留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多源遥感数据的高山峡谷区岩性信息提取研究——以新疆乌什县北山1:50000填图试点为例

孟鹏燕 孙杰 于长春 穆超 帅爽 谢菲 孟丹

孟鹏燕, 孙杰, 于长春, 等, 2016. 基于多源遥感数据的高山峡谷区岩性信息提取研究——以新疆乌什县北山1:50000填图试点为例. 地质力学学报, 22 (4): 907-920.
引用本文: 孟鹏燕, 孙杰, 于长春, 等, 2016. 基于多源遥感数据的高山峡谷区岩性信息提取研究——以新疆乌什县北山1:50000填图试点为例. 地质力学学报, 22 (4): 907-920.
MENG Peng-yan, SUN Jie, YU Chang-chun, et al., 2016. LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN. Journal of Geomechanics, 22 (4): 907-920.
Citation: MENG Peng-yan, SUN Jie, YU Chang-chun, et al., 2016. LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN. Journal of Geomechanics, 22 (4): 907-920.

基于多源遥感数据的高山峡谷区岩性信息提取研究——以新疆乌什县北山1:50000填图试点为例

基金项目: 

中国地质调查局地质调查项目“特殊地质地貌区填图试点” DD20160060

详细信息
    作者简介:

    孟鹏燕(1989-), 男, 硕士, 研究方向为遥感地质、国土资源遥感。E-mail:meng_pengyan@sina.com

    通讯作者:

    孙杰(1982-), 男, 博士, 研究方向为遥感数据处理。E-mail:sunjie_cug@163.com

  • 中图分类号: P623

LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN

  • 摘要: 新疆乌什县北山1:50000填图试点项目位于塔里木盆地西北边缘和西南天山交接部位,海拔较高,地形切割较深,属于典型的高山峡谷区。利用ASTER、SPOT6、GF-2等多源遥感数据,基于典型岩性光谱吸收特征,进行岩性差异信息增强与提取研究,总结出一套基于多源遥感数据进行岩性单元边界划分的方法。以ASTER数据、ASTER与SPOT6协同数据、ASTER与GF-2协同数据等为基础影像数据,并选择最佳波段组合进行RGB彩色合成,从而增强影像差异,结合已有研究区地质资料,初步圈定不同影像单元边界;继而利用矿物丰度指数、SMACC端元丰度提取等方法识别研究区内主要岩性的分布位置和范围;最后结合野外实际调查数据,依据实际地质背景和影像质量进行筛选,获得最终的岩性单元解译图。研究结果为该区进一步进行地层优化划分及对比提供了参考资料。

     

  • 图  1  研究区地理位置和地质构造简图

    1, 2—第四系冲洪积物(Qapl3-4); 3—安吉然组砾岩夹钙质粗砂岩((N22—Q1)ad); 4—阿依里下亚组石灰岩、纺锤灰岩、砾状灰岩及钙质砂岩夹铝土矿层(C3aia); 5—阿克恰衣群薄层状砂岩、粉砂岩夹砾岩、灰岩(C1-2ak); 6—阿帕达尔康下亚组大理岩化灰岩、鲕状灰岩夹凝灰砾岩泥质粉砂岩薄层(D2apb); 7—不整合接触界线;
    8—正常接触界线; 9—断层; 10—研究区

    Figure  1.  Location and geological sketch of the study area

    图  2  ASTER原始影像(R:8, G:4, B:1)

    Figure  2.  Original image of ASTER (R:8, G:4, B:1)

    图  3  ASTER与SPOT6协同影像(R:8, G:4, B:1)

    Figure  3.  Cooperative image of ASTER and SPOT6 (R:8, G:4, B:1)

    图  4  ASTER与GF-2协同影像(R:8, G:4, B:1)

    Figure  4.  Cooperative image of ASTER and GF-2 (R:8, G:4, B:1)

