留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

福建大田琴山铁矿成矿物理化学条件研究

刘乃忠

刘乃忠, 2016. 福建大田琴山铁矿成矿物理化学条件研究. 地质力学学报, 22 (1): 39-47.
引用本文: 刘乃忠, 2016. 福建大田琴山铁矿成矿物理化学条件研究. 地质力学学报, 22 (1): 39-47.
LIU Nai-zhong, 2016. PHYSICAL-CHEMICAL CONDITIONS FOR MINERALIZATION OF THE QINSHAN IRON DEPOSIT IN DATIAN COUNTY, FUJIAN PROVINCE. Journal of Geomechanics, 22 (1): 39-47.
Citation: LIU Nai-zhong, 2016. PHYSICAL-CHEMICAL CONDITIONS FOR MINERALIZATION OF THE QINSHAN IRON DEPOSIT IN DATIAN COUNTY, FUJIAN PROVINCE. Journal of Geomechanics, 22 (1): 39-47.

福建大田琴山铁矿成矿物理化学条件研究

详细信息
    作者简介:

    刘乃忠(1966-), 男, 福建福州人, 博士研究生, 高级工程师, 主要从事地质找矿与勘查工作

  • 中图分类号: P611

PHYSICAL-CHEMICAL CONDITIONS FOR MINERALIZATION OF THE QINSHAN IRON DEPOSIT IN DATIAN COUNTY, FUJIAN PROVINCE

  • 摘要: 在野外地质工作基础上, 通过流体包裹体和氢氧同位素研究, 探讨福建大田琴山铁矿床形成的物理化学条件。流体包裹体研究显示, 均一温度均值355.6 ℃, 盐度(NaCl质量分数)均值4.4%, 流体密度均值0.65 g/cm3。流体演化成矿经历了400~420 ℃和240~280 ℃两个主要阶段, 其中400~420 ℃为晚矽卡岩阶段磁铁矿主要成矿温度, 形成深度约3 km, 该阶段以混合作用为主; 240~280 ℃为晚硫化物阶段铅锌矿主要成矿温度, 形成深度约1 km, 以沸腾作用为主。激光拉曼测试结果显示, 成矿流体含少量CH4和CO2。氢氧同位素显示, 早期成矿流体主要以岩浆水为主, 晚期成矿流体混入大量大气降水。研究结果表明琴山铁矿属于热液矽卡岩型矿床。

     

  • 图  1  闽西南地区构造纲要图(a)和琴山铁矿矿区地质简图(b)(福建省地质调查研究院,2012)

    1—早三叠世溪口组;2—晚二叠世翠屏山组;3—早二叠世童子岩组;4—早二叠世文笔山组;5—晚石炭世经畲组;6—早石炭世林地组;7—燕山早期第三阶段第三次侵入岩中细粒钾长花岗岩;8—燕山晚期第一阶段第三次侵入岩中细粒花岗闪长岩;9—铁矿体及编号;10—铁锰矿化蚀变带;11—矽卡岩化带;12—花岗闪长岩;13—钾长花岗岩;14—褐铁矿化/黄铁矿化;15—硅化/云英岩化;16—矽卡岩化/绿泥石化;17—层理产状/片理产状;18—地质界线;19—岩相界线;20—动力变质带;21—断层及编号;22—滑脱断层及编号;23—推覆断层及编号

    Figure  1.  Geological sketch map of the Qinshan iron ore district and tectonic outline map of the Minxinan region

    图  2  包裹体照片(单偏光)

    Figure  2.  Microphotographs of the quartz-hosted fluid inclusions from the Qinshan iron deposit

    图  3  石英流体包裹体均一温度和盐度直方图

    Figure  3.  Histogram of homogenization temperature and salinity of the fluid inclusions from Qinshan iron deposit

    图  4  流体包裹体激光拉曼光谱图

    Figure  4.  Laser Raman Spectra for fluid inclusions from the Qinshan iron deposit

