METALLOGENIC MODEL OF THE XIANGSHAN URANIUM ORE FIELD, JIANGXI PROVINCE
-
摘要: 本文在阐述相山矿田区域地质背景和成矿特征的基础上, 分析了成矿物质来源、成矿溶液来源及成矿物质迁移途径, 建立了相山矿田铀成矿模式。认为相山矿田铀成矿是受区域地质背景控制的特定时空域内的客观产物, 区域富铀地层是成矿的物质基础, 成矿溶液源自岩浆水和混入的雨水, 岩浆及期后热液是铀迁移的载体。铀成矿模式强调了火山岩成岩过程是成矿物质的富集过程, 火山岩浆期后成矿热液系统演化孕育了相山火山盆地50Ma的成矿过程, 流体降温、浓缩、混合等成矿机制的耦合, 促使了铀沉淀、成矿。Abstract: The authors studied the regional geological setting and metallogenic characteristics of the Xiangshan ore field and analyzed the sources of ore substances and ore fluids and channels for transport of ore substances, and on that basis, they constructed a uranium metallogenic model for the Xiangshan ore field. Uranium metallogenesis of the Xiangshan ore field took place in a specific temporal-spatial domain controlled by the regional geological setting; regional uranium-rich strata provided substances for metallogenesis; and ore fluids derived from magmatic water, mixed meteoric water, magma and postmagmatic hydrothermal fluids were carriers of uranium transport. The uranium metallogenic model emphasizes that the formation process of volcanic rocks was a process of ore substance concentration. The evolution of the volcanic postmagmatic hydrothermal ore system gave birth to ore-forming processes with a time span of 50 Ma in the Xiangshan volcanic basin. The coupling of metallogenic mechanisms such as temperature decline, concentration and mixing of fluids promoted uranium precipitation and ore formation.
-
图 4 华南地区不同时代部分地层及不同构造运动期花岗岩铀含量分布示意图
(据章邦桐等, 1990[9]及核工业270研究所1993、1995年资料整理)
Figure 4. Distribution of uranium contents in some strata of different ages and granites formed in different tectonic stages in South China
表 1 相山矿田各类岩石中铀矿平均品位及其资源量占探明资源量的份额
Table 1. Average uranium grades and percentages of uranium resources in various types of rocks in the total verified resources of the Xiangshan ore field
表 2 相山铀矿田矿石类型及其特征
Table 2. Uranium ore types in the Xiangshan uranium ore field and their characteristics
表 3 相山矿田部分矿床铀矿石同位素年龄
Table 3. Isotopic age data for uranium ore from part of deposits in the Xiangshan ore field
-
[1] Chen Zhaobo." Double mixing" genetic model of uranium deposits in volcanic rocks and relationship between China's Mesozoic veintype uranium deposits and Pacific plate tectonics, M etallogensis of Uranium[J].In:Proceedings of the 26th IGC, Geoinstitute, Beogard, 1981, 65~97. [2] 李学礼, 孙占学, 周文斌.古水热系统与铀成矿作用[M].北京:地质出版社, 2000. [3] 杜乐天.中国热液铀矿基本成矿规律和一般热液成矿学[M].北京:原子能出版社, 2001. [4] 张勤文, 黄怀曾.中国东部中、新生代构造-岩浆活化史[J].地质学报, 1982, 2:111~122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000377655 [5] 王德滋, 杜杨松.东南沿海地区中生代火山-侵入杂岩形成的构造背景[J].矿物岩石地球化学通讯, 1990, 3:186 ~188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002008654 [6] 邱爱金.江西相山铀矿田东西向隐伏构造的发现及其地质意义[J].地质论评, 2001, 47 (6):637 ~641. doi: 10.3321/j.issn:0371-5736.2001.06.012 [7] 黄志章, 李秀珍, 蔡根庆.热液铀矿床蚀变场及蚀变类型[M].北京:原子能出版社, 1999. [8] 夏林圻, 夏祖春, 张成, 等.相山中生代含铀火山杂岩岩石地球化学[M].北京:地质出版社, 1992. [9] 章邦桐, 张祖还, 倪奇生.内生铀矿床及其研究方法[M].北京:原子能出版社, 1990. [10] 江西省地质矿产局.江西省区域地质志[M].北京:地质出版社, 1984. [11] 沈渭洲.同位素地质学教程[M].北京:原子能出版社, 1997. [12] 张理刚, 陈振胜, 刘敬秀, 等.两阶段水-岩同位素交换理论及其勘查应用[M].北京:地质出版社, 1995.