Investigation on fracture propagation in fractured-cavity reservoirs based on FEMM-fracflow modelling
-
摘要: 在缝洞型油藏中,水力裂缝的偏转路径对石油的开采量有重要的影响。Hybrid Finite-element and Mesh-free Method-Fracflow(FEMM-Fracflow)数值模拟平台,通过数值实验,文章分析了缝洞型油藏中自然溶洞、水平地应力以及注水流速三种因素对水力裂缝偏转路径的影响。结果表明,在存在溶洞时,裂缝明显向溶洞方向偏转;在改变水平围压时,不施加水平围压条件下,裂缝明显偏向溶洞方向扩展,并且最终与溶洞连通;而在施加50 MPa水平围压时,水力裂缝偏向溶洞的趋势明显减弱;在改变流速时,当流速为0.05 kg/s,裂缝明显向溶洞方向偏转,而当流速为0.2 kg/s,裂缝向溶洞方向偏转的趋势则减弱。
-
关键词:
- 缝洞型油藏 /
- 水力压裂 /
- FEMM-Fracflow /
- 流固耦合 /
- 连通性
Abstract: The propagation path of hydraulic fractures is critical to oil recovery in fractured-cavity reservoirs. Based on Hybrid Finite-element and Mesh-free Method-Fracflow (FEMM-Fracflow) numerical simulation platform, this paper explores the influence of natural caves, in-situ stress and injection velocity on the propagation path of hydraulic fractures in reservoirs. The simulation results show that when there are caves, the fracture propagates toward the cave. When the horizontal confining pressure is changed, the fracture propagates toward the cave obviously without applying horizontal confining pressure, and eventually connects with the cave; when the horizontal confining pressure of 50 MPa is applied, the trend of hydraulic fracture propagating toward the cave is obviously weakened; when injection velocity is changed, the fracture propagates toward the cave with the injection velocity of 0.05 kg/s, while the tendency of fracture propagating toward the cave is weakened with the injection velocity of 0.2 kg/s. -
表 1 裂缝开度验证模型输入参数
Table 1. Input parameters for the cubic rock with a central fracture
输入参数 数值 杨氏模量E/GPa 10 泊松比v 0.25 恒定水压p/kPa 10 表 2 带溶洞模型输入参数
Table 2. Input parameters for a cubic domain
输入参数 值 杨氏模量E/GPa 9 泊松比v 0.25 抗拉强度ft/MPa 1 密度ρ/(kg·m-3) 1100 材料孔隙度 0.1 裂缝孔隙度 0.25 岩体渗透率/(m2·s-1) 1.0×10-20 裂缝渗透率/(m2·s-1) 1.0×10-10 流体黏度/(Pa·s-1) 1.0×10-3 流体注入速率/(kg·s-1) 6.0×10-2 表 3 三维模型输入参数
Table 3. Input parameters for the 3D model
输入参数 值 杨氏模量E/GPa 1 泊松比v 0.20 抗拉强度ft/MPa 1 密度ρ/(kg·m-3) 1100 岩体孔隙度 0.06 岩体渗透率/m2 1.0×10-20 裂缝处渗透率/m2 1.0×10-10 黏度/(Pa·s-1) 1.0×10-3 -
ADACHI J, SIEBRITS E, PEIRCE A, et al., 2007. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 44(5):739-757. doi: 10.1016/j.ijrmms.2006.11.006 BELYTSCHKO T, GRACIE R, VENTURA G, 2009. A review of extended/generalized finite element methods for material modeling[J]. Modelling and Simulation in Materials Science and Engineering, 17(4):043001. doi: 10.1088/0965-0393/17/4/043001 FU J W, ZHU W S, ZHANG X Z, et al., 2017. Fracturing experiment and numerical simulation study on new material containing a hollow internal crack under internal water pressure[J]. Advanced Engineering Sciences, 49(4):78-85. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201704010 GAO B, HUANG Z Q, YAO J, et al., 2016. Pressure transient analysis of a well penetrating a filled cavity in naturally fractured carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 145:392-403. doi: 10.1016/j.petrol.2016.05.037 GONG D G, QU Z Q, LI J X, et al., 2016. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics, 37(5):1512-1520. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx201605036 HAO Z Y, YUE L X, 2018. Thermo-fluid-solid coupling model and numerical simulation of supercritical CO2 antireflection coal[J]. Advanced Engineering Sciences, 50(4):228-236. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201804030 KHVATOVA I E, RENAUD A, MALYUTINA G, et al., 2012. Simulation of complex carbonate field: double media vs. single media Kharyaga field case (Russian)[R]. Moscow: Society of Petroleum Engineers. LIU G W, LI Q B, LIANG G H, 2017. A phase-field description of dynamic hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 36(6):1400-1412. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2016.1075 LIU Q S, SUN L, TANG X H, et al., 2018. Simulate intersecting 3D hydraulic cracks using a hybrid "FE-Meshfree" method[J]. Engineering Analysis with Boundary Elements, 91:24-43. doi: 10.1016/j.enganabound.2018.03.005 MELENK J M, BABUŠKA I, 1996. The partition of unity finite element method:basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 139(1-4):289-314. doi: 10.1016/S0045-7825(96)01087-0 RAJENDRAN S, ZHANG B R, 2007. A "FE-Meshfree" QUAD4 element based on partition of unity[J]. Computer Methods in Applied Mechanics and Engineering, 197(1-4):128-147. doi: 10.1016/j.cma.2007.07.010 RAJENDRAN S, ZHANG B R, 2008. Corrigendum to "A 'FE-Meshfree' QUAD4 element based on partition of unity"[J]. Computer Methods in Applied Mechanics and Engineering, 197(13-16):1430. doi: 10.1016/j.cma.2007.11.012 SHI G H, 1991. Manifold method of material analysis[C]//Proceedings of the transactions of the ninth army conference on applied mathematics and computing. Minnesoda: U.S. Army Research Office: 57-76. STROUBOULIS T, BABUŠKA I, COPPS K, 2000. The design and analysis of the generalized finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 181(1-3):43-69. doi: 10.1016/S0045-7825(99)00072-9 TANG X H, ZHENG C, WU S C, et al., 2009. A novel four-node quadrilateral element with continuous nodal stress[J]. Applied Mathematics and Mechanics, 30(12):1519-1532. doi: 10.1007/s10483-009-1204-1 WANG L, YANG S L, LIU Y C, et al., 2017. Experiments on gas supply capability of commingled production in a fracture-cavity carbonate gas reservoir[J]. Petroleum Exploration and Development, 44(5):779-787. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201705013 WANG X, ZHU Z M, WANG X M, et al., 2017. Effect of integral paths on the accuracy of finite difference method[J]. Advanced Engineering Sciences, 49(S2):141-149. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SCLH2017S2020.htm WITHERSPOON P A, WANG J S Y, IWAI K, et al., 1980. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resources Research, 16(6):1016-1024. doi: 10.1029/WR016i006p01016 WU P F, 2017. Experimental investigation on the crack propagation of hydraulic fracturing in coal-rock combination[D]. Shanxi: Taiyuan University of Technology: 1-50. (in Chinese) WU Y, DAI J S, GU Y C, et al., 2014. Numerical simulation of present geo-stress field and its effect on hydraulic fracturing of Fuyu reservoir in Gaotaizi oilfield[J]. Journal of Geomechanics, 20(4):363-371. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201404004 XIE J, ZHU Z M, HU R, 2015. Propagation criterion and application of sandstone reservoir fractures under hydraulic fracturing[J]. Journal of Sichuan University (Engineering Science Edition), 47(5):38-45. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201505006 YAN C Z, ZHENG H, SUN G H, 2016. Effect of in-situ stress on hydraulic fracturing based on FDEM-Flow[J]. Rock and Soil Mechanics, 37(1):237-246. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx201601028 YANG X, ZHANG G Q, LIU Z B, et al., 2017. Experimental research on the variation of fracture width in hydraulic fracturing process[J]. Chinese Journal of Rock Mechanics and Engineering, 36(9):2232-2237. (in Chinese with English abstract) YANG Y T, TANG X H, ZHENG H, 2014. A three-node triangular element with continuous nodal stress[J]. Computers & Structures, 141:46-58. doi: 10.1016/j.compstruc.2014.05.001 YANG Y T, ZHENG H, 2016. A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis[J]. Engineering Fracture Mechanics, 162:51-75. doi: 10.1016/j.engfracmech.2016.05.007 YAO C, ZHAO M, YANG J H, et al., 2017. Improved method of rigid body spring for 2D hydraulic fracturing simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 36(9):2169-2176. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201709009 ZHAO K Z, ZHANG L J, ZHENG D M, et al., 2015. A reserve calculation method for fracture-cavity carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 42(2):277-282. doi: 10.1016/S1876-3804(15)30017-3 ZHAO Z J, LIU D A, CUI Z D, et al., 2019. Cyclic progressive pressure on the fracturing effect of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 38(S1):2779-2789. (in Chinese with English abstract) ZIENKIEWICZ O C, TAYLOR R L, 2000. The finite element method[M]. 5th ed. Oxford, Boston:Butterworth-Heinemann. ZU K W, CHENG X S, LUO Z L, et al., 2018. The comparative analysis of different methods for fracture prediction in complex carbonate rock reservoir[J]. Journal of Geomechanics, 24(4):465-473. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0148607102026001011 付金伟, 朱维申, 张新中, 等, 2017.内水压下含中空裂隙新型材料的压裂试验及数值模拟研究[J].工程科学与技术, 49(4):78-85. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201704010 龚迪光, 曲占庆, 李建雄, 等, 2016.基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J].岩土力学, 37(5):1512-1520. http://d.old.wanfangdata.com.cn/Periodical/ytlx201605036 郝志勇, 岳立新, 2018.超临界CO2增透煤热流固耦合模型与数值模拟[J].工程科学与技术, 50(4):228-236. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201804030 刘国威, 李庆斌, 梁国贺, 2017.动力水力压裂的相场模拟方法[J].岩石力学与工程学报, 36(6):1400-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706009 王璐, 杨胜来, 刘义成, 等, 2017.缝洞型碳酸盐岩气藏多层合采供气能力实验[J].石油勘探与开发, 44(5):779-787. http://d.old.wanfangdata.com.cn/Periodical/syktykf201705013 王雄, 朱哲明, 汪小梦, 等, 2017.不同积分路径对动态有限差分法计算精度的影响效应[J].工程科学与技术, 49(S2):141-149. http://www.cnki.com.cn/Article/CJFDTotal-SCLH2017S2020.htm 武鹏飞, 2017.煤岩复合体水压致裂裂纹扩展规律试验研究[D].山西: 太原理工大学: 1-50. 伍亚, 戴俊生, 顾玉超, 等, 2014.高台子油田扶余油层现今地应力数值模拟及对水力压裂的影响[J].地质力学学报, 20(4):363-371. doi: 10.3969/j.issn.1006-6616.2014.04.004 谢军, 朱哲明, 胡荣, 2015.砂岩储层裂缝在水力压裂作用下扩展准则及其应用[J].四川大学学报(工程科学版), 47(5):38-45. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201505006 严成增, 郑宏, 孙冠华, 等, 2016.基于FDEM-Flow研究地应力对水力压裂的影响[J].岩土力学, 37(1):237-246. http://d.old.wanfangdata.com.cn/Periodical/ytlx201601028 杨潇, 张广清, 刘志斌, 等, 2017.压裂过程中水力裂缝动态宽度实验研究[J].岩石力学与工程学报, 36(9):2232-2237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201709016 姚池, 赵明, 杨建华, 等, 2017.基于改进刚体弹簧方法的二维水压致裂模型[J].岩石力学与工程学报, 36(9):2169-2176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201709009 赵子江, 刘大安, 崔振东, 等, 2019.循环渐进升压对页岩压裂效果的影响[J].岩石力学与工程学报, 38(S1):2779-2789. http://www.cqvip.com/QK/96026X/2019A01/89837688504849578349484956.html 祖克威, 程秀申, 罗周亮, 等, 2018.复杂碳酸盐岩储层裂缝预测方法对比性研究[J].地质力学学报, 24(4):465-473. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180403&journal_id=dzlxxb