    图  5  δD-δ18OH2O图解

    Figure  5.  δD VS. δ18OH2O diagram from the Qinshan iron deposit

    图  6  流体包裹体均一温度-盐度关系图

    Figure  6.  Dissociation diagram of temperature vs. salinity of fluid inclusions from the Qinshan iron deposit

    表  1  流体包裹体显微测温结果

    Table  1.   Microthermometric data from fluids inclusions in the Qinshan iron deposi

    样号(测点数)样品类型包裹体类型充填度均一温度/℃冰点温度/℃盐度/%密度/(g·cm-3)压力/MPa深度/km
    范围均值范围均值范围均值
    QSQ-3(2)石榴子石-黄铁矿30285~312298.5-0.1~-2.2-1.10.18~3.711.940.748.300.83
    QSQ-2(5)石榴子石50~70386~402395.3-3.3~-6.8-5.185.41~10.208.030.626.210.62
    QPD3-1(8)磁铁矿-石英脉30~50260~407369.1-0.1~-4.8-3.740.18~7.596.050.6519.901.99
    QPD3-3(7)磁铁矿-石英脉20~40239~343270.1-0.1~-1.8-0.710.18~3.551.220.785.480.55
    QPD3-4(8)磁铁矿-石英脉10~30276~385336.1-0.1~-1.7-0.630.18~2.901.080.775.720.57
    QSQ-5(9)黄铁矿-石英脉20~31185~248231.7-0.1~-3.7-1.170.18~6.011.950.842.850.29
    QPD2-1(5)黄铁矿-石英脉40~50262~291278.0-0.7~-0.9-0.801.22~1.571.400.846.180.62
    QPD3-2(5)石英脉20~40231~272250.3-0.3~-0.9-0.550.53~1.570.960.813.970.40
    QPD3-7(7)石英脉20~40178~268209.6-2.4~-4.6-3.364.03~7.315.470.901.830.18
    QPD2-2(8)石英脉-方铅矿-闪锌矿20~30140~320248.5-0.1~-1.5-0.440.18~2.570.840.843.860.39
    QSQ-1(3)石榴子石50~60398~427412.0-3.1~-5.9-3.865.11~9.086.210.5530.103.01
    QSQ-4(4)石榴子石-黄铁矿20-30401~470432.9-0.1~-11.5-3.901.18~15.405.630.5131.543.15
    注:测试在南京大学内生金属矿床成矿机制研究国家重点实验室完成。WNaCl=0.00+1.78Tm-4.42×10-2Tm2+ 5.57×10-4 Tm3Tm为冰点温度的绝对值(Hall等, 1988);密度和最小压力参考NaCl-H2O流体体系估算[9]
    下载: 导出CSV

    表  2  氢、氧同位素组成

    Table  2.   Hydrogen and oxygen isotopic compositions from the Qinshan iron deposit

    样品产状矿物t/℃δ18O石英/‰δD流体/‰δ18OH2O/‰
    QPD2-1石英-黄铁矿石英2781.9-54-5.8
    QPD2-2石英脉-方铅矿-闪锌矿石英2501.3-51-7.7
    QPD3-1磁铁矿-石英脉石英36912.3-537.5
    QPD3-2石英-黄铁矿石英2704.1-62-4.0
    QPD3-4磁铁矿-石英脉石英33610.4-544.7
    注:样品由中国地质科学院矿产资源研究所分析,计算采用的分馏方程为δ18O石英-δ18O=1000lnα石英-水=3.38×106/T2-3.40[12]
    下载: 导出CSV
  • [1] 林喜.福建大田琴山铁矿地质特征及成因初探[J].福建地质, 2011, 30(2):101~106. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201102002.htm

    LIN Xi. Preliminary study of the genesis and the geologic characteristics of the Qinshan iron ore in Datian County, Fujian Province[J]. Gelolgy of Fujian, 2011, 30(2): 101~106. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201102002.htm
    [2] 范旭光, 刘德民, 李德威.闽西南大田地区中生代岩浆岩特征及构造环境演化[J].华南地质与矿床, 2011, 27(3):201~207. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201103006.htm

