THE MULTI-PARAMETER QUANTITATIVE PREDICTION OF RESERVOIR FRACTURE OF FU-2 MEMBER IN TIAN 96 FAULT BLOCK OF JINHU SAG
-
摘要: 基于应变能、表面能理论, 采用格里菲斯岩石破裂准则, 建立了金湖凹陷天96断块造缝期古地应力、现今地应力与裂缝参数之间的关系; 基于构造分析确定了造缝时期古地应力的类型和方向, 用声速法和水力压裂法确定了现今地应力的方向和大小, 将古今地应力场的数值模拟结果导入裂缝参数计算模型中, 模拟计算了天96断块阜二段裂缝的密度、开度、孔渗参数, 并结合古地应力场分析以及岩心裂缝统计数据对裂缝预测结果进行验证; 最后, 综合分析了影响天96断块裂缝发育的因素。Abstract: Based on the theory of strain energy and surface energy, the relationship between the fracture parameters and the ancient and present earth stresses at the fracture forming period in Tian 96 fault block of Jinhu sag was established by using Griffith rock-cracking principle. The type and direction of the ancient earth stress were determined through the structure analysis, and the direction and strength of the present earth stress were calculated by using the method of sound velocity and hydraulic fracturing. The numerical simulation results of the ancient and modern stress field were substituted into the calculating model of fracture parameter to calculate the density, opening, porosity and permeability of the fractures in Fu-2 member in Tian 96 fault block. And the fracture prediction results were verified using the ancient stress field analysis and core statistics. Eventually the main factors that affect fractures development in Tian 96 fault block were analyzed comprehensively.
-
Key words:
- Tian 96 fault block /
- earth stress /
- reservoir fracture /
- influencing factors /
- numerical simulation
-
表 1 天96及天33断块岩心裂缝发育规模统计
Table 1. Statistics of fracture development in cores of Tian 96 and Tian 33 fault block
井号 裂缝开度/mm 线密度/(条·m-1) 乔1 0.211 1.25 吴101X1 0.40 天X33-1 0.127 0.75 天X33-2(1) 0.203 0.55 天X33-2(2) 0.336 天X33-3 0.245 1.55 表 2 天96断块阜宁期应力场模拟力学参数
Table 2. Mechanical parameters of stress field simulation of Tian 96 fault block in Funing Period
地层 泊松比 弹性模量/GPa 密度/(g·cm-3) 砂岩层 0.15 5.6 2.21 断层带 0.20 5.0 2.20 泥岩层 0.23 4.5 2.10 围岩 0.15 5.5 2.22 表 3 岩心与数值模拟裂缝参数对比
Table 3. Comparison of fracture parameters in core testing and numerical simulation
断块 井号 与断层距离/
m埋深/m 开度/mm 线密度/(条·m-1) 孔隙度/% 岩心实测 数值模拟 岩心实测 数值模拟 岩心实测 数值模拟 天33 天X33-1 300 2486 0.127 0.035 0.75 3.6 0.0095 0.0126 天X33-2 100 2402 0.203 0.035 0.55 3.8 0.0112 0.0133 天X33-2 50 2693 0.336 0.039 0.55 4.1 0.0185 0.0160 天X33-3 250 2235 0.245 0.040 1.55 3.8 0.0380 0.0152 天96 乔1 10 2146 0.211 0.043 1.25 3.9 0.0264 0.0168 吴101X1 550 1825 0.038 0.40 3.3 - 0.0125 -
[1] 能源, 漆家福, 张春峰, 等.金湖凹陷断裂特征及其石油地质意义[J].大地构造与成矿学, 2012, 36(1):16~23. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201201006.htmNENG Yuan, QI Jia-fu, ZHANG Chun-feng, et al. Structural features of the Jinhu sag in the Subei Basin and its petroleum geological significance[J]. Geotectonica Et Metallogenia, 2012, 36(1): 16~23. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201201006.htm [2] 叶绍东.金湖凹陷铜城断层构造特征与油气成藏[J].地质力学学报, 2012, 18(2):187~194. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20120209&journal_id=dzlxxbYE Shao-dong. Structural characteristics of Tongcheng fault and hydrocarbon accumulation in Jinhu sag[J]. Journal of Geomechanics, 2012, 18(2): 187~194. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20120209&journal_id=dzlxxb [3] 能源, 漆家福, 张春峰, 等.金湖凹陷石港断层构造演化及油气聚集特征[J].石油学报, 2009, 30(5):667~671. doi: 10.7623/syxb200905006NENG Yuan, QI Jia-fu, ZHANG Chun-feng, et al. Structural evolution of Shigang fault and features of hydrocarbon accumulation in Jinhu sag[J]. Acta Petrolei Sinica, 2009, 30(5): 667~671. doi: 10.7623/syxb200905006 [4] 袁士义, 宋新民, 冉启全.裂缝性油藏开发技术[M].北京:石油工业出版社, 2004:211~234.YUAN Shi-yi, SONG Xin-min, RAN Qi-quan. Development technology for fractured reservoir[M]. Beijing: Petroleum Industry Press, 2004: 211~234. [5] 刘敬寿, 戴俊生, 王珂, 等.斜井岩心裂缝产状校正方法及其应用[J].石油学报, 2015, 36(1):67~73. doi: 10.7623/syxb201501008LIU Jing-shou, DAI Jun-sheng, WANG Ke, et al. An approach to correct the attitudes of fracture for deviated borehole in core and its application[J]. Acta Petrolei Sinica, 2015, 36(1): 67~73. doi: 10.7623/syxb201501008 [6] 文世鹏, 李德同.