留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多源遥感数据的高山峡谷区岩性信息提取研究——以新疆乌什县北山1:50000填图试点为例

孟鹏燕 孙杰 于长春 穆超 帅爽 谢菲 孟丹

刘嵘, 马见青, 李庆春, 等, 2016. 重磁电综合地球物理探测河套盆地深部结构. 地质力学学报, 22 (4): 943-954.
引用本文: 孟鹏燕, 孙杰, 于长春, 等, 2016. 基于多源遥感数据的高山峡谷区岩性信息提取研究——以新疆乌什县北山1:50000填图试点为例. 地质力学学报, 22 (4): 907-920.
LIU Rong, MA Jian-qing, LI Qing-chun, et al., 2016. GRAVITY, MAGNETIC AND ELECTRIC COMPREHENSIVE GEOPHYSICAL PROSPECTING FOR DEEP STRUCTURES IN HETAO BASIN. Journal of Geomechanics, 22 (4): 943-954.
Citation: MENG Peng-yan, SUN Jie, YU Chang-chun, et al., 2016. LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN. Journal of Geomechanics, 22 (4): 907-920.

基于多源遥感数据的高山峡谷区岩性信息提取研究——以新疆乌什县北山1:50000填图试点为例

基金项目: 

中国地质调查局地质调查项目“特殊地质地貌区填图试点” DD20160060

详细信息
    作者简介:

    孟鹏燕(1989-), 男, 硕士, 研究方向为遥感地质、国土资源遥感。E-mail:meng_pengyan@sina.com

    通讯作者:

    孙杰(1982-), 男, 博士, 研究方向为遥感数据处理。E-mail:sunjie_cug@163.com

  • 中图分类号: P623

LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN

  • 摘要: 新疆乌什县北山1:50000填图试点项目位于塔里木盆地西北边缘和西南天山交接部位,海拔较高,地形切割较深,属于典型的高山峡谷区。利用ASTER、SPOT6、GF-2等多源遥感数据,基于典型岩性光谱吸收特征,进行岩性差异信息增强与提取研究,总结出一套基于多源遥感数据进行岩性单元边界划分的方法。以ASTER数据、ASTER与SPOT6协同数据、ASTER与GF-2协同数据等为基础影像数据,并选择最佳波段组合进行RGB彩色合成,从而增强影像差异,结合已有研究区地质资料,初步圈定不同影像单元边界;继而利用矿物丰度指数、SMACC端元丰度提取等方法识别研究区内主要岩性的分布位置和范围;最后结合野外实际调查数据,依据实际地质背景和影像质量进行筛选,获得最终的岩性单元解译图。研究结果为该区进一步进行地层优化划分及对比提供了参考资料。

     

  • 河套盆地位于华北克拉通的北缘, 夹于阴山造山带与鄂尔多斯盆地之间, 为一个近东西向的狭长型新生代断陷盆地[1](见图 1)。前人研究认为, 在阴山造山带造山过程中, 主要是以结晶基底为受力边界层, 并控制着上覆沉积盖层的构造变形[2~3]。河套盆地及其邻近地域的构造类型众多且复杂多样, 既存在稳定的克拉通与油气沉积盆地, 又包括活动的造山带。金属、非金属矿产资源与油、气、煤等能源在该区蕴藏丰富[4~6]。因此厘定该盆地的沉积建造和结晶基底的起伏结构, 对于研究盆地的形成与演化、研究资源的分布都具有重要的理论意义和实际价值。我国近年来针对鄂尔多斯盆地与华北克拉通地域的深部壳、幔结构与其形成的动力学过程开展了大量的地质与地球物理工作[7~11], 并取得了大量有意义的成果, 但针对河套盆地地域的研究却不多见。

    图  1  河套盆地及邻区构造纲要图
    Figure  1.  Structure outline of Hetao Basin and adjacent area

    河套盆地西界为狼山山前断裂, 东界为和林格尔断陷, 北界为色尔腾山、乌位山和大青山山前断裂, 南界为鄂尔多斯北缘断裂, 盆地总体走向近东西, 长约400 km, 宽40~80 km, 是鄂尔多斯块体周缘规模最大、垂直差异活动最强烈的断陷带[12]。由于受到北侧蒙古古生代板块的南向挤压、南侧鄂尔多斯陆块和山西陆块的阻挡以及鄂尔多斯盆地稳定陆块的左旋运动[13~14], 导致在该断陷盆地的周边时有地震发生。基于已有对鄂尔多斯陆块北缘主要活动断裂分布和晚第四纪强震复发特征的研究, 推测河套盆地为未来最可能发生强震的地区之一[4]