    图  5  碳酸盐矿物和典型黏土类矿物光谱曲线

    Figure  5.  Spectral curves of carbonate minerals and typical clay minerals

    图  6  矿物丰度指数法彩色合成图

    Figure  6.  Synthesized color image according to mineral abundance index

    图  7  中SMACC算法所提取端元波谱

    Figure  7.  The spectral extracted by SMACC algorithm

    图  8  SMACC端元丰度合成图

    Figure  8.  Synthesis image according to SMACC end member abundance

    图  9  研究区遥感解译岩性构造图

    1—冲洪积物; 2—灰色半固结砾石层; 3—灰色厚-巨厚层状粗砾岩夹巨砾岩、中细砾岩、砂岩; 4—灰白色、灰色厚层状含生物碎屑粉晶、亮晶灰岩; 5—深灰色厚层状与薄层状生物碎屑灰岩互层; 6—灰-灰黄色钙质粉砂岩、灰色粉砂质灰岩, 夹灰黑色薄层; 7—灰色薄层状与厚层状泥晶灰岩不等厚互层, 夹钙质粉砂岩; 8—灰黑色厚层状泥晶灰岩, 夹浅灰绿色薄层状钙质粉砂岩, 局部见褐铁矿化黄铁矿颗粒; 9—深灰色-浅灰绿色中薄层状粉砂质灰岩、钙质粉砂岩; 10—灰白色与灰色中厚层状含生物碎屑灰岩; 11—深灰色与浅灰色中厚层状含生物碎屑灰岩; 12—灰白色厚层状含生物碎屑灰岩; 13—深灰色夹灰白色中厚层、中薄层状含生物碎屑灰岩

    Figure  9.  Lithology and structure map interpreted by remote sensing image of study area

    图  10  矿物丰度指数图、SMACC端元丰度合成图与遥感解译岩性构造叠加图

    Figure  10.  Stacking chart of mineral abundance index image, synthesis image of SMACC end member abundance and lithology-structure map

    图  11  岩性单元8和单元9遥感地质特征及野外地质特征

    a—矿物丰度指数图; b—SMACC端元丰度合成图; c—ASTER与SPOT6协同影像; d—野外照片; 8—灰黑色厚层状泥晶灰岩, 夹浅灰绿色薄层状钙质粉砂岩, 局部见褐铁矿化黄铁矿颗粒; 9—深灰色-浅灰绿色中薄层状粉砂质灰岩、钙质粉砂岩

    Figure  11.  The remote sensing and field outcrop geological characteristics of lithology unit 8 and unit 9

    图  12  岩性单元野外照片

    Figure  12.  Outcrop photos of lithology units

    表  1  GF-2、SPOT6、ASTER、ETM+遥感数据基本特征

    Table  1.   Characteristics of GF2, SPOT6, ASTER and ETM+ remote sensing data

    数据源波段波长/nm空间分辨率/m
    GF-21450~5203.2
    2520~5903.2
    3630~6903.2
    4770~8903.2
    Pan450~9000.8
    ASTERVNIR1520~60015
    VNIR2630~69015
    VNIR3N, 3B780~86015
    SWIR41600~170030
    SWIR52145~218530
    SWIR62185~222530
    SWIR72235~228530
    SWIR82295~236530
    SWIR92360~243030
    SPOT61425~5256.0
    2530~5906.0
    3625~6956.0
    4760~8906.0
    Pan455~7451.5
    ETM+1450~52028.50
    2520~60028.50
    3630~69028.50
    4760~90028.50
    51550~175028.50
    723080~235028.50
    8500~90014.25
    下载: 导出CSV

