留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断层附近地应力扰动带宽度及其影响因素

翁剑桥 曾联波 吕文雅 刘奇 祖克威

李顺利, 李胜利, 于兴河, 等, 2009. 麻黄山西区延长组长4 k 5至长6储层成岩作用及成岩演化史研究. 地质力学学报, 15 (4): 374-384.
引用本文: 翁剑桥, 曾联波, 吕文雅, 等, 2020. 断层附近地应力扰动带宽度及其影响因素. 地质力学学报, 26 (1): 39-47. DOI: 10.12090/j.issn.1006-6616.2020.26.01.004
LI Shun-li, LI Sheng-li, YU Xing-he, et al., 2009. RESERVOIR DIAGENESIS AND DIAGENETIC EVOLUTION HISTORY OF 4th + 5th-6th MEMBERS IN YANCHANG FORMATION, WESTERN MAHUANGSHAN, ORDOS BASIN. Journal of Geomechanics, 15 (4): 374-384.
Citation: WENG Jianqiao, ZENG Lianbo, LYU Wenya, et al., 2020. Width of stress disturbed zone near fault and its influencing factors. Journal of Geomechanics, 26 (1): 39-47. DOI: 10.12090/j.issn.1006-6616.2020.26.01.004

断层附近地应力扰动带宽度及其影响因素

doi: 10.12090/j.issn.1006-6616.2020.26.01.004
基金项目: 

石油化工联合基金项目 U1663203

国家科技重大专项 2016ZX05003-001

详细信息
    作者简介:

    翁剑桥(1990-), 男, 地质实验工程师, 从事地质实验、地应力方面研究工作。E-mail:wengjianqiao@yeah.net

    通讯作者:

    曾联波(1967-), 男, 长江学者特聘教授, 现从事天然裂缝和非常规油气储层地质力学方面科研教学工作。E-mail:lbzeng@sina.com

  • 中图分类号: TU45;P553

Width of stress disturbed zone near fault and its influencing factors

  • 摘要: 在建立正断层模型的基础上,利用三维有限元数值模拟方法研究了断层附近地层中的地应力变化规律。其结果表明,由于断层活动,在断层附近普遍发育应力扰动带;在应力扰动带范围内,地应力方向和大小发生明显的变化,断层中部附近应力值普遍较低,而断层端部的应力值通常异常增大。应力扰动带的分布范围主要受断层规模的控制,与断裂带的岩石力学性质、断层走向、断层面形态和边界应力条件等因素也密切相关。随断层长度和断距逐步增大,应力扰动带的宽度相应增加。断裂带的岩石越破碎,其岩石弹性模量越低,断层对地应力的影响宽度越大。断层走向与区域最大水平主应力方向越接近垂直、断距与断层长度的比值越大,区域内的差应力越大,则扰动带宽度与断层规模的比值也越大。选择渤海湾盆地BZ-X油田进行验证,在建立油田实际三维地质模型基础上,根据边界应力条件,利用三维有限元方法对沙河街组二段的地应力分布进行了数值模拟计算。根据断层周围的地应力变化,确定了应力扰动带的分布范围,断层附近应力扰动带宽度的分布规律与正断层模型分析结果相一致。

     

  • 麻黄山西区位于鄂尔多斯盆地天环坳陷西部[1](图 1)。区域上,延长组为大型湖泊沉积,砂体主要为三角洲类型。本次研究的目的层段三叠系延长组长4 + 5至长6段,共分5个油层组,分别为长4 + 51、长4 + 52、长61、长62、长63。本区总体沉积属于鄂尔多斯盆地西部三角洲体系,长4 + 5、长6段为三角洲前缘亚相[1-2],岩性主要为粉细砂岩与泥岩互层,埋深大约在2170m~2650m之间,油气显示普遍,但试油水多油少,目前处于勘探评价阶段,尚未进行开发生产。

    图  1  研究工区区域位置图
    Figure  1.  Tectonic position map of research area

    本区储层属低孔低渗一致密型储层,因此储层的含油气较差,造成储层物性及含油气差的原因除储层的沉积类型之外,成岩作用是一个不可忽视的因素。本文从研究区成岩作用类型、成岩阶段划分等方面论述了成岩作用对储层物性与含油气性的影响,为今后该区有利储层勘探开发提供参考。