    对河套断陷带南北边界断裂——鄂尔多斯北界断裂、色尔腾山前断裂的性质, 河套盆地第四纪沉积物特征、厚度及沉积相变化, 河套沉积基底构造的探测, 是本次地球物理工作的重点, 同时开展第四纪含水层分布规律的探测, 目的是为区调填图地层单元的建立、关键地质问题的解决提供地球物理解释。本文利用河套盆地南北向的重磁电综合剖面研究了该区的结晶基底起伏及断裂分布, 为进一步深化研究该区的构造特征提供有力依据。

    研究区位于内蒙古呼勒斯太苏木(K48E017024)、塔尔湖镇(K48E018024)、复兴城(K48E019024)、吉尔嘎朗图乡(K48E020024)4幅1:50000图幅内, 工作区地理坐标范围:东经107°45'—108°00', 北纬40°40'—41°20', 总面积1510 km2(见图 2)。

    图  2  河套盆地研究区概况图
    Figure  2.  DEM of the Hetao Basin and location of the study area

    本次勘查目的层主要为河套盆地第四系及其基底地层。一般情况下, 如果不考虑地下水矿化度以及地下温度的影响, 潜水面以下第四系不同堆积物中, 粗砂、砂砾石电阻率相对为高值, 中、细砂电阻率稍低, 黏土的电阻率最低, 电性(收集)特征变化见表 1

    表  1  河套盆地第四系不同堆积物电阻率统计
    Table  1.  Resistivity statistics of different Quaternary deposits in the Hetao Basin
    岩性电阻率/(Ω·m)
    粗砂、砂砾石>50
    中砂30~40
    细砂20~30
    黏土<20
    下载: 导出CSV 
    | 显示表格

    在勘查区内, 地下水矿化度差异较大, 是影响电阻率变化的主要因素。结合在同类地区勘查的经验, 测区电阻率随地层岩性和地下水矿化度(收集)变化特征见表 2

    表  2  河套盆地潜水面以下第四系不同堆积物电阻率及地下水矿化度特征
    Table  2.  Characteristics of resistivity of Quaternary deposits below water table and groundwater salinity in the Hetao Basin
    地层岩性电阻率/(Ω·m)地下水矿化度/(g·L-1)
    粗砂、砂砾石>15<3
    中粗砂10~152~3
    中细砂7~103~5
    细砂、黏土<7>3
    下载: 导出CSV 
    | 显示表格

    前人对阴山造山带地区采集标本并测定了磁化率[15], 可作为测区岩石磁性参数变化的依据(见表 3)。

    表  3  鄂尔多斯—阴山一带岩石磁化率参数[15]
    Table  3.  Rock magnetic susceptibility parameters in the Erdos-Yinshan area
    时代阴山造山带鄂尔多斯盆地
    岩性磁化率/(10-5SI)岩性磁化率/(10-5SI)
    太古代片麻岩、混合烟及变粒岩30~10000片麻岩及变粒岩、基性火山岩1800~5000
    下元古代大理岩、板岩及石英砂岩10~50花岗岩、混合岩、大理岩20
    中上元古代板岩10~40浅变质岩1~9
    石英粉砂岩20~3000
    古生代凝灰岩10~30碳酸盐岩、陆相碎屑岩<20
    砂岩40~100
    中生代砾岩、泥岩、砂岩200~500粗碎屑岩1~9
    基性火山岩1500~3000泥岩、粉砂岩10~30
    新生代黏土岩50风积沙土50
    含砾细沙、泥岩200~800
    下载: 导出CSV 
    | 显示表格

    收集了内蒙古地区主要岩石密度(样本34个, 大小30 mm×60 mm), 其中板岩密度2.9 g/cm3, 闪长岩密度在2.7 g/cm3以上; 砂岩密度在2.6 g/cm3左右, 部分粉砂岩密度达到了2.87 g/cm3; 黑云母二长花岗岩的密度与砂岩的相近, 在2.6~2.7 g/cm3之间变化。

    河套盆地地区新第三系和第四系密度2.0~2.1 g/cm3, 侏罗—白垩纪地层密度2.40~2.66 g/cm3, 乌拉山群高磁性基底密度2.30~2.55 g/cm3, 基底和其上覆地层之间有明显的密度界面[16]。在老地层出露或基底埋藏较浅的地区, 产生高重力异常; 相反地, 老地层埋藏深的地方, 出现局部重力低异常。