    表  2  相关系数矩阵

    Table  2.   Correlation index matrix

    相关性B1B2B3B4B5B6B7B8B9
    B11.0000.9830.7340.7750.8320.8350.8540.8610.863
    B20.9831.0000.7390.8190.8760.8770.8920.8940.899
    B30.7340.7391.0000.8570.7490.7680.7640.7510.751
    B40.7750.8190.8571.0000.9600.9660.9550.9250.939
    B50.8320.8760.7490.9601.0000.9960.9910.9700.982
    B60.8350.8770.7680.9660.9961.0000.9920.9720.982
    B70.8540.8920.7640.9550.9910.9921.0000.9880.991
    B80.8610.8940.7510.9250.9700.9720.9881.0000.988
    B90.8630.8990.7510.9390.9820.9820.9910.9881.000
    下载: 导出CSV
  • [1] 王润生, 熊盛青, 聂洪峰, 等.遥感地质勘查技术与应用研究[J].地质学报, 2011, 85(11):1699~1743. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201617057.htm

    WANG Run-sheng, XIONG Sheng-qing, NIE Hong-feng, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699~1743. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201617057.htm
    [2] Hunt G R, Salisbury J W. Visible and near infrared spectra of minerals and rocks Ⅰ:Silieate minerals[J]. Modern Geology, 1970, 1:238~300.
    [3] Hunt G R, Salisbury J W. Visible and Near Infrared Spectra of Minerals and Rocks Ⅱ:Carbonates[J]. Modern Geology, 1971, 2:23~30.
    [4] 燕守勋, 武晓波, 周朝宪, 等.遥感和光谱地质进展及其对矿产勘查的实践应用[J].地球科学进展, 2011, 26(1):13~29. http://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201111060.htm

    YAN Shou-xun, WU Xiao-bo, ZHOU Chao-xian, et al. Remote sensing and spectral geology and their applications to mineral exploration[J]. Advances in Earth Science, 2011, 26(1):13~29. http://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201111060.htm
    [5] 甘甫平, 王润生, 马蔼乃, 等.光谱遥感岩矿识别基础与技术研究进展[J].遥感技术与应用, 2002, 17(3):140~147. doi: 10.11873/j.issn.1004-0323.2002.3.140

    GAN Fu-ping, WANG Run-sheng, MA Ai-nai, et al. The development and tendency of both basis and techniques of discrimination for minerals and rocks using spectral remote sensing data[J]. Remote Sensing Technology and Application, 2002, 17(3):140~147. doi: 10.11873/j.issn.1004-0323.2002.3.140
    [6] 王晋年, 李志忠, 张立福, 等. "光谱地壳"计划——探索新一代矿产勘查技术[J].地球信息科学学报, 2012, 14(3):344~351. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201203010.htm

    WANG Jin-nian, LI Zhi-zhong, ZHANG Li-fu, et al. "Spectral Crust" project:Research on new mineral exploration technology[J]. Journal of Geo-Information Science, 2012, 14(3):344~351. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201203010.htm
    [7] 刘超群, 马祖陆, 莫源富.遥感岩性识别研究进展与展望[J].广西科学院学报, 2007, 23(2):120~124. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKX200702016.htm

    LIU Chao-qun, MA Zu-lu, MO Yuan-fu. Progress and prospect of study on remote sensing lithologic identification[J]. Journal of Guangxi Academy of Sciences, 2007, 23(2):120~124. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKX200702016.htm
    [8] Loughlin W. Principal component analysis for alteration mapping[J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(9):1163~1169.
    [9] 丑晓伟, 傅碧宏.干旱区TM图像岩石地层信息提取与分析方法研究[J].沉积学报, 1995, (s1):164~170. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB5S1.021.htm

    CHOU Xiao-wei, FU Bi-hong. Extraction and analysis of lithostratigraphic information from Landsat Thematic Mapper Imagery in arid region[J]. Acta Sedimentologica Sinica, 1995, (s1):164~170. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB5S1.021.htm
    [10] Rowan L C, Mars J C, Simpson C J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J]. Remote Sensing of Environment, 2005, 99(1/2):105~126.
    [11] 时丕龙, 付碧宏, 二宫芳树.基于ASTER VNIR-SWIR多光谱遥感数据识别与提取干旱地区岩性信息——以西南天山柯坪隆起东部为例[J].地质科学, 2010, 45(1):333~347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001029.htm

    SHI Pi-long, FU Bi-hong, Ninomiya Y. Detecting lithologic features from ASTER VNIR-SWIR multispectral data in the arid region:A case study in the eastern Kalpin uplift, southwest Tianshan[J]. Chinses Journal of Geology, 2010, 45(1):333~347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001029.htm
    [12] 刘本培.西南天山构造格局与演化[M].武汉:中国地质大学出版社, 1996.

