RESEARCH PROGRESS ON THE FORMATION MECHANISM AND QUANTITATIVE CHARACTERIZATION OF MULTIPHASE FRACTURE NETWORKS OF TIGHT SANDSTONE
-
摘要: 致密砂岩油气是重要的非常规资源,裂缝作为主要渗流通道,其本身分布规律的复杂性以及多期发育和多期充填的特征,直接影响着裂缝预测的精度,目前尚缺乏一套全面解决构造裂缝定量预测的系统方法。因此,需要深入探讨多期裂缝的识别、充填过程和形成—叠加演化机制,建立合理的裂缝表征模型,以定量预测裂缝参数分布范围。在大量文献调研的基础上,本文认为致密储层裂缝研究主要涉及三个关键方向:通过野外露头和岩心观察,分析裂缝发育特征,结合构造演化和流体包裹体分析,确定裂缝发育期次;通过热液充填模拟实验和岩石力学实验,揭示裂缝充填机制,及其在多期应力作用下裂缝的萌生、扩展和叠加过程;采用实验统计方法,基于能量守恒定理和最大应变能密度理论,建立考虑裂缝差异充填的各向异性强度破裂准则,建立裂缝参数的定量表征模型。最终,本文形成和完善了致密砂岩多期裂缝演化及量化表征的理论体系,为此类油气田的勘探开发提供重要科学依据。Abstract: Tight sandstone oil gas is an important unconventional resource.As the primary seepage channel, fracture networks commonly have the charactistics including complex distribution regularity as well as multiphase development and filling process, which directly influence fracture prediction accuracy.At present, there is no systematic method for solving the quantitative prediction of structural fissures, which is still in the exploration stage. Therefore, it is necessary to explore more about fraction networks identification, filling process and formation-superposition evolution mechanism. and set up a reasonable fracture characterization model for quantitative prediction of fracture networks parameter distribution range. On the basis of plenty of literature research, it is believed that the research of tight reservoir fracture is mainly in three key directions.Field observation and core observation were carried out to analyze the development characteristics of fracture networks.combing with tectonic evolution history and fluid-inclusion analysis, fractures development times were defined. Then, hydrothermal filling simulation experiments and rock mechanics experiments were conducted to reveal the mechanism of fractures filling and dynamic process of fractures from initiationto extension and superposition. Finally, experimental statistical methods were used to establish the anisotropic failure criterion in view of different filling rules and create quantitative characterization of fracture parameters based on the principle of conservation of energy and the theory of strain energy density factor. At last, a theoretical system of multiphase fractures development and their parameters characterization were formed and completed, which provides an important scientific basis for the exploration and exploit of tight sandstone gas field.
-
图 1 岩石同一截面在不同应力阶段的CT扫描图像[9]
Figure 1. A CT scan of the same section of the rock in different stress stages
图 2 岩石抗剪强度与先存裂缝走向与后期压应力方向夹角的关系(据文献[18]修改)
Figure 2. Relationship between the shear strength of rock and angle between the direction of the crack and the stress direction at the later stage
图 4 史深100块沙三中现今应力场下的裂缝开度和裂缝线密度[38]
Figure 4. Fracture aperture and fracture linear density in middle reservoirs of the third Shahejie Formation of block Shishen 100
-
[1] 戴金星, 倪云燕, 吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发, 2012, 39(3): 257~264. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htmDAI Jin-xing, NI Yun-yan, WU Xiao-qi. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012, 39(3): 257~264. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm [2] 张国生, 赵文智, 杨涛, 等.我国致密砂岩气资源潜力、分布与未来发展地位[J].中国工程科学, 2012, 14(6): 87~93. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206011.htmZHANG Guo-sheng, ZHAO Wen-zhi, YANG Tao, et al. Resource evaluation, position and distribution of tight sandstone gas in China[J]. Engineering Science, 2012, 14(6): 87~93. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206011.htm [3] Olson J E, Laubach S E, Lander R H. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535~1549. doi: 10.1306/08110909100 [4] van Golf-Racht T D. Fundamentals of fractured reservoir engineering[M]. New York: Elsevier Scientific, 1982. [5] Fossen H, Gabrielsen R H. Experimental modeling of extensional fault systems by use of plaster[J]. Journal of Structural Geology, 1996, 18(5): 673~687. doi: 10.1016/S0191-8141(96)80032-0 [6] Ueta K, Tani K, Kato T. Computerized X-ray tomography analysis of three-dimensional fault geometries in basement-induced wrench faulting[J]. Engineering Geology, 2000, 56(1/2): 197~210. http://www.sciencedirect.com/science/article/pii/S001379529900143X [7] 杨更社, 谢定义, 张长庆, 等.岩石损伤特性的CT识别[J].岩石力学与工程学报, 1996, 15(1): 48~54. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2000S1024.htmYANG Geng-she, XIE Ding-yi, ZHANG Chang-qing, et al. CT Identification of rock damage properties[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1): 48~54. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2000S1024.htm [8] 葛修润, 任建喜, 蒲毅彬, 等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报, 1999, 18(5): 497~502. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199905000.htmGE Xiu-run, REN Jian-xi, PU Yi-bin, et al. A real in time CT triaxial testing study of meso damage evolution law of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 497~502. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199905000.htm [9] 刘京红, 姜耀东, 赵毅鑫, 等.基于CT图像的岩石破裂过程裂纹分形特征分析[J].河北农业大学学报, 2011, 34(4): 104~107. http://www.cnki.com.cn/Article/CJFDTOTAL-CULT201104020.htmLIU Jing-hong, JIANG Yao-dong, ZHAO Yi-xin, et al. Fractal characteristic analysis of rock breakage process based on CT test images[J]. Journal of Agricultural University of Hebei, 2011, 34(4): 104~107. http://www.cnki.com.cn/Article/CJFDTOTAL-CULT201104020.htm [10] 肖承文, 朱筱敏, 李进福, 等.高压低渗致密裂缝性砂岩测井评价技术[J].新疆石油地质, 2007, 28(6): 761~763. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200706034.htmXIAO Cheng-wen, ZHU Xiao-min, Li Jin-fu, et al. Well-logging evaluation for fractured tight sand reservoirs with high pressure and low permeability[J]. Xinjiang Petroleum Geology, 2007, 28(6): 761~763. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200706034.htm [11] Price N J, Rhodes F H T. Fault and joint development in brittle and semi-brittle rock[M]. London: Pergamon Press, 1966. [12] Murray G H. Quantitative fracture study: sanish pool, Mckenzie County, North Dakota[J]. AAPG Bulletin, 1968, 52(1): 57~65. https://www.osti.gov/scitech/biblio/6717240 [13] 曾锦光, 罗元华, 陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报, 1982, 14(2): 202~206. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB198202010.htmZENG Jin-guang, LUO Yuan-hua, CHEN Tai-yuan. A method for the study of reservoir fracturing based on structural principal curvatures[J]. Acta Mechanica Sinica, 1982, 14(2): 202~206. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB198202010.htm [14] 文世鹏, 李德同.储层构造裂缝数值模拟技术[J].石油大学学报(自然科学版), 1996, 20(5): 17~24. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htmWEN Shi-peng, Li De-tong. Numerical simulation technology for structural fracture of reservoir[J]. Journal of the University of Petroleum, China, 1996, 20(5): 17~24. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htm [15] 周新桂, 操成杰, 袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展, 2003, 18(3): 398~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200303011.htmZHOU Xin-gui, CAO Cheng-jie, YUAN Jia-yin. The research actuality and major progresses on the quantitative forecast of reservoir fractures and hydrocarbon migration law[J]. Advance in Earth Sciences, 2003, 18(3): 398~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200303011.htm [16] 丁中一, 钱祥麟, 霍红, 等.构造裂缝定量预测的一种新方法——二元法[J].石油与天然气地质, 1998, 19(1): 1~7, 14. doi: 10.11743/ogg19980101DING Zhong-yi, QIAN Xiang-lin, HUO Hong, et al. A new method for quantitative prediction of tectonic fractures—two-factor method[J]. Oil & Gas Geology, 1998, 19(1): 1~7, 14. doi: 10.11743/ogg19980101 [17] 冯建伟, 戴俊生, 刘美利.低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J].地质力学学报, 2011, 17(4): 303~311. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110401&journal_id=dzlxxbFENG Jian-wei, DAI Jun-sheng, LIU Mei-li. Theoretical model about fracture porosity, permeability and stress field in the low-permeability sandstone[J]. Journal of Geomechanics, 2011, 17(4): 303~311. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110401&journal_id=dzlxxb [18] Mclamore R, Gray K E. The mechanical behavior of transversely isotropic sedimentary rocks[A]. Transition in American Society of Mechanical Engineering Series B[C], 1967:62~76. http://dspace.mit.edu/bitstream/handle/1721.1/58361/42731696~MIT.pdf?sequence=2 [19] McKinnon S D, de la Barra I G. Fracture initiation, growth and effect on stress field: a numerical investigation[J]. Journal of Structural Geology, 1998, 20(12): 1673~1689. doi: 10.1016/S0191-8141(98)00080-7 [20] Eichhubl P, Aydin A. Ductile opening-mode fracture by pore growth and coalescence during combustion alteration of siliceous mudstone[J]. Journal of Structural Geology, 2003, 25(1): 121~134. doi: 10.1016/S0191-8141(02)00055-X [21] 金衍, 陈勉.井壁稳定力学[M].北京:科学出版社, 2012.JIN Yan, CHEN Mian. Borehole wall stability and mechanical[M]. Beijing: Science Press, 2012. [22] 赵文韬, 侯贵廷, 孙雄伟, 等.库车东部碎屑岩层厚和岩性对裂缝发育的影响[J].大地构造与成矿学, 2013, 37(4): 603~610. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304006.htmZHAO Wen-tao, HOU Gui-ting, SUN Xiong-wei, et al. Influence of Layer Thickness and Lithology on the fracture Growth of Clastic Rock in East Kuqa[J]. GeotectonicaetMetallogenia, 2013, 37(4): 603~610. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304006.htm [23] Lorenz J C, Sterling J L, Schechter D S, et al. Natural fractures in the spraberry formation, midland basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior[J]. AAPG Bulletin, 2002, 86(3): 505~524. [24] Rijken P, Cooke M L. Role of shale thickness on vertical connectivity of fractures: Application of crack-bridging theory to the Austin Chalk, Texas[J]. Tectonophysics, 2001, 337(1/2): 117~133. http://www.sciencedirect.com/science/article/pii/S004019510100107X [25] 曾联波, 赵继勇, 朱圣举, 等.岩层非均质性对裂缝发育的影响研究[J].自然科学进展, 2008, 18(2): 216~220. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200802017.htmZENG Lian-bo, ZHAO Ji-yong, ZHU Sheng-ju, et al. Study on influence of rock heterogeneity on fracture development[J]. Progress in Natural Science, 2008, 18(2): 216~220. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200802017.htm [26] Wong R H C, Leung W L, Wang S W. Shear strength studies on rock-like models containing arrayed open joints[A]. Proceedings of the 38th U.S. Symposium on Rock Mechanics (USRMS)[C]. Washington DC:American Rock Mechanics Association, 2001, 843~849. [27] Ichikawa S J, Lim H. Shear fracture analysis for brittle materials[A]. Proceedings of the 8th ISRM Congress[C]. Tokyo, Japan: International Society for Rock Mechanics, 1995, 233~235. [28] 任伟中, 白世伟, 丰定祥. 