    综上分析, 通过高精度重力、磁法测量可以揭示测区内深部基底构造特征及断裂构造分布情况; 利用超高密度电法和音频大地电磁测深, 可对河套地区的地下含水层、浅层第四纪冲洪积物厚度和分层等进行探测和研究。

    1:25000高精度重力剖面近南北贯穿工作区, 点距100 m, 剖面长度91.5 km; 1:10000高精度磁法剖面近南北贯穿工作区, 与重力剖面重合, 点距40 m, 剖面长度110 km; 测线分布详情见图 2。超高密度电法剖面每个排列64根电极, 电极距10 m, 分31个排列布设在重磁剖面的局部地段, 累计长度19.45 km。

    南北穿过测区的实测布格重力异常剖面见图 3, 幅值变化约100×10-5 m/s2, 中部相对平缓, 南侧异常值上升, 北侧出现较强的梯度变化带, 说明这里山前断裂发育, 且为沉积基底的最厚处。

    图  3  100-110-120测线实测布格重力异常(Δg)与区域重力对比剖面
    Figure  3.  The measured Bouguer gravity anomaly (Δg) compared with regional gravity anomaly in line 100-110-120

    河套盆地地形起伏变化于1000~1150 m之间, 地势极为平缓; 在河套盆地北部的阴山造山带地域地形高程又逐渐提升。根据经典的地壳均衡假说, 布格重力异常与地势一般呈现反相关的"镜像"关系, 即地势越高, 布格重力异常值越低。但在河套盆地, 其布格重力异常与地势的分布却呈现一种近似"同步变化"的特征, 这是由于盆地内部巨厚低密度沉积物质填充所致。进入测区后布格重力值开始缓慢下降, 并且在41°09'(测点55 km)左右降至最低值, 然后在约41°16'(测点80 km)左右开始迅速提升, 直至出测区都维持高布格异常值。

    图 4所示的130线布格重力异常也显示类似的特征, 在约10 km的水平距离内, 异常变化达80×10-5 m/s2, 说明山前断裂产状较陡。

    图  4  130测线实测布格重力异常(Δg)剖面图
    Figure  4.  Measured Bouguer gravity anomaly profile of profite 130

    根据收集的资料, 河套盆地内新生界主要以风积砂土为主, 磁性极弱。盆地结晶基底为强磁性, 与上覆沉积地层之间有明显的磁性差异, 是区内磁场出现正异常区或异常带的主要原因。

    图 5是近南北贯穿测区的1:10000实测磁异常与1:200000航磁异常剖面对比图[17~18], 二者具有较好的一致性, 但实测异常局部变化更明显, 精度更高。由于河套盆地大部分都被较厚的新生代沉积地层覆盖[19~20], 沉积层弱磁性对磁异常贡献则很小, 磁异常主要来自于结晶基底的岩石。

    图  5  100-110-120测线实测磁异常(ΔT)与航磁异常对比剖面图
    Figure  5.  Measured magnetic anomalies (ΔT) and aeromagnetic anomaly profile of profile 100-110-120

    超高密度电法数据采集过程中使用多通道数据采集方式, 充分利用已经布好的电极, 除供电电极以外其他电极均可以进行数据采集, 在此过程中缩短了因为进行单一数据采集而消耗的时间, 并且增大了数据采集量, 从而提高了工作效率[21]。超高密度电法一次数据采集量很大, 保证了数据处理的可靠性。45-44号排列位于测区中部, 为北东方位, 起点坐标(107°51'E, 41°05'N)。在610~920 m段反演显示明显的低-高-低三层结构; 在550~570 m间, 推测有断层存在, 两侧电阻率有明显变化; 地层分布呈水平层状(见图 6)。整条断面电阻率低于100 Ω·m, 剖面南侧0~550 m测点之间电阻率低于40 Ω·m。L100线断面位于测区南部黄河沿岸, 排列为北北西方位, 起点坐标(107°12'E, 40°47'N), 断面长1821 m。525~1100 m间电阻率最低, 电阻率低于5 Ω·m(见图 7)。南、北两端地电分布呈现高-低-高的结构特征, 但电阻率差异并不明显。推测地层呈水平层状, 富含地下水且有一定矿化度。110线断面位于测区中部西侧, 排列为北东方位, 起点坐标(107°45'E, 41°01'N)。0~570 m间电阻率断面呈现高-低二层结构, 浅地表电阻率稍高, 为25~38 Ω·m, 下伏地层含水量大, 电阻率10~20 Ω·m; 570~940 m间电阻率断面表现为低-高二层结构, 浅地表电阻率较低, 电阻率低于5 Ω·m, 地层含水量大, 下伏地层电阻率8~10 Ω·m, 上下两层电阻率差异不大(见图 8)。

