RISK ASSESSMENT OF SEISMIC LANDSLIDE WITHIN SMALL REGION BASED ON MULTI-LEVEL PHYSICAL AND MECHANICAL PARAMETERS: A CASE STUDY OF SHIMIAN AND ADJACENT AREAS IN THE UPPER REACHES OF YANGTZE RIVER
-
摘要: 通过实地调查、遥感解译、资料收集等手段,获取滑坡崩塌体编录、松散堆积层、地质单元的岩土体物理力学参数,使得滑坡编录、地质调查数据与区域Newmark位移模型有机结合。研究表明,在滑坡编录等3个层次中,由第一层次到第三层次,物理力学参数精度逐渐下降,这也反映了滑坡编录在危险性评价中所占据的重要性,更能与实际相吻合。通过对长江上游石棉县城地质灾害潜在危险性的评估,得出了不同尺度峰值加速度下危险性分布区域与规律,经与危险性线性拟合,在峰值加速度a=0.3时,区域危险区面积呈大规模急剧上升,为区域毁灭性灾难的临界值。同时,石棉县城随着峰值加速度数值增大,危险区从滑坡编录控制逐渐过渡到坡度控制,显示了多层次物理力学参数下危险性评估的合理性。Abstract: Compared to the risk assessments of seismic landslide before, this paper achieves the landslide and collapse inventory, loose accumulated layer and the physical and mechanical parameters of rock soil mass of geological units by field survey, remote sensing interpretation and data collection. It makes an organic integration of landslide inventory, geological survey and regional Newmark displacement model. During three degrees of the landslide inventory, it can been seen that the physical and mechanical parameters get smaller gradually from the first degree to the third degree, which also inflects the importance of the landslide inventory for risk assessment and that it accords better with reality. The dangerous areas and regular under different peak acceleration are got by assessing the potential risk of geological hazard in Shimian City on the upper Yangzi River. Through the linear fitting of risks, when peak acceleration is 0.3, the dangerous areas increase greatly on the large scale that is the critical value of the regional devastating disaster. Meanwhile, the dangerous area gradually transit from that under the control of landslide inventory to that of slope, which shows the validity of the risk assessment under multi-level physical and mechanical parameters.
-
Key words:
- landslide /
- risk /
- mechanical parameters /
- landslide inventory
-
表 1 研究区物理力学参数取值
Table 1. Physical and mechanical parameters in research area
类别 编号 z/m γ/(t·m -3) c′/kPa $\varphi$ ′/(°) 滑坡编录区(第一层次) SM448 2.5 19.0 27 30 SM506 2.5 19.0 25 30 SM505 2.5 20.0 25 31 SM107 2.5 22.0 26 31 SM311 2.5 21.5 25 31 SM125 2.5 21.5 26 30 SM121 2.5 21.5 25 30 SM309 2.5 21.5 24 30 SM310 2.5 21.5 25 30 SM312 2.5 21.5 24 32 SM313 2.5 21.5 25 30 SM452 2.5 22.0 24 32 SM205 2.5 21.5 25 31 SM206 2.5 21.5 26 30 SM203 2.5 22.0 24 30 SM204 2.5 21.5 25 30 SM209 2.5 21.5 26 30 松散堆积区(第二层次) SS01 3.0 21.5 28 35 SS02 3.0 21.5 31 34 SS03 3.0 21.5 30 34 SS04 3.0 21.5 31 34 SS05 3.0 21.5 32 34 SS06 3.0 21.5 32 35 SS07 3.0 21.5 32 35 SS08 3.0 20.0 31 34 SS09 3.0 22.0 31 34 SS10 3.0 22.0 30 34 SS11 3.0 21.5 31 34 SS12 3.0 21.5 31 35 SS13 3.0 21.0 30 35 SS14 3.0 21.5 31 34 SS15 3.0 20.0 32 35 SS16 3.0 21.5 31 34 SS17 3.0 21.5 30 34 SS18 3.0 20.0 32 34 SS19 3.0 20.0 31 34 SS20 3.0 21.5 31 34 SS21 3.0 21.0 30 35 SS22 3.0 21.0 30 35 地质单元(第三层次) DZ01 4.0 22.0 32 38 DZ02 4.0 22.0 36 42 DZ03 4.0 22.0 36 42 DZ04 4.0 22.0 34 39 DZ05 4.0 22.0 36 38 DZ06 4.0 22.0 36 42 表 2 不同工况高、中危险区分布面积
Table 2. The distribution area of high and medium risky area under different working conditions
地震工况 分布面积/km 2 高危险区 中危险区 a=0.1 g 2.78 4.01 a=0.2 g 4.12 6.29 a=0.3 g 6.78 10.02 a=0.4 g 11.62 14.28 -