    根据岩心观察及薄片鉴定结果,长4 + 5段储层岩性主要为浅灰色、灰色长石岩屑砂岩(图 2)。碎屑岩中石英含量51% ~ 73%,长石主要为钾长石和斜长石,含量6.8%~20.4%,岩屑见变质岩岩屑、火成岩岩屑和沉积岩岩屑,含量19.1% ~ 27.3%,以变质岩岩屑为主。

    图  2  长4 + 5及长6段砂岩成分分类图
    Q.石英;F.长石;R.岩屑
    Figure  2.  The composition diagrams of sandstones of 4th + 5th-6th Members of Yanchang Formation

    长6段储层岩性主要为浅灰色岩屑长石细砂岩(图 2)。碎屑岩中石英含量55.8% ~ 75.5%,长石主要为钾长石和斜长石,含量5.5% ~ 26.3%,岩屑见变质岩岩屑、火成岩岩屑和沉积岩岩屑,含量17%~27.8%。

    长4 + 5段储层平均孔隙度为9.9%,平均渗透率为0.6×10-3μm2; 长6段储层平均孔隙度为8.6%,平均渗透率为0.36×10-3μm2。可见,储层类型为低孔低渗一致密型,其中长4+ 5段储层物性略好于长6段储层(图 3)。

    图  3  长4 + 5及长6段储层物性
    Figure  3.  The physical property of reservoir of 4th + 5th-6th Members of Yanchang Formation

    利用偏光显微镜对研究区取心井的岩石薄片样品进行观察描述和分析鉴定,认为该地区影响储层性质的成岩作用主要有机械压实与压溶作用、胶结作用、交代作用及溶蚀作用,其特征如下:

    研究区长4 + 5及长6段砂岩的支撑类型主要为颗粒支撑,接触类型主要为点一线接触及线接触(图版-1)。泥质岩屑呈假杂基状充填于岩石孔隙之中,云母等片状矿物受挤压发生变形。砂岩压溶作用明显,如ND14井可见石英颗粒次生加大现象(图版-2),一般加大边环绕石英颗粒或局部分布,为Ⅱ级加大。这些现象表明本区压实与压溶作用都较强,本区储层原生孔隙几乎损失殆尽,导致在本区原生孔隙很少发育。所以压实作用是本区储层物性变差的主要原因,现今已发现的油气储集空间主要是由后期成岩改造所形成。

      图版
    说明:1.颗粒呈点一线接触,泥质岩屑呈假杂基状充填于孔隙中,ND14井,普通,G4 + 521,2408.77m;2.颗粒呈凹凸接触,见石英次生加大,ND14井,普通,G4 + 522,2406.55m;3.碳酸盐矿物胶结,ND3井,普通,C611,2493.69m;4.方解石交代碎屑颗粒,ND109井,普通,C612,2570.20m;5.溶蚀孔隙,ND14井,铸体,G4 + 522,2415.42m;6.层理缝,ND109井,普通,C612,2576.35m

    长4 + 5及长6储层砂岩的胶结类型主要为孔隙式胶结。成岩前期的泥质、钙质胶结伴随压实作用使岩石孔隙急剧减少;后期压实作用使孔隙度的减少速率变小,储层岩石物性变差的原因主要是孔隙被自生粘土及碳酸盐类矿物所充填。

    3.2.1   碳酸盐胶结作用

    研究区长4 + 5及长6储层砂岩碳酸盐胶结非常普遍(图版-3),主要矿物有含铁的方解石、白云石,以及少量的菱铁矿。从ND14井可见,在水下分流河道砂岩中碳酸盐胶结较严重(图 4),这可能是由于水下分流河道砂岩孔渗相对较好,地层水活跃,溶解作用强烈,更有利于自生碳酸盐的沉淀。方解石呈微晶或亮晶结构,部分或完全交代碎屑颗粒,铁白云石具明显的铁质环带,由此可见该碳酸盐胶结物形成于主压实期以后的埋藏成岩作用,因为在深埋作用下,蒙一伊转变和钙斜长石溶解产生的Ca2+、Mg2+、及Fe2+结合能形成白云石及铁白云石[3]

    图  4  水下分流河道的碳酸盐肢结作用(ND14井)
    SP—自然电位;mV—毫伏;GR—自然伽马;API—计数率
    Figure  4.  The carbonate cementation in distributary channels of well ND14
    3.2.2   自生粘土矿物胶结