    图  6  排列45-44超高密度反演断面
    Figure  6.  Ultra high density inversion section in arrangement of 45-44
    图  7  100断面33-36排列超高密度反演断面
    Figure  7.  Super high density inversion in section 33-36 of the 100 cross section
    图  8  110断面37-100排列超高密度反演断面
    Figure  8.  Super high density inversion section in arrangement 37-100 of 110 section

    三条反演断面电阻率均很低, 这主要与地层含水率高有关, 且有一定的矿化度。电性分层明显, 说明盆地地层近似水平。

    110线AMT测深点位于测区中部黄河以北附近, 110号点AMT电阻率反演结果如图 9所示。电阻率模型表现为高、低互层, 地表电阻率较低, 随深度加大逐渐升高; 在1000 m深度范围内电阻率分层明显, 电阻率值低于10 Ω·m。由XY和YX两个模式观测结果反演电阻率分布可以看出, 测点下方电阻率分布表现出较好的横向各向同性, 电阻率很低, 说明沉积环境稳定。

    图  9  110线110号点AMT电阻率反演图
    Figure  9.  AMT resistivity inversion model from point 110 in line 110

    采用中国地质调查局RGIS2012软件进行2.5D重磁联合反演, 得到重磁反演拟合曲线(见图 10), 并结合了该区DEM图与天然地震, 得到该区综合结构模型(见图 11)。

    图  10  重磁反演拟合曲线
    Figure  10.  Fitting curves of gravity and magnetic inversion
    图  11  河套覆盖区深部模型
    1—鄂尔多斯台坳斜坡; ②—基底隆升; ③—乌加河凹陷; F1—F4—河套新断层; F5—狼山南缘断层(色尔腾山前断裂)
    Figure  11.  The deep model of the covered area in Hetao Basin
    4.1.1   推断基底界面特征及断裂
    4.1.1.1   由布格重力异常推断基底界面特征

    重力异常控制因素比较复杂, 它受基底和盖层乃至深部莫霍面等因素的综合影响。河套盆地沉积盖层广泛发育, 层内密度横向差别不大, 层间密度差异明显的主要是盖层与下伏基底, 加之剖面长度有限, 因而将剖面上的重力异常变化主要归结为结晶基底的起伏, 兼有沉积盖层不同类岩性界面的局部影响。

    由反演结果看, 测区南端基底变化不大, 沉积厚度在2.5~4.2 km之间, 沉积厚度自南向北增大, 基底界面有明显的起伏变化, 最大厚度沿山前断裂分布, 达6 km。巨厚的低密度沉积建造使之在地表观测到明显的低布格重力异常, 这也是造成布格重力异常与地形高程呈特异的同步变化的主要原因。结晶基底在色尔腾山前断裂处已出露, 野外地质调查可见明显的基底露头。高密度基底沿色尔腾山前断裂升至地表导致该处平均密度值增大, 在地表观测到显著的呈上升趋势的高布格重力异常。根据反演结果, 沉积厚度最大的地区其基底以下地层平均密度要略高于南侧基底密度。

    4.1.1.2   由磁异常推断基底界面特征

    测区南端磁异常在0 nT附近, 而后迅速上升至600 nT左右。从反演过程来看, 如果盆地下方岩石磁性均匀一致的话, 单纯的基底起伏是难以引起如此大的磁场变化的, 况且重力并未发现显著的基底上隆。航磁异常显示在该处也为明显的东西向条带状磁异常高值区, 前人推测为山体属推挤造山机制, 山体不断抬升, 其深部软流层上凸, 地幔底辟活动, 而地幔物质和岩浆则沿块体边界以断裂为通道上涌, 形成高磁性的岩体物质, 导致高梯度变化的正异常带出现。故剖面南部达600 nT的高正磁异常应该是由强磁性乌拉山群岩体引起。测区北端基岩出露区磁异常也为高值区, 剖面中部和北部磁异常宽缓起伏推测是由高磁性基底局部起伏引起(与重力反演结果吻合)。