    FAN Xu-guang, LIU De-min, LI De-wei. Geochemical characteristics and tectonic significance of Mesozoic magmatic rocks from Datian, Southwestern Fujian[J]. Geology and Mineral Resources of South China, 2011, 27(3): 201~207. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201103006.htm
    [3] 毛建仁, 许乃政, 胡青, 等.福建省上杭—大田地区中生代成岩成矿作用与构造环境演化[J].岩石学报, 2004, 20(2):285~296. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402009.htm

    MAO Jian-ren, XU Nai-zheng, HU Qing, et al. The Mesozoic rock-forming processes and tectonic environment evolution in Shanghang-Datian region, Fujian[J]. Acta Petrologica Sinica, 2004, 20(2): 285~296. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402009.htm
    [4] Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77: 3057~3067. doi: 10.1029/JB077i017p03057
    [5] 陈进全, 徐兆文, 陈兴高, 等.内蒙古哈达特陶勒盖铅锌矿床成矿物理化学条件研究[J].地质学报, 2013, 87(3):375~383. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201303008.htm

    CHEN Jin-quan, XU Zhao-wen, CHEN Xing-gao, et al. Physical-chemical condition of mineralization of the Hardat Tolgoi Pb-Zn deposit, Inner Mongolia[J]. Acta Geologica Sinica, 2013, 87(3): 375~383. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201303008.htm
    [6] 倪培, 田京辉, 朱筱婷, 等.江西永平铜矿下盘网脉状矿化的流体包裹体研究[J].岩石学报, 2005, 21(5):1339~1346. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505002.htm

    NI Pei, TIAN Jing-hui, ZHU Xiao-ting, et al. Fluid insclusion studies on footwall stringer system mineralization of Yongping massive copper deposit, Jiangxi Province, China[J]. Acta Geologica Sinica, 2005, 21(5): 1339~1346. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505002.htm
    [7] 卢焕章, 李秉伦, 沈昆, 等.包裹体地球化学[M].北京:地质出版社, 1990:1~242.

    LU Huan-zhang, LI Bing-lun, SHEN Kun, et al. Insclusion geochemistry[M]. Beijing: Geological Publishing House, 1990: 1~242.
    [8] 赵斌, 李统锦, 李昭平.矽卡岩形成的物理化学条件实验研究[J].地球化学, 1983, (3):255~268. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198304009.htm

    ZHAO Bin, LI Tong-jin LI Zhao-ping. Experimental study of physico-chemical conditions of the formation of skarns[J]. Geochemica, 1983, (3): 256~268. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198304009.htm
    [9] Drummond S E, Ohmoto H. Chemical evolution and mineral deposition in boiling hydrothermal systems[J]. Economic Geology, 1985, 80(1): 126~147. doi: 10.2113/gsecongeo.80.1.126
    [10] 申萍, 沈远超, 李光明, 等.新疆阔尔真阔腊金矿床成矿流体包裹体研究[J].岩石学报, 2004, 20(4):969~976. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404018.htm

    SHEN Ping, SHEN Yuan-chao, LI Guang-ming, et al. Ore-forming fluid insclusions of Kuoerzhengkuola gold deposit, Xinjiang[J]. Acta Geologica Sinica, 2004, 20(4): 969~976. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404018.htm
    [11] Shepherd S M F. Characterization and isotope variation in natural waters[C] //Valley J W, Taylor H P Jr, O'Neil J R. Stable isotopes in high temperature geological processes: Reviews in mineralogy. Chantilly VA: Mineralogical Society of America, 1986: 165~184.
    [12] Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370: 519~527. doi: 10.1038/370519a0
    [13] 张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社, 1985:54~250.

    ZHANG Li-gang. Application of stable isotopes in geological sciences[M]. Xi'an: Shaanxi Science and Technology Press, 1985: 54~250.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  76
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-09
  • 刊出日期:  2016-03-28

目录

    /

    返回文章
    返回