[1] 黄润秋.汶川地震地质灾害研究[M].北京:科学出版社, 2009: 1~944.HUANG Run-qiu. Geohazard research on the Wenchuan earthquake[M]. Beijing: Science Press, 2009: 944. [2] Keefer D K. Investigating landslides caused by earthquakes: A historical review[J]. Surveys in Geophysics, 2002, 23(6): 473~510. doi: 10.1023/A:1021274710840 [3] 葛华, 陈启国, 王德伟.地震滑坡危险性评价及编图——以映秀震中区为例[J].中国地质, 2013, 40(2): 644~652. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201302029.htmGE Hua, CHEN Qi-guo, WANG De-wei. The assessment and mapping of seismic landslide hazards: A case study of Yingxiu area, Sichuan Province[J]. Geology in China, 2013, 40(2): 644~652. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201302029.htm [4] 王涛, 吴树仁, 石菊松, 等.基于简化Newmark位移模型的区域地震滑坡危险性快速评估——以汶川MS 8.0级地震为例[J].工程地质学报, 2013, 21(1): 16~24.WANG Tao, WU Shu-ren, SHI Ju-song, et al. Case study on rapid assessment of regional landslide hazard based on simplified Newmark displacement model: Wenchuan Ms 8.0 earthquake[J]. Journal of Engineering Geology, 2013, 21(1): 16~24. [5] 吴树仁, 王涛, 石玲, 等.2008汶川大地震极端滑坡事件初步研究[J].工程地质学报, 2010, 18(2): 145~159. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201002001.htmWU Shu-ren, WANG Tao, SHI Ling, et al. Study on catastrophic landslide triggered by 2008 great Wenchuan earthquake, Sichuan, China[J]. Journal of Engineering Geology, 2010, 18(2): 145~159. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201002001.htm [6] Huang Runqiu, Li Weile. Analysis of the geo-hazards triggered by the 12, May 2008 Wenchuan earthquake, China[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(3): 363~371. doi: 10.1007/s10064-009-0207-0 [7] Parker R N, Densmore A L, Rosser N J, et al. Mass wasting triggered by 2008 Wenchuan earthquake is greater than orogenic growth[J]. Nature Geoscience, 2011, 4(7): 449~452. doi: 10.1038/ngeo1154 [8] 王涛. 汶川地震重灾区地质灾害危险性评估研究[D]. 北京: 中国地质科学院, 2010.WANG Tao. Study on seismic landslide hazard assessment in Wenchuan earthquake severely afflicted area[D]. Beijing: Chinese Academy of Geological Sciences, 2010. [9] 四川省华地建设工程有限责任公司. "4. 20"芦山强烈地震灾区雅安市石棉县地质灾害详细调查报告[R]. 成都: 四川省华地建设工程有限责任公司, 2014.HuaDi Construction Engineering Limited Liability Company, Sichuan Province. Survey report of geohazard in '4.20' Lushan strong earthquake in Shimian County, Yaan City, Sichuan Province[R]. Chengdu: HuaDi Construction Engineering Limited Liability Company, Sichuan Province, 2014. [10] 四川省华地建设工程有限责任公司. 四川省雅安市石棉县重大地质灾害治理工程复查复核报告[R]. 成都: 四川省华地建设工程有限责任公司, 2013.HuaDi Construction Engineering Limited Liability Company, Sichuan Province. The rechecks report of the regulation project of serious geo hazards in Shimian, Yaan City, Sichuan Province[R]. Chengdu: HuaDi Construction Engineering Limited Liability Company, Sichuan Province, 2013. [11] 中国地质调查局成都地质调查中心. 四川省石棉县地质灾害详细调查[R]. 成都: 中国地质调查局成都地质调查中心, 2009.Chengdu Institute of Geology and Mineral Resources. Detailed survey of the geo hazard in Shimian, Sichuan Province[R]. Chengdu: Chengdu Institute of Geology and Mineral Resources, 2009. [12] Jibson R W. Regression methods for estimating coseismic landslidedisplacement[J]. Engineering Geology, 2007, 90: 209~218. http://www.sciencedirect.com/science/article/pii/S0013795207000300 [13] 中华人民共和国建设部. 建筑抗震设计规范(GB 50011-2010)[S]. 北京: 中国建筑工业出版社, 2010.Ministry of Construction of the People's Republc of China. Code for seismic design of building (GB 50011-2010). Beijing: China Building Industry Press, 2010.