A STUDY ON THE PETROGENESIS AND TECTONIC SETTING OF THE SIBAN GRANITE MASS IN ZHALANTUN AREA, GREAT KHINGAN
-
摘要: 大兴安岭扎兰屯地区四班岩体主要由正长花岗岩和二长花岗岩组成,内部发育细粒闪长质包体。二长花岗岩和正长花岗岩LA-ICP-MS锆石U-Pb定年结果分别为303±3Ma和291±3Ma,属于晚古生代岩浆活动的产物。四班花岗质岩石高硅(67.9~77.5 wt%)、富碱(K2O+Na2O=7.55~10.79 w%)、相对高铝(Al2O3=12.05~16.33 wt%),富集轻稀土元素(LREE)和大离子亲石元素(LILE),而亏损高场强元素(Nb、Ta、Ti和P等),属于高钾钙碱性I型花岗岩。四班花岗质岩石内部发育的闪长质微粒包体及花岗岩与其伴生的基性岩的"一锅粥"现象,表明四班花岗质岩石具有岩浆混合成因的特征,地球化学特征也支持上述观点。四班岩体显示后碰撞岩浆岩的岩石学及地球化学特征,为后碰撞阶段岩石圈地幔拆沉减薄壳幔相互作用的产物。Abstract: The Siban rock mass in Zhalantun area of Great Khingan is mainly composed of syenogranites and monzonitic granites with fine-grained diorite enclaves developed inside. LA-ICP-MS zircon U-Pb dating results reveal that the crystallization ages of the monzonitic granite and syenogranite in the Siban rock mass are 291±3 Ma and 303±3 Ma respectively, proving that the Siban rock mass emplaced during the late Paleozoic era. The geochemical results of the whole-rock major and trace elements exhibit that the Siban granite yields high SiO2 (67.9~77.5 wt%), alkaline components (w (Na2O+K2O)=7.55~10.79 wt%) and Al2O3 (12.05~16.33 wt%). It is also highly enriched with LREE and LILE while with a depletion of HFSE (e.g. Nb, Ta, Ti and P), which is comparable to high K calc-alkalne I-type granite. The existence of fine-grained diorite enclaves and associated basic rocks developed inside the Siban granlte reveals that the Siban granite has the characteristics of magma mixing between mantle and crustal magmas and subsequently underwent the fractional crystallizations of pyroxene, amphibole, Ti-enriched minerals, plagioclase and apatite, which is supported by their geochemical features. Taken all together, the petrologies, geochemistries and petrogenesises indicate that the Siban rock mass is akin to the post-collision granite and formed by mantle-crust interactions under the delamination of lithospheric mantle environment.
-
图 6 A/NK-A/CNK图解(a)和K2O-SiO2岩石系列判别图解[25](b)
Figure 6. 6 A/NK-A/CNK diagram(a) and K2O-SiO2 diagram(b)
图 7 球粒陨石标准化REE图谱(a)和原始地幔标准化微量元素蛛网图(b), 其中Chondrite标准化值
来自Taylor and Mclennan, 1985;Primitive mantle标准化值来自Sun and Mcdonough, 1989
Figure 7. Chondrite-normalized REE patterns (a) and Primitive mantle-normalized trace elements spider diagram (b)
(Chondrite REE values from Taylor and Mclennan; Primitive mantle-normalized values from Sun and Mcdonough, 1989)
表 1 扎兰地区四班岩体LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Pb isotope analysis results of Siban granites in Zhalantun area
