留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩多期裂缝形成机制及定量表征研究进展

孙志勇 陈开远 冯建伟 隋淑玲

孙志勇, 陈开远, 冯建伟, 等, 2017. 致密砂岩多期裂缝形成机制及定量表征研究进展. 地质力学学报, 23 (2): 272-279.
引用本文: 孙志勇, 陈开远, 冯建伟, 等, 2017. 致密砂岩多期裂缝形成机制及定量表征研究进展. 地质力学学报, 23 (2): 272-279.
SUN Zhi-yong, CHEN Kai-yuan, FENG Jian-wei, et al., 2017. RESEARCH PROGRESS ON THE FORMATION MECHANISM AND QUANTITATIVE CHARACTERIZATION OF MULTIPHASE FRACTURE NETWORKS OF TIGHT SANDSTONE. Journal of Geomechanics, 23 (2): 272-279.
Citation: SUN Zhi-yong, CHEN Kai-yuan, FENG Jian-wei, et al., 2017. RESEARCH PROGRESS ON THE FORMATION MECHANISM AND QUANTITATIVE CHARACTERIZATION OF MULTIPHASE FRACTURE NETWORKS OF TIGHT SANDSTONE. Journal of Geomechanics, 23 (2): 272-279.

致密砂岩多期裂缝形成机制及定量表征研究进展

基金项目: 

国家重大专项"大型油气田及煤层气开发" 2008ZX05014-004

中央高校基本科研业务费专项资金 14CX05016A

详细信息
    作者简介:

    孙志勇(1979-), 男, 高级工程师, 主要从事石油地质研究工作。E-mail:502498897@qq.com

  • 中图分类号: TE122

RESEARCH PROGRESS ON THE FORMATION MECHANISM AND QUANTITATIVE CHARACTERIZATION OF MULTIPHASE FRACTURE NETWORKS OF TIGHT SANDSTONE

  • 摘要: 致密砂岩油气是重要的非常规资源,裂缝作为主要渗流通道,其本身分布规律的复杂性以及多期发育和多期充填的特征,直接影响着裂缝预测的精度,目前尚缺乏一套全面解决构造裂缝定量预测的系统方法。因此,需要深入探讨多期裂缝的识别、充填过程和形成—叠加演化机制,建立合理的裂缝表征模型,以定量预测裂缝参数分布范围。在大量文献调研的基础上,本文认为致密储层裂缝研究主要涉及三个关键方向:通过野外露头和岩心观察,分析裂缝发育特征,结合构造演化和流体包裹体分析,确定裂缝发育期次;通过热液充填模拟实验和岩石力学实验,揭示裂缝充填机制,及其在多期应力作用下裂缝的萌生、扩展和叠加过程;采用实验统计方法,基于能量守恒定理和最大应变能密度理论,建立考虑裂缝差异充填的各向异性强度破裂准则,建立裂缝参数的定量表征模型。最终,本文形成和完善了致密砂岩多期裂缝演化及量化表征的理论体系,为此类油气田的勘探开发提供重要科学依据。

     

  • 图  1  岩石同一截面在不同应力阶段的CT扫描图像[9]

    Figure  1.  A CT scan of the same section of the rock in different stress stages

    图  2  岩石抗剪强度与先存裂缝走向与后期压应力方向夹角的关系(据文献[18]修改)

    Figure  2.  Relationship between the shear strength of rock and angle between the direction of the crack and the stress direction at the later stage

    图  3  研究技术路线总体框图

    Figure  3.  Block diagram of technical thoughts

    图  4  史深100块沙三中现今应力场下的裂缝开度和裂缝线密度[38]

    Figure  4.  Fracture aperture and fracture linear density in middle reservoirs of the third Shahejie Formation of block Shishen 100

  • [1] 戴金星, 倪云燕, 吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发, 2012, 39(3): 257~264. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm

    DAI Jin-xing, NI Yun-yan, WU Xiao-qi. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012, 39(3): 257~264. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm
    [2] 张国生, 赵文智, 杨涛, 等.我国致密砂岩气资源潜力、分布与未来发展地位[J].中国工程科学, 2012, 14(6): 87~93. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206011.htm