    研究区自生粘土矿物胶结以绿泥石胶结为主,其平均相对含量高达49.95% (表 1)。绿泥石主要沿颗粒边缘生长,在颗粒表面形成环边或包壳,对岩石的孔隙起到保护的作用。绿泥石的一种成因是由于云母的风化所致,该区常见黑云母及云母化的千枚岩屑,且大多绿泥石化,故绿泥石部分来自云母及岩屑。也有学者认为,大量绿泥石胶结物多出现于三角洲前缘环境,其形成可能与入湖的河流带来的溶解铁有关[4]

    表  1  长4 + 5及长6段砂岩粘土矿物相对含量
    Table  1.  The relative content of clay mineral of sandstone of 4th + 5th-6th Members of Yanchang Formation
    下载: 导出CSV 
    | 显示表格

    ① 麻黄山西区块北部延长组储层非均质性与储层评价研宄.中国地质大学(北京),2008.

    自生高岭石也是主要的粘土胶结矿物,其平均相对含量为25.6%。高岭石呈蠕虫状集合体充填于岩石孔隙之中,其形成与长石的大量溶解有关。

    3.2.3   其他矿物胶结

    硅质胶结主要是自生石英,显微镜下常见石英颗粒次生加大,加大边的形成可能与压溶作用及长石向粘土矿物转化作用有关。长石的溶解可以形成次生孔隙以及促使形成石英胶结物[5]

    研究区还见少量的浊沸石和硬石膏胶结。浊沸石的形成与火山物质的水化、长石及岩屑等不稳定组分溶蚀以及粘土矿物转化等关系密切[6]

    研究区常见碳酸盐矿物交代其它组分,主要是方解石交代石英及长石,使石英及长石颗粒的边缘呈港湾状,见亮晶方解石(图版-4)。方解石交代石英,主要控制因素为pH值和温度。据Siever的计算[5],SiO2与CaCO3的平衡条件是pH = 9.8,t = 25℃。所以,当地层温度升高,pH > 9.8时,SiO2就会溶解,CaCO3而就会沉淀,这样方解石就交代了石英。

    交代作用也主要发生于水下分流河道等钙质胶结严重的区域(图 5),强烈的钙质胶结导致方解石交代石英颗粒。交代作用过程中,溶解作用会产生部分次生孔隙,而且交代形成的方解石也较易被孔隙水溶解形成次生空隙。从整个成岩作用来说,交代作用对本区储层物性影响程度不大。

    图  5  水下分流河道中方解石交代作用(ND109井)
    SP—自然电位;mV—毫伏;GR—自然伽马;API—计数率条件是pH
    Figure  5.  The calcite metasomatism in distributary channels of well ND109

    溶蚀作用是本区普遍的成岩作用,它对储层的孔隙度有着重要的影响。研究区的长石见不同程度的溶蚀,形成粒内溶孔及铸模孔(图版-5),千枚岩屑及泥质杂基溶蚀现象也较普遍,形成粒间溶孔。由于千枚岩屑呈片状且顺层理分布(图 6),所以在水下分流河道及河口坝等砂岩的平行层理及交错层理的纹层中常见溶蚀缝(图版-6)。碳酸盐矿物溶解较少,仅局部见方解石溶解,形成部分次生孔隙。这是由于在淡水一半咸水湖盆碎屑岩中,有机酸溶液铝硅酸盐组分的溶蚀要比碳酸盐组分的溶蚀强烈得多[7]

    图  6  沿层理分布的溶蚀缝(ND3)
    SP—自然电位;mV—毫伏;GR—自然伽马;API—计数率
    Figure  6.  The fractures distributed with the bedding of well ND3

    研究区长4 + 5及长6段砂岩的溶蚀作用主要有大气淡水的淋滤作用及埋藏(溶蚀)成岩作用两种方式。

    该地区延长组缺失长2及长1段地层,与上覆地层延安组呈不整合接触,说明该地区延长组在地质历史时期曾遭受抬升剥蚀。另据罗静兰等、陈瑞银等所做的埋藏史研究:鄂尔多斯盆地延长组在晚三叠世(208~203Ma)有明显的抬升剥蚀,剥蚀量在100~400m[8-9]。故研究区长4 + 5及长6段砂岩在成岩早期受到过大气淡水淋滤作用。由于大气淡水为酸性水,含CO2,pH值较低,对碳酸盐、长石及黑云母等都有溶蚀作用,易于形成次生孔隙。

    后期埋藏(溶蚀)成岩作用主要由碳酸及有机酸引起的溶蚀作用。碳酸主要溶解岩石中的钙质组分,如对方解石的溶解:

    但在正常压力下,随着深度的增加,温度的升高,CO2含量逐渐降低,方解石是难溶的,所以埋深较大的地层中,方解石很少被碳酸溶解[10]。有机酸主要溶蚀岩石中的硅酸盐组分,如长石与草酸的反应为:

    由以上分析可以看出研究区储层岩石孔隙多为长石、岩屑溶蚀形成的次生孔隙,碳酸盐矿物溶解程度较低的原因在于有机酸的选择性溶蚀作用。

    溶蚀作用形成大量的次生孔隙,使岩石物性变好,但也有溶解出来的化学成分发生再沉淀,形成胶结物,堵塞孔隙,使岩石物性变差,尤其是溶蚀作用析出的Ca、Mg等元素,在后期形成的含铁碳酸盐胶结,又使储层物性变差。

    由以上单因素成岩作用研究,结合含砂率、孔隙度以及碳酸盐含量平面展布,并以单井成岩作用特征为控制,根据邹才能等[11],季汉成等[12]的成岩相划分标准,将研究区的成岩相划分为:低孔渗中细粒长石岩屑砂岩压实相、低孔渗中细粒长石岩屑砂岩碳酸盐胶结相、低孔渗中细粒长石岩屑砂岩长石溶蚀相、低孔渗中细粒长石岩屑砂岩碳酸盐溶解相、低孔渗中细粒长石岩屑砂岩层理缝溶蚀相等。

    研究区储层属于淡水一半咸水湖盆碎屑岩,其古地温、有机质成熟度、自生粘土矿物及岩石结构和孔隙类型等特征如下(图 7)。

    图  7  长4 + 5及长6段砂岩成岩作用阶段及成岩序列
    Ro.镜质体反射率;I/S.伊利石/蒙脱石
    Figure  7.  Diagenetic stages and sequences of 4th + 5th-6th Members in Yanchang Formation

    长4 + 5、长6储层埋深在1650m~2500m之间,古地温大约在75~120℃之间。鄂尔多斯盆地内延长组烃源岩镜质体反射率为0.7%~1.0%[13]; 颗粒间以点一线及线接触为主,局部呈凹凸接触;石英次生加大现象普遍,属Ⅱ级加大;胶结类型为孔隙式胶结,胶结物主要为含铁的碳酸盐矿物;长石大量被溶蚀,次生溶蚀孔隙发育,局部见少量溶蚀缝;砂岩中自生粘土矿物主要为绿泥石、伊利石及高岭石。

    根据以上各种特征,按照中国石油天然气集团总公司规范(2003年),初步判断研究区长4+ 5、长6储层目前主要处于中成岩A期,局部处于早成岩B期。

    ① 中国石油天然气集团总公司,SY/T5477碎屑岩成岩阶段划分规范,2003.

    根据研究区的全井资料,运用PRA盆地模拟软件对盆地埋藏进行了模拟恢复[14],根据目的层段的埋藏曲线结合古地温和Ro等资料划分了研究区的成岩阶段及演化序列(图 8):

    图  8  长4 + 5及长6段成岩演化史一ND17井为例
    Ⅰ.早期机械压实胶结作用阶段;Ⅱ大气淡水淋滤作用阶段;Ⅲ.中期强烈压实压溶、胶结作用阶段;Ⅳ.有机酸溶蚀作用阶段;Ⅴ.石油侵位阶段;Ⅵ.晚期铁方解石、铁白云石胶结作用阶段;Ro一镜质体反射率
    Figure  8.  Diagenetic evolution of 4th + 5th-6th Members in Yanchang Formation (ND17)

    早成岩A期:有机质未成熟,古温度小于65℃。地层持续沉降,储层主要以机械压实为主,颗粒以点接触,岩石弱固结一半固结,岩石孔隙迅速减少,孔隙类型主要为原生粒间孔隙,此阶段为早期机械压实、胶结作用阶段(Ⅰ阶段)。

    早成岩B期:有机质未成熟一低成熟,古温度范围为65~80℃。在早成岩B期早期,地层继续沉降,储层主要受机械压实作用和胶结作用,早期胶结物较少,局部出现方解石胶结,由于胶结作用较弱,压实作用使原生孔隙损失较多,颗粒呈点一线接触。受晚三叠世(208 ~203Ma)构造抬升的影响,延长组顶部出露地表,遭受剥蚀,储层受到大气淡水淋滤作用,部分长石及碳酸盐矿物受到溶蚀,形成次生孔隙带,埋深分布于2100m ~ 2200m之间,但由于抬升时间较短(只有约5Ma),所以溶蚀强度有限,对储集物性影响不大,该阶段为大气淡水淋滤作用阶段(Ⅱ阶段)。随后地层连续沉降(在侏罗纪晚期短暂抬升),受到强烈的压实及胶结作用,在早成岩B期末期,石英次生加大开始出现,此阶段为中期强烈压实、胶结作用阶段(Ⅲ阶段)。