样品及分析号 含量(ppm)及比值 同位素比值±1σ 年龄(Ma) Th U U/Th Pb207/Pb206±1σ Pb207/U235±1σ Pb206/U238±1σ Pb207/Pb206 Pb207/U235 Pb206/U238 TWSFC02.01 49.3 58.2 1.2 0.0549±0.0018 0.3903±0.0145 0.0483±0.0012 409.1±70.44 334.6±10.56 303.7±7.44 TWSFC02.02 35.7 45.3 1.3 0.0512±0.0018 0.3526±0.0138 0.0484±0.0012 249.2±78.8 306.7±10.38 304.5±7.47 TWSFC02.03 79.3 82.8 1.0 0.0529±0.0033 0.3512±0.0262 0.0487±0.0015 323.2±134.53 305.6±19.65 306.4±8.94 TWSFC02.04 60.3 78.9 1.3 0.0532±0.0026 0.3562±0.0208 0.049±0.0014 338.5±107.48 309.4±15.6 308.1±8.29 TWSFC02.05 66.0 78.8 1.2 0.0508±0.0022 0.3502±0.0179 0.0486±0.0013 230.6±97.58 304.8±13.48 305.8±7.93 TWSFC02.06 177.0 147.0 0.8 0.0574±0.0017 0.3754±0.0128 0.0467±0.0012 507±64.56 323.6±9.41 294.4±7.2 TWSFC02.07 49.8 63.0 1.3 0.0499±0.0022 0.3545±0.018 0.0491±0.0013 190±97.84 308.1±13.48 309.2±7.96 TWSFC02.08 171.5 178.3 1.0 0.0573±0.0019 0.3766±0.0143 0.0481±0.0012 503.6±70.53 324.5±10.51 303.1±7.52 TWSFC02.09 52.5 51.1 1.0 0.0504±0.0017 0.3665±0.0141 0.0502±0.0013 213.9±76.89 317.1±10.44 315.6±7.73 TWSFC02.10 39.1 49.3 1.3 0.0526±0.002 0.3544±0.0152 0.0489±0.0013 312.5±83.03 308±11.36 307.9±7.7 TWSFC02.11 125.3 128.7 1.0 0.0528±0.0024 0.3495±0.0189 0.0479±0.0013 320.4±100.31 304.3±14.23 301.7±8.00 TWSFC02.12 40.1 70.1 1.7 0.0549±0.0021 0.3535±0.016 0.0487±0.0013 406.7±84.56 307.4±11.97 306.6±7.79 TWSFC02.13 129.6 213.4 1.6 0.054±0.0014 0.3569±0.0102 0.0482±0.0012 371.1±56.94 309.9±7.61 303.5±7.3 TWSFC02.15 404.5 238.5 0.6 0.053±0.0014 0.3433±0.0101 0.0474±0.0012 329.6±58.85 299.6±7.6 298.3±7.19 TWSFC02.16 26.6 34.1 1.3 0.0521±0.0024 0.359±0.0184 0.0482±0.0013 288.8±100.49 311.4±13.74 303.4±7.75 TWSFC02.17 52.2 63.4 1.2 0.0524±0.0019 0.3494±0.014 0.0483±0.0012 303.9±78.41 304.2±10.57 304.1±7.57 TWSFC02.18 37.1 64.1 1.7 0.0499±0.0029 0.3315±0.023 0.0464±0.0013 190.8±131.17 290.7±17.5 292.4±8.24 TWSFC02.19 261.6 241.5 0.9 0.0515±0.0015 0.3518±0.0116 0.0485±0.0012 264.9±65.47 306.1±8.74 305.4±7.45 TWSFC02.20 62.6 63.5 1.0 0.053±0.0028 0.334±0.021 0.0469±0.0013 326.5±116.98 292.6±15.97 295.7±8.15 TWSFC02.21 37.9 43.5 1.1 0.054±0.0021 0.3527±0.0155 0.0466±0.0012 370.9±85.5 306.7±11.61 293.6±7.37 TWSFC02.22 183.2 132.2 0.7 0.0533±0.0026 0.3383±0.0193 0.047±0.0013 340.5±104.78 295.9±14.6 295.9±8.00 TWSFC02.23 83.7 106.2 1.3 0.0536±0.0014 0.3472±0.0099 0.0473±0.0012 355.3±58.03 302.6±7.49 298.1±7.19 TWSFC02.24 74.6 70.7 0.9 0.0538±0.0016 0.3539±0.0116 0.0483±0.0012 362.6±65.15 307.6±8.72 304.1±7.41 TWSFC02.25 44.4 50.4 1.1 0.0538±0.0025 0.3492±0.0187 0.0483±0.0013 361.5±100.22 304.1±14.08 304.2±8.01 TWSFC02.26 102.3 106.2 1.0 0.0531±0.0016 0.3526±0.0122 0.0482±0.0012 331.9±68.19 306.7±9.18 303.5±7.46 TWSFC02.27 197.8 195.9 1.0 0.0524±0.0013 0.3493±0.0097 0.0484±0.0012 301±56.59 304.2±7.31 304.6±7.33 TWSFC02.28 108.7 116.2 1.1 0.0538±0.0014 0.3529±0.0103 0.0482±0.0012 363.6±58.45 306.9±7.72 303.3±7.33 TWSFC02.29 433.4 290.3 0.7 0.0528±0.0012 0.3515±0.0085 0.048±0.0012 319.4±50.46 305.9±6.37 302.2±7.21 TWSFC02.30 214.9 212.0 1.0 0.0535±0.0024 0.3524±0.0192 0.048±0.0013 348.9±99.68 306.5±14.44 302.3±8.1 TWSB04.01 94.4 216.0 2.3 0.0527±0.0015 0.3433±0.0106 0.0454±0.0011 314.2±61.91 299.7±8.03 286±6.84 TWSB04.02 275.7 420.3 1.5 0.0528±0.0012 0.3398±0.0081 0.0467±0.0011 320.4±50.33 297±6.12 294±6.89 TWSB04.03 540.7 545.6 1.0 0.0525±0.0012 0.3394±0.0079 