    ZHANG Guo-sheng, ZHAO Wen-zhi, YANG Tao, et al. Resource evaluation, position and distribution of tight sandstone gas in China[J]. Engineering Science, 2012, 14(6): 87~93. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206011.htm
    [3] Olson J E, Laubach S E, Lander R H. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535~1549. doi: 10.1306/08110909100
    [4] van Golf-Racht T D. Fundamentals of fractured reservoir engineering[M]. New York: Elsevier Scientific, 1982.
    [5] Fossen H, Gabrielsen R H. Experimental modeling of extensional fault systems by use of plaster[J]. Journal of Structural Geology, 1996, 18(5): 673~687. doi: 10.1016/S0191-8141(96)80032-0
    [6] Ueta K, Tani K, Kato T. Computerized X-ray tomography analysis of three-dimensional fault geometries in basement-induced wrench faulting[J]. Engineering Geology, 2000, 56(1/2): 197~210. http://www.sciencedirect.com/science/article/pii/S001379529900143X
    [7] 杨更社, 谢定义, 张长庆, 等.岩石损伤特性的CT识别[J].岩石力学与工程学报, 1996, 15(1): 48~54. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2000S1024.htm

    YANG Geng-she, XIE Ding-yi, ZHANG Chang-qing, et al. CT Identification of rock damage properties[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1): 48~54. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2000S1024.htm
    [8] 葛修润, 任建喜, 蒲毅彬, 等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报, 1999, 18(5): 497~502. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199905000.htm

    GE Xiu-run, REN Jian-xi, PU Yi-bin, et al. A real in time CT triaxial testing study of meso damage evolution law of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 497~502. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199905000.htm
    [9] 刘京红, 姜耀东, 赵毅鑫, 等.基于CT图像的岩石破裂过程裂纹分形特征分析[J].河北农业大学学报, 2011, 34(4): 104~107. http://www.cnki.com.cn/Article/CJFDTOTAL-CULT201104020.htm

    LIU Jing-hong, JIANG Yao-dong, ZHAO Yi-xin, et al. Fractal characteristic analysis of rock breakage process based on CT test images[J]. Journal of Agricultural University of Hebei, 2011, 34(4): 104~107. http://www.cnki.com.cn/Article/CJFDTOTAL-CULT201104020.htm
    [10] 肖承文, 朱筱敏, 李进福, 等.高压低渗致密裂缝性砂岩测井评价技术[J].新疆石油地质, 2007, 28(6): 761~763. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200706034.htm

    XIAO Cheng-wen, ZHU Xiao-min, Li Jin-fu, et al. Well-logging evaluation for fractured tight sand reservoirs with high pressure and low permeability[J]. Xinjiang Petroleum Geology, 2007, 28(6): 761~763. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200706034.htm
    [11] Price N J, Rhodes F H T. Fault and joint development in brittle and semi-brittle rock[M]. London: Pergamon Press, 1966.
    [12] Murray G H. Quantitative fracture study: sanish pool, Mckenzie County, North Dakota[J]. AAPG Bulletin, 1968, 52(1): 57~65. https://www.osti.gov/scitech/biblio/6717240
    [13] 曾锦光, 罗元华, 陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报, 1982, 14(2): 202~206. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB198202010.htm

    ZENG Jin-guang, LUO Yuan-hua, CHEN Tai-yuan. A method for the study of reservoir fracturing based on structural principal curvatures[J]. Acta Mechanica Sinica, 1982, 14(2): 202~206. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB198202010.htm
    [14] 文世鹏, 李德同.储层构造裂缝数值模拟技术[J].石油大学学报(自然科学版), 1996, 20(5): 17~24. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htm

    WEN Shi-peng, Li De-tong. Numerical simulation technology for structural fracture of reservoir[J]. Journal of the University of Petroleum, China, 1996, 20(5): 17~24. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htm
    [15] 周新桂, 操成杰, 袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展, 2003, 18(3): 398~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200303011.htm

