress distribution characteristics and influencing factors in sandstone reservoir[J]. World Well Logging Technology, 2006, 21(5): 28~30. [3] 代丽, 徐守余.油水井套管损坏的地质因素综合研究[J].地质灾害与环境保护, 2005, 16(3): 331~334. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201706045.htmDAI Li, XU Shou-yu. Integrital study of geological factors causing casing damage in oil and water wells[J]. Journal of Geological Hazards and Environment Preservation, 2005, 16(3): 331~334. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201706045.htm [4] 陆蔚刚, 石成方, 张震, 等.控制压力平衡是减缓套损趋势的有效途径[J].大庆石油地质与开发, 2002, 21(2): 56~58. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200202024.htmLU Wei-gang, SHI Cheng-fang, ZHANG Zhen, et al. Pressure balance control is an effective way to slow down the trend of casing damage[J]. Petroleum Geology &Oilfield Development in Daqing, 2002, 21(2): 56~58. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200202024.htm [5] 薛强, 梁冰, 李宏艳.可压缩流体渗流的流固耦合问题数值模拟研究[J].地下空间, 2001, 21(5): 386~391. http://www.cnki.com.cn/Article/CJFDTOTAL-BASE2001S1009.htmXUE Qiang, LIANG Bing, LI Hong-yan. Solid coupling numerical simulation study of Seepage flow of compressible fluid[J]. Underground Space, 2001, 21(5): 386~391. http://www.cnki.com.cn/Article/CJFDTOTAL-BASE2001S1009.htm [6] 熊伟, 田根林, 黄立信, 等.变形介质多相流动流固耦合数学模型[J].水动力学研究与进展, 2002, 17(6): 770~776. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200206015.htmXIONG Wei, TIAN Gen-lin, HUANG Li-xin, et al. Fluid-solid coupling mathematical model in deformable porus media[J]. Journal of Hydronamics, 2002, 17(6): 770~776. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200206015.htm [7] 董平川, 徐小荷, 何顺利.流固耦合问题及研究进展[J].地质力学学报, 1999, 5(1): 17~19. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19990102&journal_id=dzlxxbDONG Ping-chuan, XU Xiao-he, HE Shun-li. The problems of fluid-solid coupling and its advance in research[J]. Journal of Geomechanics, 1999, 5(1): 17~19. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19990102&journal_id=dzlxxb [8] 薛世峰, 仝兴华, 岳伯谦, 等.地下流固耦合理论的研究进展及应用[J].石油大学学报:自然科学版, 2000, 24(2): 109~113. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200002034.htmXUE Shi-feng, TONG Xin-ghua, YUE Bo-qian, et al. The research progress and application of underground fluid solid coupling theory[J]. Journal of the University of Petroleum: Natural Science Edition, 2000, 24(2): 109~113. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200002034.htm [9] 杜永军, 杜良.注水地层的变形对套管损坏的影响[J].科学技术与工程, 2008, 8(23): 6212~6217. doi: 10.3969/j.issn.1671-1815.2008.23.007DU Yong-jun, DU Liang. Formation of water damage deformation on the impact to casing[J]. Science Technology and Engineering, 2008, 8(23): 6212~6217. doi: 10.3969/j.issn.1671-1815.2008.23.007