    4.1.2   隐伏断层推断

    在断裂构造作用下, 地质上会产生各种构造现象。深大断裂可以控制其两侧的构造活动, 使岩层被错断或发生裂开, 相互错断的断裂破坏了原构造的连续性, 形成不同的构造格局。发生断裂的同时往往伴随有岩浆活动, 这样就形成密度与磁性上的横向差异, 这种横向差异在重、磁力异常上必然有所表现, 具备了利用重、磁异常确定断裂构造的地球物理前提, 因而可根据重、磁异常特征来推断断裂。结合1:200000内蒙古区域地质调查(临河幅)及区域重磁资料, 综合推断出5条断裂:

    F1:鄂尔多斯台坳北缘推测断裂, 大致位于吉日嘎郎图镇北侧(纬度40°48')。在该断裂附近重、磁异常都一致显著下降。该断裂或与高磁性结晶基底的局部界面起伏有关。结合以往相邻测区地震资料与测区航磁资料推测, 该断裂走向近东西, 倾向北, 倾角约60°。

    F2:复兴断裂(景阳林推测断层), 大致位于复兴镇南侧(纬度40°55')。在该断裂附近磁异常起伏变化明显, 推测该断裂或与高磁性结晶基底的局部界面起伏有关。结合地震及地质资料推测, 该断裂走向近北西, 倾向北, 倾角约70°。

    F3:复兴断裂(孙家圪旦推测断层), 大致位于复兴镇北侧(纬度40°58')。该断裂附近磁异常由正异常变为负异常, 有明显下降趋势, 布格重力异常也有下降趋势, 与F1、F2一样与高磁性结晶基底的局部界面起伏有关。F2、F3之间基底隆起导致局部微弱重力高。结合地震及地质资料推测, F3走向东西, 倾向北, 倾角约70°。F2、F3统称为复兴断裂。

    F4:即五原断裂(临河凹陷南缘推测断裂), 大致位于塔尔湖镇南侧(纬度41°00')。该断裂附近重磁异常均呈明显下降趋势, 直至降到最低值。推测该断裂面亦是一个岩性分界面, 断裂南侧岩体磁性高(乌拉山群), 北侧岩体磁性低(色尔腾山结晶基底)。该断裂北侧即为沉积构造最厚的地区。结合地质及地震资料推测, 该断裂近东西走向, 倾向北, 倾角约45°。

    F5:即狼山—色尔腾山前断裂, 是位于河套盆地北界的一条深大断裂。沿该断裂以北基底迅速升至地表, 导致磁异常和布格重力异常都随之迅速增大至局部高值。该断裂在1~3 km深度产状陡, 浅部及深部倾角减小, 呈上陡下缓铲型, 结合地质资料, 该断裂走向东西, 倾角40°—60°, 倾向南。

    天然地震是地壳运动最直观的表现之一, 也是地下构造活动鲜明的标志。本次共收集了研究区63个天然地震事件, 时间范围自1971至2016, 其中Ms>3级的地震有10个[22](见表 4), 其目的是为了对隐伏断层的推论提供依据。通过对天然地震数据的投影, 可以清晰观测到在上文推测的隐伏断层周围均出现地震密集现象。但是狼山南缘断层附近未见有天然地震聚集, 断层活动时间早于1971年。

    表  4  天然地震事件
    Table  4.  Earthquake events
    日期纬度经度深度/km震级(Ms)
    1971/5/741°00'00″108°00'00″204.0
    1979/9/2841°12'00″108°00'00″153.2
    2001/12/1741°09'36″107°51'36″153.1
    2002/12/440°57'54″107°52'19″334.7
    2005/2/2740°53'60″107°45'00″114.5
    2005/2/2740°44'17″107°54'32″104.0
    2005/2/2740°52'48″107°49'12″203.6
    2005/3/2541°00'00″107°47'60″153.6
    2005/3/2540°51'00″107°49'12″53.3
    2006/6/541°17'60″107°47'60″124.8
    注:天然地震数据来自http://data.earthquake.cn/data/index.jsp
    下载: 导出CSV 
    | 显示表格

    重磁联合反演表明, 测区基底埋深普遍超过2000 m, 北端盆地中心基底埋深达7000 m。结合以往相邻测区地震资料与测区航磁资料推测出5条断裂(F1—F5), F1走向近东西, 倾向北, 倾角约60°; F2走向近北西, 倾向北, 倾角约70°; F3走向东西, 倾向北, 倾角约70°; F4走向北西, 倾向北, 倾角约45°; F5(即色尔腾山前断裂)走向东西, 倾角40°—60°, 倾向南。

    河套盆地北缘色尔腾山前断裂带在重、磁、超高密度电法剖面上均有异常反应。该异常区随着基底抬升, 布格重力异常向北呈增大趋势, 梯度变化明显。断裂带两侧的电阻率差异明显, 电性分界面向南倾斜, 且山前断裂附近冲洪积扇沉积分层结构明显。