    ZHOU Xin-gui, CAO Cheng-jie, YUAN Jia-yin. The research actuality and major progresses on the quantitative forecast of reservoir fractures and hydrocarbon migration law[J]. Advance in Earth Sciences, 2003, 18(3): 398~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200303011.htm
    [16] 丁中一, 钱祥麟, 霍红, 等.构造裂缝定量预测的一种新方法——二元法[J].石油与天然气地质, 1998, 19(1): 1~7, 14. doi: 10.11743/ogg19980101

    DING Zhong-yi, QIAN Xiang-lin, HUO Hong, et al. A new method for quantitative prediction of tectonic fractures—two-factor method[J]. Oil & Gas Geology, 1998, 19(1): 1~7, 14. doi: 10.11743/ogg19980101
    [17] 冯建伟, 戴俊生, 刘美利.低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J].地质力学学报, 2011, 17(4): 303~311. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110401&journal_id=dzlxxb

    FENG Jian-wei, DAI Jun-sheng, LIU Mei-li. Theoretical model about fracture porosity, permeability and stress field in the low-permeability sandstone[J]. Journal of Geomechanics, 2011, 17(4): 303~311. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110401&journal_id=dzlxxb
    [18] Mclamore R, Gray K E. The mechanical behavior of transversely isotropic sedimentary rocks[A]. Transition in American Society of Mechanical Engineering Series B[C], 1967:62~76. http://dspace.mit.edu/bitstream/handle/1721.1/58361/42731696~MIT.pdf?sequence=2
    [19] McKinnon S D, de la Barra I G. Fracture initiation, growth and effect on stress field: a numerical investigation[J]. Journal of Structural Geology, 1998, 20(12): 1673~1689. doi: 10.1016/S0191-8141(98)00080-7
    [20] Eichhubl P, Aydin A. Ductile opening-mode fracture by pore growth and coalescence during combustion alteration of siliceous mudstone[J]. Journal of Structural Geology, 2003, 25(1): 121~134. doi: 10.1016/S0191-8141(02)00055-X
    [21] 金衍, 陈勉.井壁稳定力学[M].北京:科学出版社, 2012.

    JIN Yan, CHEN Mian. Borehole wall stability and mechanical[M]. Beijing: Science Press, 2012.
    [22] 赵文韬, 侯贵廷, 孙雄伟, 等.库车东部碎屑岩层厚和岩性对裂缝发育的影响[J].大地构造与成矿学, 2013, 37(4): 603~610. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304006.htm

    ZHAO Wen-tao, HOU Gui-ting, SUN Xiong-wei, et al. Influence of Layer Thickness and Lithology on the fracture Growth of Clastic Rock in East Kuqa[J]. GeotectonicaetMetallogenia, 2013, 37(4): 603~610. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304006.htm
    [23] Lorenz J C, Sterling J L, Schechter D S, et al. Natural fractures in the spraberry formation, midland basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior[J]. AAPG Bulletin, 2002, 86(3): 505~524.
    [24] Rijken P, Cooke M L. Role of shale thickness on vertical connectivity of fractures: Application of crack-bridging theory to the Austin Chalk, Texas[J]. Tectonophysics, 2001, 337(1/2): 117~133. http://www.sciencedirect.com/science/article/pii/S004019510100107X
    [25] 曾联波, 赵继勇, 朱圣举, 等.岩层非均质性对裂缝发育的影响研究[J].自然科学进展, 2008, 18(2): 216~220. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200802017.htm

    ZENG Lian-bo, ZHAO Ji-yong, ZHU Sheng-ju, et al. Study on influence of rock heterogeneity on fracture development[J]. Progress in Natural Science, 2008, 18(2): 216~220. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200802017.htm
    [26] Wong R H C, Leung W L, Wang S W. Shear strength studies on rock-like models containing arrayed open joints[A]. Proceedings of the 38th U.S. Symposium on Rock Mechanics (USRMS)[C]. Washington DC:American Rock Mechanics Association, 2001, 843~849.
    [27] Ichikawa S J, Lim H. Shear fracture analysis for brittle materials[A]. Proceedings of the 8th ISRM Congress[C]. Tokyo, Japan: International Society for Rock Mechanics, 1995, 233~235.
    [28] 任伟中, 白世伟, 丰定祥. 直剪条件下共面闭合断续节理岩体的强度特性分析[A]//第六次全国岩石力学与工程学术大会论文集[C]. 武汉, 2000: 147~151.