    LIU Ben-pei. Tectonic pattern and evolution of southwest Tianshan[M]. Wuhan:China University of Geosciences Press, 1996.
    [13] 梁群峰, 杨克俭, 杨运军, 等.西南天山梅尔盖西地区成矿地质条件及成矿预测[J].西北地质, 2013, 46(1):91~102. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201301013.htm

    LIANG Qun-feng, YANG Ke-jian, YANG Yun-jun, et al. Metallogenic prognosis in the Meiergaixi region, southwest Tianshan orogeny[J]. Northwestern Geology, 2013, 46(1):91~102. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201301013.htm
    [14] 赵仁夫, 杨建国, 王满仓, 等.西南天山地区矿产资源潜力综合评价报告[R].西安:西安地质矿产研究所, 2003.

    ZHAO Ren-fu, YANG Jian-guo, WANG Man-cang, et al. Comprehensive evaluation report on mineral resources potential in southwest Tianshan region[R]. Xi'an:Xi'an Institute of Geology and Mineral Resources, 2003.
    [15] Itami H, Roehl T W. Mobilizing Invisible Assets[M]. Harvard University Press, 1991.
    [16] 马艳华.高空间分辨率和高光谱分辨率遥感图像的融合[J].红外, 2003, (10):11~16. doi: 10.3969/j.issn.1672-8785.2003.10.003

    MA Yan-hua. Fusion of high spatial resolution and high spectral resolution remote sensing image[J]. Infrared, 2003, (10):11~16. doi: 10.3969/j.issn.1672-8785.2003.10.003
    [17] Hunt G R. Spectral signatures of particulate minerals in the visible and near infrared[J]. Geophysics, 1977, 42(3):501. doi: 10.1190/1.1440721
    [18] Amer R, Kusky T, Ghulam A. Lithological mapping in the central eastern desert of Egypt using ASTER data[J]. Journal of African Earth Sciences, 2010, 56(2):75~82.
    [19] 杨可明, 刘士文, 王林伟, 等.光谱最小信息熵的高光谱影像端元提取算法[J].光谱学与光谱分析, 2014, 34(8):2229~2233. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201408049.htm

    YANG Ke-ming, LIU Shi-wen, WANG Lin-wei, et al. An algorithm of Spectral Minimum Shannon Entropy on extracting endmember of hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2014, 34(8):2229~2233. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201408049.htm
    [20] 褚海峰, 翟中敏, 赵银娣, 等.一种多/高光谱遥感图像端元提取的凸锥分析算法[J].遥感学报, 2007, 11(4):460~467. doi: 10.11834/jrs.20070464

    CHU Hai-feng, ZHAI Zhong-min, ZHAO Yin-di, et al. A Convex Cone Analysis Method for end member selection of multispectral and hyperspectral images[J]. Journal of Remote Sensing, 2007, 11(4):460~467. doi: 10.11834/jrs.20070464
    [21] 高晓惠, 相里斌, 魏儒义, 等.基于光谱分类的端元提取算法研究[J].光谱学与光谱分析, 2011, 31(7):1995~1998. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201107065.htm

    GAO Xiao-hui, XIANG Li-bin, WEI Ru-yi, et al. Research on endmember extraction algorithm based on spectral classification[J]. Spectroscopy and Spectral Analysis, 2011, 31(7):1995~1998. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201107065.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  95
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-09-16
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回