    中成岩A期:随着地层的继续埋深,有机质开始进入生烃门限,有机质成熟阶段为低熟一成熟。由于油气的生成,有机酸大量出现,处于相对封闭的酸性环境,古温度范围为85~140℃。在中成岩A期早期,地层继续受到压实作用,但由于胶结作用的影响,压实强度逐渐减弱,颗粒以线接触为主,局部见凹凸接触,石英次生加大现象较普遍。该期有机酸开始大量出现,铝硅酸盐矿物受到强烈的溶蚀,部分碳酸盐也被溶蚀,形成大量次生溶蚀孔隙,分布于2250m~2350m之间,为主要的储集空间,该阶段为有机酸溶蚀作用阶段(Ⅳ阶段)。随后一段时期有机质进入储层,是油气侵位的主要阶段(Ⅴ阶段)。在中成岩A期末期,有机质成熟,进入生油高峰,有机酸浓度降低,铁方解石及铁白云石大量出现,成为储层的主要胶结物,同时碳酸盐矿物交代石英及长石颗粒,此阶段为铁方解石、铁白云石胶结阶段(Ⅵ阶段)。

    中成岩B期:长6底部以下为中成岩B期,但由于不在研究目标层段,缺乏资料,未作分析。

    由以上分析可以看出,在成岩演化过程中,Ⅲ阶段的强烈压实和胶结作用及Ⅵ阶段的碳酸盐胶结使研究区长4 + 5、长6储层的原生孔隙损失殆尽,故该区主要为致密型储层。目前本区研究层段的储层平均孔隙度为9.15%,且主要Ⅳ阶段形成的次生溶蚀孔隙,因此不同成岩作用的演化阶段对储层物性有着重要的影响。

    (1) 研究区长4 + 5、长6储层岩性主要为细粒一极细粒岩屑长石砂岩及长石岩屑砂岩,结构及成分成熟度较低。平均孔隙度为9.15(,平均渗透率为0.67×10-3μm2, 属低孔特低渗一超低渗的致密储层。

    (2) 根据压实作用、胶结作用及交代溶蚀作用等成岩作用特征,结合粘土矿物分析化验资料及盆地埋藏史研究,综合判断长4 + 5、长6储层总体处于中成岩A期,局部为早成岩B期。所经历的成岩演化序列为:Ⅰ.早期机械压实及胶结作用阶段;Ⅱ.大气淡水淋滤作用阶段;Ⅲ.中期强烈压实压溶及胶结作用阶段;Ⅳ.有机酸溶蚀作用阶段;Ⅴ.石油侵位阶段;Ⅵ.铁方解石及铁白云石胶结作用阶段。

    (3) 研究区储层砂岩粒度较细,含油性差,加上压实压溶、胶结等作用,特别是后期的碳酸盐胶结作用,使岩石孔隙急剧减少,总体上该区储层物性较差。而大气淡水的淋滤作用及有机酸溶蚀作用,尤其是有机酸对长石及顺层理分布的泥质岩屑的溶蚀,形成一些次生孔隙,改善了储层物性,故该区较好储层应为粒度稍粗、层理发育的水下分流河道及河口坝砂体,这些具有较好次生孔隙的储层是今后油气勘探开发的重点。

    责任编辑:吴芳
  • 图  1  三维正断层模型

    Figure  1.  3D normal fault model

    图  2  围岩中应力状态

    Figure  2.  In-situ stress state in surrounding rocks

    图  3  断层附近地应力扰动带宽度变化规律

    Figure  3.  Variation rule of fault disturbed zone's width

    图  4  断层附近地应力扰动带宽度的影响因素

    Figure  4.  Controlling factors of fault disturbed zone's width

    图  5  BZ-X油田沙二段断层附近地应力扰动带平面分布图

    Figure  5.  Horizontal distribution of fault disturbed zones in Es2, BZ-X Oilfield