储层构造裂缝数值模拟技术[J].石油大学学报:自然科学版, 1996, 20(5):17~25. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htmWEN Shi-peng, LI De-tong. Numerical simulation technology for structural fracture of reservoir[J]. Journal of the University of Petroleum, China: Edition of Natural Science, 1996, 20(5): 17~24. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB804.009.htm [7] 张帆, 贺振华.预测裂缝发育带的构造应力场数值模拟技术[J].石油地球物理勘探, 2002, 35(2):154~163. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200002003.htmZHANG Fan, HE Zhen-hua. Structural stress field numerical simulation technique for fracture zone prediction[J]. Oil Geophysical Prospecting, 2002, 35(2): 154~163. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200002003.htm [8] 刘肖军.苏北盆地桥河口油田阜二段第三砂层组裂缝参数模拟计算[J].石油与天然气地质, 2010, 31(2):250~254. doi: 10.11743/ogg20100218LIU Xiao-jun.Simulation of fracture parameters in the 3rd sand unit of the Paleogene Fu-2 member in the Qiaohekou oilfield[J]. Oil and Gas Geology, 2010, 31(2):250~254. doi: 10.11743/ogg20100218 [9] 戴俊生, 汪必峰, 马占荣.脆性低渗透砂岩破裂准则研究[J].新疆石油地质, 2007, 28(4):393~395. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200704003.htmDAI Jun-sheng, WANG Bi-feng, MA Zhan-rong. Research on cracking principles of brittle low-permeability sands[J]. Xinjiang Petroleum Geology, 2007, 28(4): 393~395. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200704003.htm [10] 谭成轩, 王连捷.三维构造应力场数值模拟在含油气盆地构造裂缝分析中应用初探[J].地球学报, 1999, 20(4):392~394. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199904010.htmTAN Cheng-xuan, WANG Lian-jie. An approach to the application of 3-D tectonic stress field numerical simulation in structural fissure analysis of the oil-gas-bearing basin[J]. Acta Geoscientia Sinica, 1999, 20(4): 392~394. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199904010.htm [11] 季宗镇, 戴俊生, 汪必峰, 等.构造裂缝多参数定量计算模型[J].中国石油大学学报:自然科学版, 2010, 34(1):24~28. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201001007.htmJI Zong-zhen, DAI Jun-sheng, WANG Bi-feng, et al. Multi-parameter quantitative calculation model for tectonic fracture[J]. Journal of China University of Petroleum: Edition of Natural Science, 2010, 34(1): 24~28. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201001007.htm [12] 宋惠珍, 曾海容, 孙军秀, 等.储层构造裂缝预测方法及其应用[J].地震地质, 1999, 21(3):205~212. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199903001.htmSONG Hui-zhen, ZENG Hai-rong, SUN Jun-xiu, et al. Methods of reservoir tectonic fracture prediction and its application[J]. Seismology and Geology, 1999, 21(3): 205~212. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199903001.htm [13] 冯建伟, 戴俊生, 刘美利.低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J].地质力学学报, 2011, 17(4):303~311. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110401&journal_id=dzlxxbFENG Jian-wei, DAI Jun-sheng, LIU Mei-li. Theoretical model about fracture porosity, permeability and stress field in the low-permeability sandstone[J]. Journal of Geomechanics, 2011, 17(4): 303~311. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20110401&journal_id=dzlxxb [14] 曾连波.低渗透砂岩储层裂缝的形成与分布[M].北京:科学出版社, 2008:101~110.ZENG Lian-bo. Formation and distribution of fractures in low-permeability sandstone reservoirs[M]. Beijing: Science Press, 2008: 101~110. [15] 孟召平, 彭苏萍, 曹代勇, 等.油气储层有限变形转动场及其裂缝发育区预测——以塔里木盆地大庆区块下古生界碳酸盐岩为例[J].煤田地质与勘探, 2001, 29(5):6~11. http://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200105002.htmMENG Zhao-ping, PENG Su-ping, CAO Dai-yong, et al. Finite deformation rotation of oil and a sreservoir and its fracture prediction: A case of Lower Paleozoic carbonate reservoir in Daqing Tract of Talimu Basin[J]. Coal Geology and Exploration, 2001, 29(5): 6~11. http://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200105002.htm -