    超高密度电法和音频大地电磁测深结果表明, 河套盆地下覆沉积地层的电阻率很低, 电性分层明显, 电阻率分布表现出较好的横向各向同性, 这些都与地层含水率高有关, 且有一定的矿化度。同时说明河套盆地地层近似水平, 沉积环境稳定。

  • 图  1  研究区地理位置和地质构造简图

    1, 2—第四系冲洪积物(Qapl3-4); 3—安吉然组砾岩夹钙质粗砂岩((N22—Q1)ad); 4—阿依里下亚组石灰岩、纺锤灰岩、砾状灰岩及钙质砂岩夹铝土矿层(C3aia); 5—阿克恰衣群薄层状砂岩、粉砂岩夹砾岩、灰岩(C1-2ak); 6—阿帕达尔康下亚组大理岩化灰岩、鲕状灰岩夹凝灰砾岩泥质粉砂岩薄层(D2apb); 7—不整合接触界线;
    8—正常接触界线; 9—断层; 10—研究区

    Figure  1.  Location and geological sketch of the study area

    图  2  ASTER原始影像(R:8, G:4, B:1)

    Figure  2.  Original image of ASTER (R:8, G:4, B:1)

    图  3  ASTER与SPOT6协同影像(R:8, G:4, B:1)

    Figure  3.  Cooperative image of ASTER and SPOT6 (R:8, G:4, B:1)

    图  4  ASTER与GF-2协同影像(R:8, G:4, B:1)

    Figure  4.  Cooperative image of ASTER and GF-2 (R:8, G:4, B:1)

    图  5  碳酸盐矿物和典型黏土类矿物光谱曲线

    Figure  5.  Spectral curves of carbonate minerals and typical clay minerals

    图  6  矿物丰度指数法彩色合成图

    Figure  6.  Synthesized color image according to mineral abundance index

    图  7  中SMACC算法所提取端元波谱

    Figure  7.  The spectral extracted by SMACC algorithm

    图  8  SMACC端元丰度合成图

    Figure  8.  Synthesis image according to SMACC end member abundance

    图  9  研究区遥感解译岩性构造图

    1—冲洪积物; 2—灰色半固结砾石层; 3—灰色厚-巨厚层状粗砾岩夹巨砾岩、中细砾岩、砂岩; 4—灰白色、灰色厚层状含生物碎屑粉晶、亮晶灰岩; 5—深灰色厚层状与薄层状生物碎屑灰岩互层; 6—灰-灰黄色钙质粉砂岩、灰色粉砂质灰岩, 夹灰黑色薄层; 7—灰色薄层状与厚层状泥晶灰岩不等厚互层, 夹钙质粉砂岩; 8—灰黑色厚层状泥晶灰岩, 夹浅灰绿色薄层状钙质粉砂岩, 局部见褐铁矿化黄铁矿颗粒; 9—深灰色-浅灰绿色中薄层状粉砂质灰岩、钙质粉砂岩; 10—灰白色与灰色中厚层状含生物碎屑灰岩; 11—深灰色与浅灰色中厚层状含生物碎屑灰岩; 12—灰白色厚层状含生物碎屑灰岩; 13—深灰色夹灰白色中厚层、中薄层状含生物碎屑灰岩

    Figure  9.  Lithology and structure map interpreted by remote sensing image of study area

    图  10  矿物丰度指数图、SMACC端元丰度合成图与遥感解译岩性构造叠加图

    Figure  10.  Stacking chart of mineral abundance index image, synthesis image of SMACC end member abundance and lithology-structure map

    图  11  岩性单元8和单元9遥感地质特征及野外地质特征

    a—矿物丰度指数图; b—SMACC端元丰度合成图; c—ASTER与SPOT6协同影像; d—野外照片; 8—灰黑色厚层状泥晶灰岩, 夹浅灰绿色薄层状钙质粉砂岩, 局部见褐铁矿化黄铁矿颗粒; 9—深灰色-浅灰绿色中薄层状粉砂质灰岩、钙质粉砂岩

    Figure  11.  The remote sensing and field outcrop geological characteristics of lithology unit 8 and unit 9