0.0464±0.0011 309.1±49.85 296.7±6.02 292.5±6.85 TWSB04.04 180.4 189.6 1.1 0.0919±0.0025 0.6526±0.021 0.0499±0.0012 1465.1±50.28 510.1±12.89 314±7.62 TWSB04.05 157.6 259.2 1.6 0.0548±0.0012 0.3685±0.0088 0.0472±0.0011 403.1±49.58 318.5±6.55 297±6.97 TWSB04.06 249.7 328.8 1.3 0.0518±0.0012 0.3372±0.0084 0.0469±0.0011 277±52.59 295.1±6.37 295.2±6.95 TWSB04.07 57.3 124.0 2.2 0.0595±0.0022 0.3833±0.0165 0.0469±0.0012 583.8±77.77 329.5±12.12 295.7±7.44 TWSB04.08 309.9 258.1 0.8 0.0639±0.0015 0.4135±0.0102 0.0467±0.0011 736.8±48.1 351.4±7.35 294.3±6.94 TWSB04.09 294.6 274.1 0.9 0.0542±0.0016 0.3664±0.0125 0.0462±0.0012 378.9±65.71 317±9.32 290.9±7.07 TWSB04.10 297.1 210.4 0.7 0.0519±0.0018 0.3411±0.0139 0.0465±0.0012 282.7±78.16 298±10.48 292.8±7.27 TWSB04.11 107.2 199.6 1.9 0.053±0.0015 0.329±0.0102 0.0458±0.0011 326.6±62.13 288.8±7.79 288.6±6.95 TWSB04.12 657.3 827.2 1.3 0.0527±0.0011 0.3389±0.0072 0.0456±0.0011 314.8±46.25 296.3±5.42 287.5±6.74 TWSB04.13 439.8 966.9 2.2 0.0582±0.0016 0.3681±0.0112 0.0499±0.0012 534.7±58.77 318.3±8.29 314.1±7.56 TWSB04.14 65.0 76.2 1.2 0.0598±0.0021 0.3914±0.0158 0.0464±0.0012 594.5±74.1 335.4±11.5 292.2±7.27 TWSB04.15 147.2 236.3 1.6 0.0519±0.0012 0.3394±0.0084 0.0469±0.0011 282±52.17 296.7±6.33 295.4±6.99 TWSB04.16 190.8 342.7 1.8 0.053±0.0012 0.3324±0.0078 0.0452±0.0011 326.8±49.84 291.4±5.95 285.1±6.73 TWSB04.17 123.8 209.8 1.7 0.0503±0.0012 0.327±0.0081 0.0463±0.0011 208.5±53.27 287.3±6.2 292±6.91 TWSB04.18 206.3 267.0 1.3 0.0517±0.0012 0.3404±0.0087 0.0464±0.0011 272.3±53.79 297.5±6.62 292.1±6.94 TWSB04.19 110.0 160.1 1.5 0.0536±0.0019 0.3291±0.0134 0.0452±0.0012 355±78.01 288.9±10.25 285±7.14 TWSB04.20 141.8 171.9 1.2 0.0519±0.0013 0.3332±0.0086 0.0461±0.0011 282.8±54.57 292±6.54 290.7±6.9 TWSB04.21 135.6 223.9 1.7 0.0525±0.0017 0.3386±0.0125 0.0472±0.0012 308.8±71.86 296.1±9.5 297.3±7.35 TWSB04.22 193.2 257.8 1.3 0.0517±0.0013 0.3358±0.0089 0.046±0.0011 273.8±54.95 294±6.73 290±6.93 TWSB04.23 176.3 216.6 1.2 0.0622±0.0017 0.3973±0.012 0.0472±0.0012 680.6±56.33 339.7±8.71 297.2±7.21 TWSB04.24 229.4 195.2 0.9 0.0542±0.0016 0.3335±0.0109 0.0462±0.0012 380.4±64.21 292.2±8.31 290.8±7.1 TWSB04.25 142.6 218.0 1.5 0.0512±0.0016 0.3383±0.0124 0.0463±0.0012 249.4±72.27 295.9±9.44 291.8±7.21 TWSB04.26 266.1 407.9 1.5 0.0598±0.0013 0.3844±0.0089 0.0466±0.0011 596.3±46.81 330.2±6.52 293.5±6.97 TWSB04.27 147.3 253.5 1.7 0.0542±0.0019 0.3422±0.0139 0.0448±0.0012 379.4±76.84 298.8±10.55 282.5±7.13 TWSB04.28 134.7 198.9 1.5 0.052±0.0013 0.3358±0.0094 0.0463±0.0011 286.3±57.32 294±7.11 291.9±7.02 TWSB04.29 292.6 481.0 1.6 0.054±0.0015 0.3542±0.0111 0.0462±0.0012 370.8±61.47 307.8±8.36 290.9±7.09 TWSB04.30 167.0 320.2 1.9 0.0521±0.0012 0.3403±0.008 0.047±0.0011 290.2±50.34 297.4±6.09 296±7.05 表 2 扎兰屯地区四班岩体的主量元素、稀土元素组成
Table 2. Major and trace elements composition of Siban granitles in Zhalantun area
