TECHNOLOGY RESEARCH ON MINERAL EXTRACTION BY USING CASI/SASI AIRBORNE HYPERSPECTRAL DATA
-
摘要: 能源勘查、岩石矿物识别、矿物丰度制图以及成矿远景区圈定是高光谱技术发展和应用的主要方向。CASI/SASI航空高光谱数据可以在同一平台下同时获取覆盖可见光-近红外-短波红外光谱段的光谱信息, 且光谱分辨率和空间分辨率远远优于多光谱及星载高光谱数据, 所以在矿物蚀变信息提取中具有广泛的应用前景。以柳园研究区为研究对象, 对CASI/SASI航空高光谱遥感矿物过程中的关键技术进行了实验研究, 确定出航空高光谱矿物蚀变信息提取流程, 并对研究区蚀变矿物进行识别、填图。通过与研究区地质资料和前人实地勘探资料对比得出, 研究区CASI/SASI航空高光谱遥感蚀变异常结果与现实状况相当吻合。Abstract: Energy exploration, rock identification, minerals mapping, and metallogenic delineation are the main directions of hyperspectral technology. The spectral information of visible, near-infrared and short-wave infrared can be obtained under the same platform in CASI/SASI airborne hyperspectral data which has higher spectral resolution and spatial resolution than multi-spectral data and spaceborne hyperspectral data and gains broader use in extraction of mineral alteration information. The paper studies the key technologies of mineral extraction and develops the flow of mineral mapping with CASI/SASI airborne hyperspectral data by extracting mineral alteration information such as chlorite, muscovite, montmorillonite, and illite in Liuyuan, Gansu. By comparing geological data and previous exploration data, the extraction results of mineral alteration information are anastomosed to the facts.
-
Key words:
- CASI/SASI /
- data pre-processing /
- mineral identification /
- endmember selection /
- mineral mapping
-
表 1 CASI/SASI的主要技术指标
Table 1. Main specifications of CASI/SASI
数据类型 光谱范围/nm 每行像元数 连续光谱通道数 光变带宽/nm 帧频(全波段) 总视场角/(°) 瞬时视场角/(°) 信噪比(峰值) 量化水平/位 绝对辐射精度/% CASI-1500 380~1050 1470 288 2.3 14 40 0.028 >1100 14 ±(5~10) SASI-600 950~2450 640 100 15.0 100 40 0.070 >1100 14 ±(5~10) -
[1] Clark R N, Swayze G A, King T V V. Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems[J]. Journal of Geophysical Research, 2003, 1008(E12): 5131. http://cat.inist.fr/?aModele=afficheN&cpsidt=15473253 [2] 唐攀科, 李永丽, 李国斌, 等.成像光谱遥感技术及其在地质中的应用[J].矿产与地质, 2006, (4):160~164. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200602012.htmTANG Pan-ke, LI Yong-li, LI Guo-bin, et al. Imaging spectrometry remote sensing technology and its applications in geology[J]. Mineral Resources and Geology, 2006, (4): 160~164. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200602012.htm [3] 冯孝良, 管仕平, 牟传龙, 等.西藏甲马铜多金属矿床的岩浆热液交代成因:地质与地球化学证据[J].地质地球化学, 2001, 29(4):40~48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200104006.htmFENG Xiao-liang, GUAN Shi-ping, MU Chuan-long, et al. Geological characteristics and genesis of the Jiama copper polymetallic deposit in Tibet[J]. Geology Geochemistry, 2001, 29(4): 40~48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200104006.htm [4] 崔廷伟, 马毅, 张杰.航空高光谱遥感的发展与应用[J].遥感技术与应用, 2003, 18(2):118~122. doi: 10.11873/j.issn.1004-0323.2003.2.118CUI Ting-wei, MA Yi, ZHANG Jie. The development and applications of the airborne hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2003, 18(2): 118~122. doi: 10.11873/j.issn.1004-0323.2003.2.118 [5] 甘甫平, 王润生, 马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘, 2003, 10(2):445~454. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302033.htmGAN Fu-ping, WANG Run-sheng, MA Ai-nai. Spectral Identification Tree (SIT) for mineral extraction based on spectral characteristics of minerals[J]. Earth Science Frontiers, 2003, 10(2): 445~454. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302033.htm [6] 燕守勋, 张兵, 赵永超, 等.高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J].遥感技术与应用, 2004, 19(1):52~63. http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS200401012.htmYAN Shou-xun, ZHANG Bing, ZHAO Yong-chao, et al. Summarizing the technical flow and main approaches for discrimination and mapping of rocks and minerals using hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2004, 19(1): 52~63. http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS200401012.htm [7] 王润生.高光谱遥感的物质组分和物质成分反演的应用分析[J].地球信息科学, 2009, 11(3):261~267. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX200903002.htmWANG Run-sheng. Spectral identification and inversion of composition and component of objects with hyperspectral remote sensing[J]. Geo-information Science, 2009, 11(3): 261~267. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX200903002.htm [8] 叶发旺, 刘德长, 赵英俊.CASI/SASI航空高光谱遥感测量系统及其在铀矿勘查中的初步应用[J].世界核地质科学, 2011, 28(4):231~236. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201104010.htmYE Fa-wang, LIU De-chang, ZHAO Ying-jun. Airborne hyper-spectral survey system CASI/SASI and its preliminary application in uranium exploration[J]. World Nuclear Geoscience, 2011, 28(4): 231~236. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201104010.htm [9] 赵泽辉, 郭召杰, 王毅.甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义[J].岩石学报, 2007, 23(8):1847~1860. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708006.htmZHAO Ze-hui, GUO Zhao-jie, WANG Yi. Geochronology, geochemical characteristics and tectonic implications of the granitoids from Liuyuan area, Beishan, Gansu Province, northwest China[J]. Acta Petrologica Sinica, 2007, 23(8): 1847~1860. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708006.htm [10] 江思宏, 聂凤军.北山地区花岗岩类成因的Nd同位素制约[J].地质学报, 2006, 80(6):8261~842. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606005.htmJIANG Si-hong, NIE Feng-jun. Nd-isotope constraints on origin of granitoids in Beishan Mountain area[J]. Acta Geologica Sinica, 2006, 80(6): 8261~842. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606005.htm [11] 左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 1(12):1~15. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htmZUO Guo-chao, LIU Yi-ke, LIU Chun-yan. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region[J]. Acta Geologica Gansu, 2003, 1(12): 1~15. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm [12] 赵泽辉, 郭召杰, 韩宝福, 等.新疆东部—甘肃北山地区二叠纪玄武岩对比研究及其构造意义[J].岩石学报, 2006, 22(5):1279~1293. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605019.htmZHAO Ze-hui, GUO Zhao-jie, HAN Bao-fu, et al. Comparative study on Permian basalts from eastern Xinjiang-Beishan area of Gansu Province and its tectonic implications[J]. Acta Petrologica Sinica, 2006, 22(5): 1279~1293. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605019.htm [13] 梅华林, 李惠民, 陆松年, 等.甘肃柳园地区花岗质岩石时代及成因[J].岩石矿物学杂志, 1999, 18(1):14~17. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW901.002.htmMEI Hua-lin, LI Hui-min, LU Song-nian, et al. The age and origin of the Liuyuan granitoid, northwestern Gansu[J]. Acta Petrrologica Et Mineralogica, 1999, 18(1): 14~17. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW901.002.htm [14] 王润生, 甘甫平, 闫柏坤, 等.高光谱矿物填图技术及应用研究[J].国土资源遥感, 2010, (1):1~13. doi: 10.6046/gtzyyg.2010.01.01WANG Run-sheng, GAN Fu-ping, YAN Bai-kun, et al. Hyperspectral mineral mapping and its application[J]. Remote Sensing for Land & Resources, 2010, (1): 1~13. doi: 10.6046/gtzyyg.2010.01.01 [15] Chaudhry F, Wu C C, Liu W M, et al. Pixel purity index-based algorithms for end member extraction from hyperspectral imagery[J]. Transworld Research Network37/661 (2), FortP.O., Trivandrum-695 023, Kerala, India.2006. [16] Bateson A, Curtiss B. A method for manual endmember selection and spectral unmixing[J]. Remote Sensing of Environment, 1996, 55: 229~243. doi: 10.1016/S0034-4257(95)00177-8 [17] Craig M D. Minimum-volume transforms for remotely sensed data[J]. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(3): 542~552. doi: 10.1109/36.297973 [18] Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43: 898~910. doi: 10.1109/TGRS.2005.844293 [19] Winter M E. Comparison of approaches for determining end-members in hyperspectral data[C]//IEEE Aerospace Conference Proceedings. IEEE, 2000: 305~313. [20] Bowles J H, Palmadesso P J, Antoniades J A, et al. Use of filter vectors in hyperspectral data analysis[C]//Strojnik M, Andresen B F. Infrared Spaceborne Remote Sensing: Proceedings of SPIE. San Diego. SPIE, 1995: 148~157. [21] Berman M, Kiiveri H, Lagerstrom R, et al. ICE: A statistical approach to identifying endmembers in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42: 2085~2095. doi: 10.1109/TGRS.2004.835299 [22] 吴波, 汪小钦, 张良培.端元光谱自动提取的总体最小二乘迭代分解[J].武汉大学学报:信息科学版, 2008, 33(5):457~460. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200805006.htmWU Bo, WANG Xiao-qin, ZHANG Liang-pei. Iterative abstraction of endmember based on Total Least Square for Mixture Pixel Decomposition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 457~460. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200805006.htm [23] Plaza A, Martinez P, Perez R, et al. Spatial/spectral endmember extraction by multidimensional morphological operations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40: 2025~2041. doi: 10.1109/TGRS.2002.802494 [24] Roggea D M, Rivard B, Zhang J, et al. Integration of spatial-spectral information for the improved extraction of endmembers[J]. Remote Sensing of Environment, 2007, 110: 287~303. doi: 10.1016/j.rse.2007.02.019