    图  6  BZ-X油田沙二段断层附近地应力扰动带宽度变化规律

    Figure  6.  Variation rule of fault disturbed zone's width in Es2, BZ-X Oilfield

    表  1  断层模型参数

    Table  1.   Fault model parameters

    模型序号 断层 岩石力学性质 边界应力条件
    L/km D/L θ/(°) E1/GPa V1 E2(GPa) V2 σh/MPa σH/MPa
    初始0 0.2 0.01 45 0.7 0.25 3.5 0.2 50 65
    系列1 0.2~20 0.01 45 0.7 0.25 3.5 0.2 50 65
    系列2 0.2 0.001~1 45 0.7 0.25 3.5 0.2 50 65
    系列3 0.2 0.01 0~90 0.7 0.25 3.5 0.2 50 65
    系列4 0.2 0.01 45 0.35~2.8 0.2~0.3 3.5 0.2 50 65
    系列5 0.2 0.01 45 0.7 0.25 3.5 0.2 37.5~65 65
    下载: 导出CSV
  • CHEN B, TIAN C L, 1998. Numerical simulation technique for structural fractures in a reservoir:case studies[J]. Acta Petrolei Sinica, 19(4):50-54. (in Chinese with English abstract)
    CHEN F, LUO M E, ZHANG W P, et al., 2006. Terrestrial stress characteristics and artificial fracture pattern analysis of Daqing periphery oilfield[J]. Fault-Block Oil & Gas Field, 13(3):13-15. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkyqt200603004
    DENG G D, GAO D W, ZHAO D P, et al., 2013. Application of in-situ stress analysis to an optimal design of drilling in the Jiulongshan Structure, northern West Sichuan Basin[J]. Natural Gas Industry, 33(8):95-101. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201308017
    FU Y H, WANG X M, YUAN H P, 2009. Finite element inverse analysis of boundary load for tectonic stress field[J]. Rock and Soil Mechanics, 30(6):1850-1855. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200906056
    HUANG X C, XIA X H, SHEN W P, 1998. Measurement and back analysis on the initial rock stress field around the faults[J]. Journal of Shanghai Jiaotong University, 32(12):55-59. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800507151
    HUDSON J A, HARRISON J P, 2000. Engineering rock mechanics-an introduction to the principles[M]. Oxford:Elsevier.
    JING F, SHENG Q, ZHANG Y H, et al., 2011. Study advance on in-site geostress measurement and analysis of initial geostress field in China[J]. Rock and Soil Mechanics, 32(S2):51-58. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX2011S2008.htm
    LI F Q, LIU G X, 1986. The present state of stress in China and related problems[J]. Acta Seismologica Sinica, 8(2):156-171. (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198602004.htm
    LI Z M, ZHANG J Z, 1997. In-situ stress and petroleum exploration & development[M]. Beijing:Petroleum Industry Press. (in Chinese)
    LIAO X W, LIU Q, LI C, et al., 2015. Distribution of the present stress in low permeability oilfield of Bozhong 25-1 and its effect on development[J]. Journal of Geomechanics, 21(1):30-37. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201501004
    QIN X H, TAN C X, SUN J Z, et al., 2012. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 33(6):1689-1695. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201206014
    SHEN H C, CHENG Y F, WANG J Y, et al., 2007a. 3-D FEM inversion for the in-situ stress field around complex faults based on the theory of constrained optimization[J]. Rock and Soil Mechanics, 28(S1):359-365. (in Chinese with English abstract)
    SHEN H C, CHENG Y F, WANG J Y, et al., 2007b. Study of finite element on effects of faults on ground stress field[J]. Petroleum Geology & Oilfield Development in Daqing, 26(2):34-37. (in Chinese with English abstract)
    SONG S L, WU T Z, ZOU F M, et al., 2004. Determining the crustal stress field using ANSYS curved shell model[J]. Oil Drilling & Production Technology, 26(5):13-15. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syzcgy200405003
