MULTI-SCALE LANDSLIDE HAZARD ASSESSMENT FOR KEY SECTION OF CHENGDU-LANZHOU RAILWAY, WENCHUAN SEISMIC REGION
-
摘要: 以穿越汶川震区的成兰铁路龙门山关键段为例, 探索提出了强震扰动背景下重大工程场区多尺度滑坡危险性评估方法。利用信息量模型反演评估了汶川地震诱发的同震滑坡空间分布特征, 以此为前提开展了区域和局地两种空间尺度的滑坡危险性预测评估。在区域廊带尺度上, 分别利用可能最大降雨量预测方法和信息量模型, 进行了日超越概率10%的最大降雨量时空分布预测及其诱发滑坡的危险性评估; 同时, 结合地震危险性区划成果, 开展了50年超越概率10%的基本地震动诱发滑坡的危险性评估。在局地场站尺度上, 利用基于崩塌运动过程模拟的Rockfall Analyst软件, 开展了柿子园大桥周边崩塌运动学特征(Runout)模拟和危险性评估。滑坡和崩塌危险性评估的结果分别为铁路规划选线和场站防护设计提供了不同尺度的地质安全依据。Abstract: Taking Longmenshan key section of Chengdu-Lanzhou railway in Wenchuan seismic region as an example, we explore a sort of multi-scale landslide hazard assessing method for major project site in strong earthquake afflicted area. The spatial distribution characteristics of coseismic landslides induced by Wenchuan Ms 8.0 earthquake are inverted assessed with information value model. On this basis, landslide hazard assessments in regional and local scale are carried out. In regional railway corridor scale, the temporal and spatial distribution of daily maximum precipitation of 10% exceedance probability is predicted by Probable Maximum Precipitation method. Due to such probable precipitation, the landslide hazard is assessed with information value model. Also, combining seismic hazard zoning result, the landslide hazard is assessed due to basic earthquake ground motion of 10% exceedance probability in 50 years. In local railway station scale, with Rockfall Analyst software based on rolling stone kinematics simulation, runout characteristics and hazard of rockfall around Shiziyuan bridge site are simulated and assessed. All of the landslide and rockfall hazard assessment results above provide geological safety references in different scales for railway plan and line selection, site landslide defense design respectively.
-
Key words:
- Wenchuan /
- seismic region /
- landslide /
- multi-scale /
- hazard /
- Chengdu-Lanzhou railway
-
表 1 区域滑坡关键影响和诱发因素及数据来源
Table 1. Regional crucial landslide influential and inducing factors and data sources
编号 分类 关键要素 致灾指示意义及数据来源 1 构造 断裂带密度 地质体“结构面”发育程度,控制坡体稳定性(1:200000地质图) 2 地形坡度 坡面“坡角”几何形态,控制坡体稳定性及滑移距离(1:50000 DEM) 3 地形地貌 地形起伏度 坡体“坡高”几何形态,控制坡体稳定性及滑移距离(1:50000 DEM) 4 坡向 坡面降雨或地下水特征和岩体风化差异,影响坡体稳定性(1:50000 DEM) 5 坡形 坡面“凹凸”形态差异,控制地震动地形效应(1:50000 DEM) 6 岩性 工程地质岩组 斜坡岩土体力学“强度”,控制坡体稳定性(1:200000地质图) 7 河流 与河流的距离 坡脚侵蚀及坡体“水文地质”特征,控制坡体稳定性(1:50000 DLG) 8 地震动 Arias强度Ia 地震动的“动力”荷载条件,控制坡体稳定性(经验公式[20]) 表 2 Rockfall Analyst模拟所需空间数据一览表
Table 2. Spatial data list required for Rockfall Analyst simulation
数据名称 数据格式 数据模型 数据描述 地形/DEM Coverage/grid 矢量/栅格 表征地形地貌特征,主要用数字高程模型表达 点状崩塌源 Shp 矢量 以离散方式表达已有或潜在崩塌源 线状崩塌源 Shp 矢量 以线性方式表达已有或潜在崩塌源 地表介质 Shp 矢量 提供崩塌体在运动过程中地表介质的反馈影响 遥感影像 IMG/TIF 栅格 地物类型及地质灾害等特征的综合反映 -
[1] 王涛, 吴树仁, 石菊松, 等.国内外典型工程滑坡灾害比较[J].地质通报, 2013, 32(12):11~29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312002.htmWANG Tao, WU Shu-ren, SHI Ju-song, et al. A comparative study on typical engineering landslide disasters at home and abroad[J]. Geological Bulletin of China, 2013, 32(12): 11~29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312002.htm [2] 鄢毅.宝成铁路滑坡与降雨关系探讨[J].水文地质工程地质, 1993, (4):14~16. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199304004.htmYAN Yi. Study on relationship between Baoji-Chengdu railway landslides and rainfalls[J]. Hydrogeology and Engineering Geology, 1993, (4): 14~16. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199304004.htm [3] 王恭先, 刘光代.宝成铁路190公里山体滑坡与明洞破坏的分析和防治对策[J].路基工程, 1993, (5):20~25. http://www.cnki.com.cn/Article/CJFDTOTAL-LJGC199305003.htmWANG Gong-xian, LIU Guang-dai. Analysis and treatment of 190 km landslide and open cut tunnel destruction of Baoji-Chengdu railway[J]. Subgrade Engineering, 1993, (5): 20~25. http://www.cnki.com.cn/Article/CJFDTOTAL-LJGC199305003.htm [4] 张亨纲, 李光辉.