    图  12  岩性单元野外照片

    Figure  12.  Outcrop photos of lithology units

    表  1  GF-2、SPOT6、ASTER、ETM+遥感数据基本特征

    Table  1.   Characteristics of GF2, SPOT6, ASTER and ETM+ remote sensing data

    数据源波段波长/nm空间分辨率/m
    GF-21450~5203.2
    2520~5903.2
    3630~6903.2
    4770~8903.2
    Pan450~9000.8
    ASTERVNIR1520~60015
    VNIR2630~69015
    VNIR3N, 3B780~86015
    SWIR41600~170030
    SWIR52145~218530
    SWIR62185~222530
    SWIR72235~228530
    SWIR82295~236530
    SWIR92360~243030
    SPOT61425~5256.0
    2530~5906.0
    3625~6956.0
    4760~8906.0
    Pan455~7451.5
    ETM+1450~52028.50
    2520~60028.50
    3630~69028.50
    4760~90028.50
    51550~175028.50
    723080~235028.50
    8500~90014.25
    下载: 导出CSV

    表  2  相关系数矩阵

    Table  2.   Correlation index matrix

    相关性B1B2B3B4B5B6B7B8B9
    B11.0000.9830.7340.7750.8320.8350.8540.8610.863
    B20.9831.0000.7390.8190.8760.8770.8920.8940.899
    B30.7340.7391.0000.8570.7490.7680.7640.7510.751
    B40.7750.8190.8571.0000.9600.9660.9550.9250.939
    B50.8320.8760.7490.9601.0000.9960.9910.9700.982
    B60.8350.8770.7680.9660.9961.0000.9920.9720.982
    B70.8540.8920.7640.9550.9910.9921.0000.9880.991
    B80.8610.8940.7510.9250.9700.9720.9881.0000.988
    B90.8630.8990.7510.9390.9820.9820.9910.9881.000
    下载: 导出CSV
  • [1] 王润生, 熊盛青, 聂洪峰, 等.遥感地质勘查技术与应用研究[J].地质学报, 2011, 85(11):1699~1743. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201617057.htm

    WANG Run-sheng, XIONG Sheng-qing, NIE Hong-feng, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699~1743. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201617057.htm
    [2] Hunt G R, Salisbury J W. Visible and near infrared spectra of minerals and rocks Ⅰ:Silieate minerals[J]. Modern Geology, 1970, 1:238~300.
    [3] Hunt G R, Salisbury J W. Visible and Near Infrared Spectra of Minerals and Rocks Ⅱ:Carbonates[J]. Modern Geology, 1971, 2:23~30.
    [4] 燕守勋, 武晓波, 周朝宪, 等.遥感和光谱地质进展及其对矿产勘查的实践应用[J].地球科学进展, 2011, 26(1):13~29. http://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201111060.htm

    YAN Shou-xun, WU Xiao-bo, ZHOU Chao-xian, et al. Remote sensing and spectral geology and their applications to mineral exploration[J]. Advances in Earth Science, 2011, 26(1):13~29. http://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201111060.htm
    [5] 甘甫平, 王润生, 马蔼乃, 等.光谱遥感岩矿识别基础与技术研究进展[J].遥感技术与应用, 2002, 17(3):140~147. doi: 10.11873/j.issn.1004-0323.2002.3.140

    GAN Fu-ping, WANG Run-sheng, MA Ai-nai, et al. The development and tendency of both basis and techniques of discrimination for minerals and rocks using spectral remote sensing data[J]. Remote Sensing Technology and Application, 2002, 17(3):140~147. doi: 10.11873/j.issn.1004-0323.2002.3.140
    [6] 王晋年, 李志忠, 张立福, 等. "光谱地壳"计划——探索新一代矿产勘查技术[J].地球信息科学学报, 2012, 14(3):344~351. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201203010.htm

    WANG Jin-nian, LI Zhi-zhong, ZHANG Li-fu, et al. "Spectral Crust" project:Research on new mineral exploration technology[J]. Journal of Geo-Information Science, 2012, 14(3):344~351. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201203010.htm
    [7] 刘超群, 马祖陆, 莫源富.遥感岩性识别研究进展与展望[J].广西科学院学报, 2007, 23(2):120~124. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKX200702016.htm

    LIU Chao-qun, MA Zu-lu, MO Yuan-fu. Progress and prospect of study on remote sensing lithologic identification[J]. Journal of Guangxi Academy of Sciences, 2007, 23(2):120~124. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKX200702016.htm
    [8] Loughlin W. Principal component analysis for alteration mapping[J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(9):1163~1169.
    [9] 丑晓伟, 傅碧宏.干旱区TM图像岩石地层信息提取与分析方法研究[J].沉积学报, 1995, (s1):164~170. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB5S1.021.htm