送样号及岩石类型 PM05 PM06 PM10 PM11 PM12 SFC02 PM01 PM02 PM03 PM04 PM07 PM08 SB04 PM09 二长花岗岩 正长花岗岩 ω(SiO2) 71.31 72.67 73.96 72.09 70.27 67.85 76.59 76.54 75.24 74.86 75.70 75.87 77.45 76.39 ω(TiO2) 0.35 0.31 0.21 0.31 0.48 0.53 0.17 0.17 0.18 0.20 0.11 0.10 0.16 0.08 ω(Al2O3) 14.65 13.91 13.45 14.28 14.23 16.33 12.36 12.16 12.93 12.80 12.54 12.35 12.05 12.56 ω(Fe2O3) 2.12 1.93 0.86 1.52 2.77 1.66 0.81 0.86 0.89 1.05 1.12 1.20 0.80 0.75 ω(FeO) 0.52 0.49 0.74 0.58 0.45 0.49 0.49 0.58 0.58 0.63 0.49 0.45 0.36 0.40 ω(MnO) 0.04 0.04 0.04 0.04 0.07 0.05 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 ω(MgO) 0.46 0.38 0.29 0.30 0.61 0.56 0.07 0.11 0.09 0.09 0.04 0.07 0.09 0.04 ω(CaO) 0.35 0.33 0.36 0.50 1.48 0.52 0.30 0.32 0.32 0.34 0.22 0.21 0.30 0.24 ω(Na2O) 3.84 3.81 3.75 4.05 3.64 4.08 3.79 3.91 4.18 4.17 3.91 3.93 3.63 3.70 ω(K2O) 4.62 4.44 5.54 5.04 3.92 6.71 4.85 4.61 4.99 4.81 5.23 5.04 4.62 5.14 ω(P2O5) 0.11 0.09 0.05 0.10 0.17 0.13 0.02 0.02 0.03 0.05 0.02 0.02 0.02 0.02 ω(LOI) 1.45 1.41 0.55 1.01 1.72 0.87 0.42 0.57 0.42 0.87 0.53 0.65 0.40 0.54 ω(La) 50.21 39.89 54.14 46.12 42.22 20.30 21.98 15.65 25.84 40.81 43.18 44.70 36.01 16.92 ω(Ce) 80.59 79.18 105.57 91.80 92.07 51.66 57.06 63.24 60.21 83.59 93.06 104.49 64.15 40.85 ω(Pr) 10.01 9.47 12.69 10.38 9.48 5.23 4.77 3.51 6.87 10.32 12.88 13.86 7.30 5.81 ω(Nd) 38.72 37.11 49.31 38.19 34.98 23.73 17.35 12.52 25.92 40.19 50.90 54.54 28.31 24.72 ω(Sm) 7.82 7.54 8.48 6.23 7.08 4.84 3.29 2.37 5.16 7.74 9.20 9.49 4.22 5.40 ω(Eu) 1.09 1.44 1.52 1.23 1.56 1.45 0.77 0.83 0.77 1.16 0.61 0.61 0.94 0.56 ω(Gd) 6.93 6.73 6.92 5.46 6.71 4.72 3.16 2.48 4.31 6.26 6.61 6.86 3.72 4.12 ω(Tb) 1.22 1.13 0.96 0.79 1.25 0.77 0.53 0.40 0.80 0.99 0.88 0.84 0.52 0.66 ω(Dy) 6.74 6.21 4.38 4.18 7.48 5.00 3.16 2.37 4.70 4.97 3.88 3.65 3.40 3.52 ω(Ho) 1.32 1.21 0.84 0.92 1.53 1.04 0.67 0.51 0.98 0.93 0.71 0.66 0.67 0.71 ω(Er) 3.21 2.94 1.94 2.54 3.91 2.88 1.69 1.30 2.42 2.18 1.76 1.69 1.97 1.78 ω(Tm) 0.64 0.56 0.37 0.62 0.82 0.47 0.35 0.29 0.48 0.41 0.34 0.31 0.31 0.35 ω(Yb) 3.50 3.12 2.07 4.01 4.67 3.14 2.14 1.76 2.63 2.21 2.00 1.96 2.16 2.18 ω(Lu) 0.45 0.42 0.29 0.57 0.57 0.51 0.29 0.25 0.33 0.29 0.28 0.27 0.37 0.32 ω(Y) 30.25 25.66 16.84 24.42 23.58 63.55 13.09 9.17 19.43 17.69 14.40 11.04 13.55 14.85 ω(Th) 5.62 5.47 5.59 4.79 7.26 8.61 10.19 6.47 7.12 6.48 11.28 3.26 5.68 4.88 ω(Ga) 6.54 6.59 5.66 5.41 11.88 11.64 3.29 3.00 11.02 13.88 12.20 31.73 14.44 4.75 ω(Sc) 2.50 2.71 2.41 2.80 5.02 4.38 7.20 4.79 3.63 4.49 6.94 4.98 3.08 2.12 ω(U) 1.58 1.53 1.58 1.82 1.56 1.32 2.36 2.30 1.20 2.00 2.46 1.40 1.35 1.53 ω(Zr) 120.07 128.17 159.35 176.13 232.60 208.43 138.86 148.28 252.05 217.18 196.95 305.12 112.47 176.07 ω(Hf) 4.63 4.65 5.66 5.18 7.70 6.45 4.56 5.20 7.93 5.62 6.43 7.70 7.46 5.68 ω(Nb) 14.56 13.82 13.42 11.59 15.08 13.73 8.90 8.09 9.87 15.96 12.31 16.15 13.15 8.91 ω(Ta) 1.38 1.98 1.10 0.77 0.89 1.16 2.61 1.30 0.80 1.84 1.18 0.60 0.56 1.41 ω(Ba) 287.59 292.59 236.33 247.38 621.75 602.22 50.27 