    SU S R, WANG S T, ZHU H H, 2002. The effect of faults on geostress fields[C]//Seventh Academic Conference of China Rock Mechanics & Engineering Society. Xi'an: Chinese Society for Rock Mechanics & Engineering, CSRME: 649-654. (in Chinese)
    SUN L J, ZHU Y Q, YANG G L, et al., 2009. Numerical simulation of ground stress field at ends and vicinity of a fault[J]. Journal of Geodesy and Geodynamics, 29(2):7-12. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz200902003
    SUN Z Q, ZHANG G B, ZHANG J H, 2000. Study of in-situ stress state evolution in geologic fault structure[J]. Petroleum Exploration and Development, 27(1):102-105. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200001031
    SUN Z Q, ZHANG J H, 2004. Variation of in-situ stresses before and after occurrence of geologic fault structure[J]. Chinese Journal of Rock Mechanics and Engineering, 23(23):3964-3969. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200423009
    TAN C X, SUN W F, SUN Y, et al., 2006. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 80(10):1627-1632. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200610018
    TIAN H, ZENG L B, SHU Z G, et al., 2019. Method for determining elastic parameters for the prediction model of shale transversely isotropic geostress[J]. Journal of Geomechanics, 25(2):166-176. (in Chinese with English abstract)
    TORABI A, BERG S S, 2011. Scaling of fault attributes:a review[J]. Marine and Petroleum Geology, 28(8):1444-1460. doi: 10.1016/j.marpetgeo.2011.04.003
    WAN X L, GAO C N, WANG Y K, et al., 2009. Coupled relationship between created and natural fractures and its implication to development[J]. Journal of Geomechanics, 15(3):245-252. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200903006
    WANG J D, SUN L N, WANG J, et al., 2019. Research on the ground stress correction of reservoirs based on the finite element method[J]. Journal of Geomechanics, 25(3):349-356. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201803005
    WANG K, DAI J S, 2012. A quantitative relationship between the crustal stress and fault sealing ability[J]. Acta Petrolei Sinica, 33(1):74-81. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201201009
    XU S Y, 2004. The analysis of basin dynamics in Bohaiwan region and study on geological hazards of oilfield[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    YUAN J L, DENG J G, WEI B H, et al., 2012. Wellbore stability of horizontal wells in shale gas reservoirs[J]. Natural Gas Industry, 32(9):66-70. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxkj201706015
    ZENG L B, TIAN C L, 1998. Tectonic stress field and the development of low permeability oil fields[J]. Petroleum Exploration and Development, 25(3):91-93. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK803.025.htm
    ZHOU W, YAN C H, WANG S Z, et al., 2007. Evaluation method of present in-situ stress in oil and gas reservoirs and its application[M]. Beijing:Geological Publishing House. (in Chinese)
    ZHU H C, TAO Z Y, 1994. The distribution of the in-situ stress in different rocks[J]. Acta Seismologica Sinica, 16(1):49-63. (in Chinese)
    ZOBACK M D, ROLLER J C, 1979. Magnitude of shear stress on the San Andreas fault:Implications of a stress measurement profile at shallow depth[J]. Science, 206(4417):445-447. doi: 10.1126/science.206.4417.445
    ZOBACK M D, TSUKAHARA H, HICKMAN S, 1980. Stress measurements at depth in the vicinity of the San Andreas fault:Implications for the magnitude of shear stress at depth[J]. Journal of Geophysical Research:Solid Earth, 85(B11):6157-6173. doi: 10.1029/JB085iB11p06157