宝鸡至成都铁路地质选线及主要工程地质问题[J].铁道工程学报, 2005, (S1):204~209. http://www.cnki.com.cn/Article/CJFDTOTAL-TDGC2005S1025.htmZHANG Heng-gang, LI Guang-hui. Route selection from Baoji to Chengdu and main engineering geological problems[J]. Journal of Railway Engineering Society, 2005, (S1): 204~209. http://www.cnki.com.cn/Article/CJFDTOTAL-TDGC2005S1025.htm [5] 王恭先, 王应先, 马惠民.滑坡防治100例[M].北京:人民交通出版社, 2008.WANG Gong-xian, WANG Ying-xian, MA Hui-min. 100 landslide prevention and cure cases[M]. Beijing: China Communications Press, 2008. [6] Katz O, Reichenbach P, Guzzetti F. Rock fall hazard along the railway corridor to Jerusalem, Israel, in the Soreq and Refaim valleys[J]. Natural Hazards, 2010, 56(3): 649~665. doi: 10.1007%2Fs11069-010-9580-z.pdf [7] Bednarik M, Magulová B, Matys M, et al. Landslide susceptibility assessment of the Kralovany-Liptovsky Mikuláš railway case study[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010. 35(3/5): 162~171. [8] Lan Heng-xing, Martin C D, Lim C H. Rockfall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J]. Computers & Geosciences, 2007, 33(2): 262~279. http://adsabs.harvard.edu/abs/2007CG.....33..262L [9] 李倩.贵州省规划铁路网滑坡危险性评估[J].中南大学学报:自然科学版, 2011, (10):3170~3175. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201110047.htmLI Qian. Landslide risk assessment for planning railway network in Guizhou province[J]. Journal of Central South University: Science and Technology, 2011, (10): 3170~3175. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201110047.htm [10] 李晓慧. 宝成铁路凤县段地质灾害危险性评价[D]. 北京: 中国地质大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085850.htmLI Xiao-hui. Geological hazard risk assessment of Bao-Cheng railway in Fengxian county[D]. 2010, China University of Geosciences, Beijing. http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085850.htm [11] 钟新.高烈度地震山区成兰铁路综合选线研究[J].高速铁路技术, 2012, 3(6):14~17. http://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201206007.htmZHONG Xin. Research on integrated route selection of Chengdu-Lanzhou Railway in highly seismic mountain area[J]. High Speed Railway Technology, 2012, 3(6): 14~17. http://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201206007.htm [12] 贾丽丽, 陈建国.成兰铁路两河口至松潘段选线研究[J].四川建材, 2012, 38(3):126~128. http://www.cnki.com.cn/Article/CJFDTOTAL-SCJZ201203062.htmJIA Li-li, CHEN Jian-guo. Line selection research on Lianghekou-Songpan section of Chengdu-Lanzhou railway[J]. Sichuan Building Materials, 2012, 38(3): 126~128. http://www.cnki.com.cn/Article/CJFDTOTAL-SCJZ201203062.htm [13] 杜宇本, 袁传保, 王彦东, 等.成兰铁路主要地质灾害与地质选线[J].铁道工程学报, 2012, (8):11~15. http://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201208003.htmDU Yu-ben, YUAN Chuan-bao, WANG Yan-dong, et al. Major geological hazard and geological alignment of Chengdu-Lanzhou Railway[J]. Journal of Railway Engineering Society, 2012, (8): 11~15. http://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201208003.htm [14] 毕俊翔. 基于GIS的成兰铁路地质灾害危险性评估研究[D]. 成都: 西南交通大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10613-1013250434.htmBI Jun-xiang. The GIS-based study on hazard evaluation of geological disaster in the Cheng-Lan railway[D]. 2013, Southwest Jiaotong University. http://cdmd.cnki.com.cn/Article/CDMD-10613-1013250434.htm [15] 李明清, 刘发明.高烈度地震频发山区泥石流对成兰铁路的影响和防治对策[J].高速铁路技术, 2013, 4(2):61~64. http://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201302018.htmLI Ming-qing, LIU Fa-ming. Influence of debris flow in high-intensity earthquake active mountainous area on Chengdu-Lanzhou Railway[J]. High Speed Railway Technology, 2013, 4(2): 61~64. http://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201302018.htm [16] 唐荣昌, 蒋能强, 刘盛利.迭溪7.5级地震的地质构造背景及其对发震构造条件的认识[J].地震研究, 1983, 6(3):327~338. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ198303011.htmTANG Rong-chang, JIANG Neng-qiang, LIU Sheng-li. Recognition of the geological setting and the seismogenic condtion for the Diexi magnitude 7.5 earthquake[J]. Journal of Seismological Research, 1983, 6(3): 327~338. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ198303011.htm [17] 周荣军, 李勇, Densmore A L, 等.青藏高原东缘活动构造[J].矿物岩石, 2006, 26(2):40~51. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303004.htmZHOU Rong-jun, LI Yong, Densmore A L, et al. Active tectonics of the eastern margin of the Tibet Plateau [J]. Journal of Mineralogy and Petrology, 2006, 26(2): 40~51. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303004.htm [18] 雷建成, 高孟潭, 吕红山, 等.四川及邻区抗倒塌地震区划图编制[J].地震学报, 2011, (2):219~233. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201102010.htmLEI Jian-cheng, GAO Meng-tan, Lü Hong-shan, et al. Seismic zonation maps against collapse of structures in Sichuan and adjacent region[J]. Acta Seismologica Sinica, 2011, (2): 219~233. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201102010.htm [19] 王涛. 汶川地震重灾区地质灾害危险性评估研究[D]. 北京: 中国地质科学院, 2010. http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012316.htmWANG Tao. Study on seismic landslide hazard assessment in Wenchuan earthquake severely afflicted area[D]. Beijing: Chinese Academy of Geological Sciences, 2010. http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012316.htm [20] Keefer D K, Wilson R C. Predicting earthquake-induced landslides, with emphasis on arid and semi-add environments[J]. Landslides in a Semi-Arid Environment, 1989, 2: 118~149. [21] Chung C F, Fabbri A G. Validation of spatial prediction models for landslide Hazard Mapping[J]. Natural Hazards, 2003, 30(3): 451~472. doi: 10.1023/B:NHAZ.0000007172.62651.2b [22] 吴树仁, 王涛, 石玲, 等.2008汶川大地震极端滑坡事件初步研究[J].工程地质学报, 2010, 18(2):145~159. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201002001.htmWU Shu-ren, WANG Tao, SHI Ling, et al. Study on catastrophic landslides triggered by 2008 great Wenchuan earthquake, Sichuan, China[J]. Journal of Engineering Geology, 2010, 18(2): 145~159. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201002001.htm [23] 黄润秋.汶川地震地质灾害后效应分析[J].工程地质学报, 2011, 19(2):145~151. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102001.htmHUANG Run-qiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145~151. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102001.htm [24] 郭化文, 魏甡生, 陈建昌.国内外求算可能最大降雨量研究综述[J].岱宗学刊, 1997, (4):22~28. http://www.cnki.com.cn/Article/CJFDTOTAL-TAJY199704007.htmGUO Hua-wen, WEI Shen-sheng, CHEN Jian-chang. A review on probable maximum precipitation prediction at home and abroad[J]. Dai Zong Xue Kan, 1997, (4): 22~28. http://www.cnki.com.cn/Article/CJFDTOTAL-TAJY199704007.htm [25] 刘传正.汶川地震区文家沟泥石流成因模式分析[J].地质论评, 2012, 58(4):709~716. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201204012.htmLIU Chuan-zheng. Analysis on genetic model of Wenjiagou debris flow in Wenchuan earthquake area, Sichuan[J]. Geological Review, 2012. 58(4): 709~716. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201204012.htm [26] 全国地震区划图编制委员会. 四川、甘肃、陕西部分地区地震动峰值加速度区划图(GB 18306-2001)[S]. 北京: 国家标准化管理委员会, 2008.The National Seismic Zoning Map Compilation Committee. Seismic peak ground acceleration zoning map of local regions in Sichuan, Gansu, Shaanxi (GB 18306-2001) [S]. Beijing: China National Standardization Management Committee, 2008. [27] 刘静伟. 基于历史地震烈度资料的地震危险性评估方法研究[D]. 北京: 中国地震局地质研究所, 2011. http://cdmd.cnki.com.cn/Article/CDMD-85402-1012266145.htmLIU Jing-wei. Study on the method of seismic hazard assessment based on historical intensity observations[D]. Beijing: Institute of Geology of China Earthquake Administration, 2011. http://cdmd.cnki.com.cn/Article/CDMD-85402-1012266145.htm