直剪条件下共面闭合断续节理岩体的强度特性分析[A]//第六次全国岩石力学与工程学术大会论文集[C]. 武汉, 2000: 147~151.Ren Weizhong, Bai Shiwei, Feng Dingxiang. Strength Behaviour of Rockmass Containing Coplanar Colose Intermittent Joints Under Direct Shear Condition[A]. //Proceedings of the 6th National Conference on Rock Mechanics and Engineering[C]. Wuhan, 2000:147~151. [29] 刘远明, 夏才初.共面闭合非贯通节理岩体贯通机制和破坏强度准则研究[J].岩石力学与工程学报, 2006, 25(10): 2086~2091. doi: 10.3321/j.issn:1000-6915.2006.10.021LIU Yuan-ming, XIA Cai-chu. Study on fracture mechanism and criteria of failure strength of rock mass containing coplanar close discontinuous joints under direct shear[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2086~2091. doi: 10.3321/j.issn:1000-6915.2006.10.021 [30] Barton N R. Shear strength of rockfill, interfaces and rock joints, and their points of contact in rock dump design[A]. Fourie A. Rock Dumps 2008[M]. Perth: Australian Centre for Geomechanics, 2008. [31] 刘传孝, 蒋金泉, 王素华.节理裂隙砂岩稳定性的混沌评价准则[J].采矿与安全工程学报, 2007, 24(3): 306~310. http://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200703011.htmLIU Chuan-xiao, JIANG Jin-quan, WANG Su-hua. Qualitative chaotic evaluation criterion for stability of joint fracture sandstone[J]. Journal of Mining & Safety Engineering, 2007, 24(3): 306~310. http://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200703011.htm [32] 刘雷, 杜建国, 周晓成, 等.青海玉树MS7.1地震震后断层流体地球化学连续观测[J].地球物理学进展, 2012, 27(3): 888~893. doi: 10.6038/j.issn.1004-2903.2012.03.008LIU Lei, DU Jian-guo, ZHOU Xiao-cheng, et al. Continuously observation of fault fluid geochemistry after Yushu MS7.1 earthquake[J]. Progress in Geophysics, 2012, 27(3): 888~893. doi: 10.6038/j.issn.1004-2903.2012.03.008 [33] Holland M, Urai J L. Evolution of anastomosing crack-seal vein networks in limestones: Insight from an exhumed high-pressure cell, Jabal Shams, Oman Mountains[J]. Journal of Structural Geology, 2010, 32(9): 1279~1290. doi: 10.1016/j.jsg.2009.04.011 [34] Bons P D, Elburg M A, Gomez-Rivas E. A review of the formation of tectonic veins and their microstructures[J]. Journal of Structural Geology, 2012, 43: 33~62. doi: 10.1016/j.jsg.2012.07.005 [35] Lespinasse M. Are fluid inclusion planes useful in structural geology?[J]. Journal of Structural Geology, 1999, 21(8/9): 1237~243. http://www.sciencedirect.com/science/article/pii/S0191814199000279 [36] 李静, 查明.碳酸盐岩储层流体包裹体差分拉曼光谱的研究[J].光谱学与光谱分析, 2010, 30(9): 2397~2400. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201009026.htmLI Jing, ZHA Ming. The difference-Raman spectra of fluid inclusion of carbonate reservoir[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2397~2400. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201009026.htm [37] 李云, 时志强.四川盆地中部须家河组致密砂岩储层流体包裹体研究[J].岩性油气藏, 2008, 20(1): 27~32. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200801008.htmLI Yun, SHI Zhi-qiang. Study on fluid inclusion of tight sandstone reservoir of upper Triassic Xujiahe Formation in Central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27~32. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200801008.htm [38] 冯建伟, 戴俊生, 马占荣, 等.低渗透砂岩裂缝参数与应力场关系理论模型[J].石油学报, 2011, 32(4): 664~671. doi: 10.7623/syxb201104015FENG Jian-wei, DAI Jun-sheng, MA Zhan-rong, et al. The theoretical model between fracture parameters and stress field of low-permeability sandstones[J]. Acta Petrolei Sinica, 2011, 32(4): 664~671. doi: 10.7623/syxb201104015