    ZU K W, ZENG L B, LIU X Z, et al., 2014. Analysis of influencing factors for ground stress in channel sandstone[J]. Journal of Geomechanics, 20(2):149-158. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201402006
    陈波, 田崇鲁, 1998.储层构造裂缝数值模拟技术的应用实例[J].石油学报, 19(4):50-54. doi: 10.3321/j.issn:0253-2697.1998.04.009
    陈凤, 罗美娥, 张维平, 等, 2006.大庆外围油田地应力特征及人工裂缝形态分析[J].断块油气田, 13(3):13-15. doi: 10.3969/j.issn.1005-8907.2006.03.004
    邓广东, 高德伟, 赵大鹏, 等, 2013.应用地应力分析技术优化九龙山构造的钻井设计[J].天然气工业, 33(8):95-101. http://d.old.wanfangdata.com.cn/Periodical/trqgy201308017
    付玉华, 王兴明, 袁海平, 2009.构造应力场边界载荷反演的有限元逆逼近法[J].岩土力学, 30(6):1850-1855. doi: 10.3969/j.issn.1000-7598.2009.06.056
    黄醒春, 夏小和, 沈为平, 1998.断层周边应力场的原位实测及数值反演[J].上海交通大学学报, 32(12):55-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800507151
    景锋, 盛谦, 张勇慧, 等, 2011.我国原位地应力测量与地应力场分析研究进展[J].岩土力学, 32(S2):51-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7528628
    李方全, 刘光勋, 1986.我国现今地应力状态及有关问题[J].地震学报, 8(2):156-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001816643
    李志明, 张金珠, 1997.地应力与油气勘探开发[M].北京:石油工业出版社.
    廖新武, 刘奇, 李超, 等, 2015.渤中25-1低渗透油田地应力分布特征及对开发的影响[J].地质力学学报, 21(1):30-37. doi: 10.3969/j.issn.1006-6616.2015.01.004
    秦向辉, 谭成轩, 孙进忠, 等, 2012.地应力与岩石弹性模量关系试验研究[J].岩土力学, 33(6):1689-1695. doi: 10.3969/j.issn.1000-7598.2012.06.014
    沈海超, 程远方, 王京印, 等, 2007a.断层扰动下地应力场三维有限元约束优化反演[J].岩土力学, 28(S1):359-365. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6471921
    沈海超, 程远方, 王京印, 等, 2007b.断层对地应力场影响的有限元研究[J].大庆石油地质与开发, 26(2):34-37. http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf200702009
    宋胜利, 吴田忠, 邹峰梅, 等, 2004. ANSYS曲壳模型计算复杂断块现今地应力场[J].石油钻采工艺, 26(5):13-15. doi: 10.3969/j.issn.1000-7393.2004.05.003
    苏生瑞, 王士天, 朱合华, 2002.断裂对地应力场影响的研究[C]//中国岩石力学与工程学会第七次学术大会论文集.西安: 中国岩石力学与工程学会: 649-654.
    孙礼健, 朱元清, 杨光亮, 等, 2009.断层端部及附近地应力场的数值模拟[J].大地测量与地球动力学, 29(2):7-12. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200902003
    孙宗颀, 张国报, 张景和, 2000.在地质断层构造中地应力状态演变研究[J].石油勘探与开发, 27(1):102-105. doi: 10.3321/j.issn:1000-0747.2000.01.031
    孙宗颀, 张景和, 2004.地应力在地质断层构造发生前后的变化[J].岩石力学与工程学报, 23(23):3964-3969. doi: 10.3321/j.issn:1000-6915.2004.23.009
    谭成轩, 孙炜锋, 孙叶, 等, 2006.地应力测量及其地下工程应用的思考[J].地质学报, 80(10):1627-1632. doi: 10.3321/j.issn:0001-5717.2006.10.018
    田鹤, 曾联波, 舒志国, 等, 2019.页岩横向各向同性地应力预测模型中弹性参数的确定方法[J].地质力学学报, 25(2):166-176. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190202&journal_id=dzlxxb
    万晓龙, 高春宁, 王永康, 等, 2009.人工裂缝与天然裂缝耦合关系及其开发意义[J].地质力学学报, 15(3):245-252. doi: 10.3969/j.issn.1006-6616.2009.03.006
    王金铎, 孙鲁宁, 王军, 等, 2019.基于有限元方法的储层地应力修正研究[J].地质力学学报, 25(3):349-356. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190305&journal_id=dzlxxb
    王珂, 戴俊生, 2012.地应力与断层封闭性之间的定量关系[J].石油学报, 33(1):74-81. http://d.old.wanfangdata.com.cn/Periodical/syxb201201009
    徐守余, 2004.渤海湾地区盆地动力学分析及油田地质灾害研究[D].北京: 中国地质大学(北京).
    袁俊亮, 邓金根, 蔚宝华, 等, 2012.页岩气藏水平井井壁稳定性研究[J].天然气工业, 32(9):66-70. doi: 10.3787/j.issn.1000-0976.2012.09.015
    曾联波, 田崇鲁, 1998.构造应力场与低渗透油田开发[J].石油勘探与开发, 25(3):91-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800908493
    周文, 闫长辉, 王世泽, 等, 2007.油气藏现今地应力场评价方法及应用[M].北京:地质出版社.
    朱焕春, 陶振宇, 1994.不同岩石中地应力分布[J].地震学报, 16(1):49-63. http://d.old.wanfangdata.com.cn/Periodical/ytlx200807028
    祖克威, 曾联波, 刘喜中, 等, 2014.厚层河道砂体地应力分布影响因素分析[J].地质力学学报, 20(2):149-158. doi: 10.3969/j.issn.1006-6616.2014.02.006
  • 期刊类型引用(1)

    1. 吴中海,郑文俊,任俊杰,任治坤. 活动构造与强震:专辑序言. 地质力学学报. 2024(02): 181-188 . 本站查看

    其他类型引用(0)

  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  710
  • HTML全文浏览量:  125
  • PDF下载量:  94
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-11-21
  • 修回日期:  2019-05-03
  • 刊出日期:  2020-02-29

目录

/

返回文章
返回