    Ren Weizhong, Bai Shiwei, Feng Dingxiang. Strength Behaviour of Rockmass Containing Coplanar Colose Intermittent Joints Under Direct Shear Condition[A]. //Proceedings of the 6th National Conference on Rock Mechanics and Engineering[C]. Wuhan, 2000:147~151.
    [29] 刘远明, 夏才初.共面闭合非贯通节理岩体贯通机制和破坏强度准则研究[J].岩石力学与工程学报, 2006, 25(10): 2086~2091. doi: 10.3321/j.issn:1000-6915.2006.10.021

    LIU Yuan-ming, XIA Cai-chu. Study on fracture mechanism and criteria of failure strength of rock mass containing coplanar close discontinuous joints under direct shear[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2086~2091. doi: 10.3321/j.issn:1000-6915.2006.10.021
    [30] Barton N R. Shear strength of rockfill, interfaces and rock joints, and their points of contact in rock dump design[A]. Fourie A. Rock Dumps 2008[M]. Perth: Australian Centre for Geomechanics, 2008.
    [31] 刘传孝, 蒋金泉, 王素华.节理裂隙砂岩稳定性的混沌评价准则[J].采矿与安全工程学报, 2007, 24(3): 306~310. http://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200703011.htm

    LIU Chuan-xiao, JIANG Jin-quan, WANG Su-hua. Qualitative chaotic evaluation criterion for stability of joint fracture sandstone[J]. Journal of Mining & Safety Engineering, 2007, 24(3): 306~310. http://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200703011.htm
    [32] 刘雷, 杜建国, 周晓成, 等.青海玉树MS7.1地震震后断层流体地球化学连续观测[J].地球物理学进展, 2012, 27(3): 888~893. doi: 10.6038/j.issn.1004-2903.2012.03.008

    LIU Lei, DU Jian-guo, ZHOU Xiao-cheng, et al. Continuously observation of fault fluid geochemistry after Yushu MS7.1 earthquake[J]. Progress in Geophysics, 2012, 27(3): 888~893. doi: 10.6038/j.issn.1004-2903.2012.03.008
    [33] Holland M, Urai J L. Evolution of anastomosing crack-seal vein networks in limestones: Insight from an exhumed high-pressure cell, Jabal Shams, Oman Mountains[J]. Journal of Structural Geology, 2010, 32(9): 1279~1290. doi: 10.1016/j.jsg.2009.04.011
    [34] Bons P D, Elburg M A, Gomez-Rivas E. A review of the formation of tectonic veins and their microstructures[J]. Journal of Structural Geology, 2012, 43: 33~62. doi: 10.1016/j.jsg.2012.07.005
    [35] Lespinasse M. Are fluid inclusion planes useful in structural geology?[J]. Journal of Structural Geology, 1999, 21(8/9): 1237~243. http://www.sciencedirect.com/science/article/pii/S0191814199000279
    [36] 李静, 查明.碳酸盐岩储层流体包裹体差分拉曼光谱的研究[J].光谱学与光谱分析, 2010, 30(9): 2397~2400. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201009026.htm

    LI Jing, ZHA Ming. The difference-Raman spectra of fluid inclusion of carbonate reservoir[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2397~2400. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201009026.htm
    [37] 李云, 时志强.四川盆地中部须家河组致密砂岩储层流体包裹体研究[J].岩性油气藏, 2008, 20(1): 27~32. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200801008.htm

    LI Yun, SHI Zhi-qiang. Study on fluid inclusion of tight sandstone reservoir of upper Triassic Xujiahe Formation in Central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27~32. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200801008.htm
    [38] 冯建伟, 戴俊生, 马占荣, 等.低渗透砂岩裂缝参数与应力场关系理论模型[J].石油学报, 2011, 32(4): 664~671. doi: 10.7623/syxb201104015

    FENG Jian-wei, DAI Jun-sheng, MA Zhan-rong, et al. The theoretical model between fracture parameters and stress field of low-permeability sandstones[J]. Acta Petrolei Sinica, 2011, 32(4): 664~671. doi: 10.7623/syxb201104015
  • 加载中
图(4)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  45
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回