33.95 613.36 818.91 683.83 842.66 262.85 144.31 ω(Cr) 6.10 3.14 4.38 2.48 6.50 4.08 5.49 4.35 2.73 2.72 10.09 3.08 0.97 9.67 ω(Ni) 0.73 0.82 2.28 1.95 3.59 4.26 1.76 2.95 0.93 0.92 3.94 2.54 2.98 4.15 ω(Rb) 117.56 104.67 105.64 100.82 116.06 105.04 83.65 78.61 116.27 130.88 134.84 106.45 106.70 115.31 ω(Sr) 43.69 44.35 41.95 41.31 142.49 151.33 13.21 13.80 128.08 145.01 249.22 167.15 42.82 45.34 ω(V) 7.72 5.54 5.47 6.10 27.03 24.37 5.21 2.63 11.78 20.67 36.46 21.03 7.64 3.92 ω(Co) 1.50 0.79 0.51 1.86 3.89 2.79 0.23 0.07 0.26 2.91 3.52 3.23 0.31 0.87 注:主量元素为wt.%(质量分数), 稀土元素和微量元素为10-6 -
[1] 徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841~1857. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htmXU Bei, ZHAO Pan, BAO Qing-zhong, et al. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt(XMOB)[J]. Acta Petrologica Sinica, 2014, 30(7):1841~1857. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm [2] 唐克东, 王莹, 何国琦, 等.中国东北及邻区大陆边缘构造[J].地质学报, 1995, 69(1):16~30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199501001.htmTANG Ke-dong, WANG Ying, HE Guo-qi, et al. Continental-margin structure of northeast china and its adjacent areas[J]. Acta Geologica Sinica, 1995, 69(1):16~30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199501001.htm [3] 张炯飞, 李之彤, 金成洙.中国东北部地区埃达克岩及其成矿意义[J].岩石学报, 2004, 20(2):361~368. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402015.htmZHANG Jiong-fei, LI Zhi-tong, JIN Cheng-zhu. Adakites in northeastern China and their mineralized implications[J]. Acta Petrologica Sinica, 2004, 20(2):361~368. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402015.htm [4] 李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评, 1998, 44(4):339~347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804001.htmLI Jing-yi. Some new ideas on tectonics of NE China and its neighboring areas[J]. Geological Review, 1998, 44(4):339~347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804001.htm [5] 刘永江, 张兴洲, 金巍, 等.东北地区晚古生代区域构造演化[J].中国地质, 2010, 37(4):943~951. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004012.htmLIU Yong-jiang, ZHANG Xing-zhou, JIN Wei, et al. Late Paleozoic tectonic evolution in Northeast China[J]. Geology in China, 2010, 37(4):943~951. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004012.htm [6] 张兴洲, 乔德武, 迟效国, 等.东北地区晚古生代构造演化及其石油地质意义[J].地质通报, 2011, 30(2/3):205~213. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1005.htmZHANG Xing-zhou, QIAO De-wu, CHI Xiao-guo, et al. Late-Paleozoic tectonic evolution and oil-gas potential in northeastern China[J]. Geological Bulletin of China, 2011, 30(2/3):205~213. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1005.htm [7] 李双林, 欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质, 1998, 18(3):45~54. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ803.006.htmLI Shuang-lin, OUYANG Zi-yuan. Tectonic framework and evolution of Xing'anling Mongolian Orogenic Belt (XMOB) and its adjacent region[J]. Marine Geology & Quaternary Geology, 1998, 18(3):45~54. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ803.006.htm [8] 吴福元, 孙德有, 林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 1999, 15(2):181~189. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htmWU Fu-yuan, SUN De-you, LIN Qiang. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 1999, 15(2):181~189. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm [9] Wu F Y, Sun D Y, LI H M, et al. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143~173. http://www.doc88.com/p-7784455268280.html [10] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1~30. doi: 10.1016/j.jseaes.2010.11.014 [11] 施光海, 苗来成, 张福勤, 等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报, 2004, 49(4):384~389. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404015.htmSHI Guang-hai, MIAO Lai-cheng, ZHANG Fu-qin, et al. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China[J]. Chinese Science Bulletin, 2004, 49(7):723~729. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404015.htm [12] 隋振民, 葛文春, 徐学纯, 等.大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J].岩石学报, 2009, 25(10):2679~2686. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910031.htmSUI Zheng-min, GE Wen-chun, XU Xue-chun, et al. Characteristics and geological implications of the Late Paleozoic post orogenic Shierzhan granite in the Great Xing'an Range[J]. Acta Petrologica Sinica, 2009, 25(10):2679~2686. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910031.htm [13] 孙德有, 吴福元, 李惠民, 等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报, 2000, 45(20):2217~2222. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200020018.htmSUN De-you, WU Fu-yuan, LI Hui-min, et al. Emplacement age of the postorogenic A-type granites in Northwestern Lesser Xing'an Ranges, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone[J]. Chinese Science Bulletin, 2001, 46(5):427~432. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200020018.htm [14] 张磊, 吕新彪, 刘阁, 等.兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J].中国地质, 2013, 40(3):869~884. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201303019.htmZHANG Lei, LV Xin-biao, LIU Ge, et al. Characteristics and genesis of continental back-arc A-type granites in the eastern segment of the Inner Mongolia-Da Hinggan Mountains orogenic belt[J]. Geology in China, 2013, 40(3):869~884. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201303019.htm [15] 武广, 孙丰月, 赵财胜, 等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报, 2005, 50(20):2278~2288. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520016.htmWU Guang, SUN Feng-yue, ZHAO Cai-sheng, et al. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance[J]. Chinese Science Bulletin, 2005, 50(23):2733~2743. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520016.htm [16] 葛文春, 隋振民, 吴福元, 等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报, 2007, 23(2):423~440. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htmGE Wen-chun, SUI Zhen-min, WU Fu-yuan, et al. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mts., northeastern China[J]. Acta Petrologica Sinica, 2007, 23(2):423~440. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htm [17] 程银行, 张天福, 李艳锋, 等.内蒙古东乌旗早二叠世超镁铁岩的发现及其构造意义[J].地质学报, 2016, 90(1):115~125. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601007.htmCHENG Yin-hang, ZHANG Tian-fu, LI Yan-feng, et al. Discovery of the Early Permian ultramafic rock in Dong Ujimqi, Inner Mongolia and its tectonic implications[J]. Acta Geologica Sinica, 2016, 90(1):115~125. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601007.htm [18] 赵芝, 迟效国, 刘建峰, 等.内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J].岩石学报, 2010, 26(11):3245~3258. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011007.htmZHAO Zhi, CHI Xiao-guo, LIU Jian-feng, et al. Late Paleozoic arc-related magmatism in Yakeshi region, Inner Mongolia:Chronological and geochemical evidence[J]. Acta Petrologica Sinica, 2010, 26(11):3245~3258. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011007.htm [19] 张超, 刘正宏, 徐仲元, 等.大兴安岭五一林场花岗岩体地球化学特征及成因[J].地质通报, 2013, 32(2/3):365~373. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1014.htmZHANG Chao, LIU Zheng-hong, XU Zhong-yuan, et al. Characteristics and genesis of the Wuyi Forestry Center granite in the Da Hinggan Mountains[J]. Geological Bulletin of China, 2013, 32(2/3):365~373. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1014.htm [20] 洪大卫, 黄怀曾, 肖宜君, 等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报, 1994, 68(3):219~230. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199403002.htmHONG Da-wei, HUANG Huai-zeng, XIAO Yi-jun, et al. The Permian alkaline granites in Central Inner Mongolia and their geodynamic significance[J]. Acta Geologica Sinica, 1994, 68(3):219~230. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199403002.htm [21] 洪大卫, 王式, 谢锡林, 等.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘, 2000, 7(2):441~456. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200002016.htmHONG Da-wei, WANG Shi, XIE Xi-lin, et al. Genesis of positive ε(Nd, t) granitoids in the da Hinggan Mts.-Mongolia Orogenic belt and growth continental crust[J]. Earth Science Frontiers, 2000, 7(2):441~456. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200002016.htm [22] 郭奎城, 张文龙, 杨晓平, 等.黑河市五道沟地区早二叠世A型花岗岩成因[J].吉林大学学报(地球科学版), 2011, 41(4):1077~1083. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104017.htmGUO Kui-cheng, ZHANG Wen-long, YANG Xiao-ping, et al. Origin of Early Permian A-type granite in the Wudaogou Area, Heihe City[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(4):1077~1083. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104017.htm [23] 梁科伟, 李成禄, 张立东, 等.大兴安岭诺敏地区二叠纪花岗岩的地球化学特征及地质意义[J].地质与资源, 2012, 21(2):181~187. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201202002.htmLIANG Ke-wei, LI Cheng-lu, ZHANG Li-dong, et al. Geochemistry and its geological implication of the Permian granite in Nuomin, Daxinganling Region[J]. Geology and Resources, 2012, 21(2):181~187. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201202002.htm [24] 陈俊, 吕新彪, 姚书振, 等.内蒙古红彦镇地区早二叠世A型花岗岩锆石U-Pb年代学研究[J].矿物岩石地球化学通报, 2013, 32(5):574~582, 632. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201305007.htmCHEN Jun, LV Xin-biao, YAO Shu-zhen, et al. Zircon U-Pb ages of A-type granites in the Hongyan Area, Early Permian[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5):574~582, 632. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201305007.htm [25] Liégeois J P, Navez J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization[J]. Lithos, 1998, 45(1/4):1~28. http://www.academia.edu/32179588/Contrasting_origin_of_post-collisional_high-K_calc-alkaline_and_shoshonitic_versus_alkaline_and_peralkaline_granitoids._The_use_of_sliding_normalization [26] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535~551. doi: 10.1016/S0024-4937(98)00086-3 [27] 朱弟成, 莫宣学, 王立全, 等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学D辑:地球科学, 2009, 39(7):833~848. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htmZHU Di-cheng, MO Xuan-xue, WANG Li-quan, et al. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet:Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes[J]. Science in ChinaSeries D:Earth Sciences, 2009, 52(9):1223~1239. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm [28] Schiano P, Monzier M, Eissen J P, et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy and Petrology, 2010, 160(2):297~312. doi: 10.1007/s00410-009-0478-2 [29] Rea A M.The taxonomy, distribution, and status of coastal California cactus wrens[J]. Western Birds, 1990, 21(3):81~126. https://sora.unm.edu/sites/default/files/journals/wb/v21n03/p0081-p0126.pdf [30] Liegeois A. Recensie:The survival of the self/R. Harwood (Aldershot, 1998)[J]. Ethical Perspectives, 2000, 7(1):98. https://core.ac.uk/display/34429847 [31] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4):29~44. [32] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3):605~626. doi: 10.1016/S0024-4937(98)00085-1 [33] Pearce JA, Harris NBW, Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956~983. doi: 10.1093/petrology/25.4.956 [34] Pearce J A. Sources and settings of granitic rocks[J]. Episodes, 1996, 19(4):120~125. [35] 韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘, 2007, 14(3):64~72. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200703007.htmHAN Bao-fu. Diverse post-collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 2007, 14(3):64~72. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200703007.htm [36] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/4):43~55. http://geologic-risk.ft.ugm.ac.id/fresh/jsaag/vol-3/no-1/jsaag-v3n1p045.pdf