    CHOU Xiao-wei, FU Bi-hong. Extraction and analysis of lithostratigraphic information from Landsat Thematic Mapper Imagery in arid region[J]. Acta Sedimentologica Sinica, 1995, (s1):164~170. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB5S1.021.htm
    [10] Rowan L C, Mars J C, Simpson C J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J]. Remote Sensing of Environment, 2005, 99(1/2):105~126.
    [11] 时丕龙, 付碧宏, 二宫芳树.基于ASTER VNIR-SWIR多光谱遥感数据识别与提取干旱地区岩性信息——以西南天山柯坪隆起东部为例[J].地质科学, 2010, 45(1):333~347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001029.htm

    SHI Pi-long, FU Bi-hong, Ninomiya Y. Detecting lithologic features from ASTER VNIR-SWIR multispectral data in the arid region:A case study in the eastern Kalpin uplift, southwest Tianshan[J]. Chinses Journal of Geology, 2010, 45(1):333~347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001029.htm
    [12] 刘本培.西南天山构造格局与演化[M].武汉:中国地质大学出版社, 1996.

    LIU Ben-pei. Tectonic pattern and evolution of southwest Tianshan[M]. Wuhan:China University of Geosciences Press, 1996.
    [13] 梁群峰, 杨克俭, 杨运军, 等.西南天山梅尔盖西地区成矿地质条件及成矿预测[J].西北地质, 2013, 46(1):91~102. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201301013.htm

    LIANG Qun-feng, YANG Ke-jian, YANG Yun-jun, et al. Metallogenic prognosis in the Meiergaixi region, southwest Tianshan orogeny[J]. Northwestern Geology, 2013, 46(1):91~102. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201301013.htm
    [14] 赵仁夫, 杨建国, 王满仓, 等.西南天山地区矿产资源潜力综合评价报告[R].西安:西安地质矿产研究所, 2003.

    ZHAO Ren-fu, YANG Jian-guo, WANG Man-cang, et al. Comprehensive evaluation report on mineral resources potential in southwest Tianshan region[R]. Xi'an:Xi'an Institute of Geology and Mineral Resources, 2003.
    [15] Itami H, Roehl T W. Mobilizing Invisible Assets[M]. Harvard University Press, 1991.
    [16] 马艳华.高空间分辨率和高光谱分辨率遥感图像的融合[J].红外, 2003, (10):11~16. doi: 10.3969/j.issn.1672-8785.2003.10.003

    MA Yan-hua. Fusion of high spatial resolution and high spectral resolution remote sensing image[J]. Infrared, 2003, (10):11~16. doi: 10.3969/j.issn.1672-8785.2003.10.003
    [17] Hunt G R. Spectral signatures of particulate minerals in the visible and near infrared[J]. Geophysics, 1977, 42(3):501. doi: 10.1190/1.1440721
    [18] Amer R, Kusky T, Ghulam A. Lithological mapping in the central eastern desert of Egypt using ASTER data[J]. Journal of African Earth Sciences, 2010, 56(2):75~82.
    [19] 杨可明, 刘士文, 王林伟, 等.光谱最小信息熵的高光谱影像端元提取算法[J].光谱学与光谱分析, 2014, 34(8):2229~2233. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201408049.htm

    YANG Ke-ming, LIU Shi-wen, WANG Lin-wei, et al. An algorithm of Spectral Minimum Shannon Entropy on extracting endmember of hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2014, 34(8):2229~2233. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201408049.htm
    [20] 褚海峰, 翟中敏, 赵银娣, 等.一种多/高光谱遥感图像端元提取的凸锥分析算法[J].遥感学报, 2007, 11(4):460~467. doi: 10.11834/jrs.20070464

    CHU Hai-feng, ZHAI Zhong-min, ZHAO Yin-di, et al. A Convex Cone Analysis Method for end member selection of multispectral and hyperspectral images[J]. Journal of Remote Sensing, 2007, 11(4):460~467. doi: 10.11834/jrs.20070464
    [21] 高晓惠, 相里斌, 魏儒义, 等.基于光谱分类的端元提取算法研究[J].光谱学与光谱分析, 2011, 31(7):1995~1998. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201107065.htm

    GAO Xiao-hui, XIANG Li-bin, WEI Ru-yi, et al. Research on endmember extraction algorithm based on spectral classification[J]. Spectroscopy and Spectral Analysis, 2011, 31(7):1995~1998. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201107065.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  119
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-09-16
  • 刊出日期:  2016-12-01

目录

/

返回文章
返回