留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆哈尔里克早石炭世A型花岗岩的岩石成因及构造意义

王良玉 廖群安 肖典 罗婷 赵浩 刘鸿飞 王国灿

王良玉, 廖群安, 肖典, 等, 2016. 新疆哈尔里克早石炭世A型花岗岩的岩石成因及构造意义. 地质力学学报, 22 (4): 1032-1048.
引用本文: 王良玉, 廖群安, 肖典, 等, 2016. 新疆哈尔里克早石炭世A型花岗岩的岩石成因及构造意义. 地质力学学报, 22 (4): 1032-1048.
WANG Liang-yu, LIAO Qun-an, XIAO Dian, et al., 2016. PETROGENESIS AND TECTONIC SIGNIFICANCE OF EARLY CARBONIFEROUS A-TYPE GRAINTE IN HARLIK, XINJIANG. Journal of Geomechanics, 22 (4): 1032-1048.
Citation: WANG Liang-yu, LIAO Qun-an, XIAO Dian, et al., 2016. PETROGENESIS AND TECTONIC SIGNIFICANCE OF EARLY CARBONIFEROUS A-TYPE GRAINTE IN HARLIK, XINJIANG. Journal of Geomechanics, 22 (4): 1032-1048.

新疆哈尔里克早石炭世A型花岗岩的岩石成因及构造意义

基金项目: 

中国地质调查局“特殊地质地貌区填图试点”项目 DD20160060

中国地质调查局“特殊地质地貌区填图试点”项目 12120114042801

详细信息
    作者简介:

    王良玉(1990-), 男, 硕士, 矿物学、岩石学、矿床学专业。E-mail:532434457@qq.com

    通讯作者:

    廖群安(1959-), 男, 博士, 教授, 主要从事岩石学及岩石地球化学研究。E-mail:qanliao@cug.edu.cn

  • 中图分类号: P588.1;P597

PETROGENESIS AND TECTONIC SIGNIFICANCE OF EARLY CARBONIFEROUS A-TYPE GRAINTE IN HARLIK, XINJIANG

  • 摘要: 对出露在哈尔里克山西段小白杨沟-南山口一带的早石炭世花岗岩进行了锆石LA-ICP-MS U-Pb定年,结果为331.3±1.9 Ma,属早石炭世晚期。其岩石组合为碱长花岗岩、碱性花岗岩,暗色矿物以黑云母为主,见钠质角闪石,具富碱、贫钙镁和低铝铁的特征,微量元素明显富集Rb、Th、K等大离子亲石元素和Zr、Hf等高场强元素而强烈亏损Ba、Sr、Eu等元素,10000 Ga/Al值变化于2.93~3.80之间,表明该碱性花岗岩属于典型的A型花岗岩,具板内花岗岩特征,并非前人认为的岛弧花岗岩,其正εNd(t)值(+5.66~+6.12)和年轻的Nd模式年龄(TDM2=0.60~0.62 Ga)显示岩浆来源于新生年轻地壳。从本次1:50000区调研究成果看,博格达自早石炭世开始伸展,早石炭世晚期进入闭合阶段,哈儿里克山早石炭世晚期岩体应处于博格达裂谷晚期阶段,并非前人所说的后碰撞和岛弧环境。

     

  • 图  1  新疆地质构造单元简图[18~19]

    Figure  1.  The geological tectonic sketch of Xinjiang

    图  2  研究区哈尔里克山岩体地质图(据1:50000地质图改编)

    Figure  2.  Geological map of the Harlik pluton

    图  3  早石炭晚期碱性花岗岩的野外接触关系

    Figure  3.  Field contact relationship of the alkaline granites in late Early Carboniferous

    图  4  早石炭晚期碱性花岗岩与晚石炭二长花岗岩实测剖面(PM44)

    Figure  4.  Section of late Early Carboniferous alkaline granite and Late Carboniferous monzonitic granite

    图  5  早石炭世晚期碱性花岗岩及碱长花岗岩结构特征

    a—碱长花岗岩中显微文象结构(+); b—花岗岩中钠铁闪石, 边部见棕闪石, 碱性长石为条纹长石, 中见析离条纹, 钾长石黏土化为褐色(-); c—花岗岩中棕闪石(-); d—花岗岩中钠铁闪石, 蚀变析离出不透明矿物, 但仍可见部分光性特征(-); Rie—钠质角闪石; Bar—棕闪石; Af—碱性长石; Q—石英

    Figure  5.  Petrological characteristics of late Early Carboniferous granite

    图  6  南山口西侧碱性花岗岩锆石U-Pb年龄谐和图及CL图像

    Figure  6.  U-Pb age concordia plots and CL image from the zircon of alkaline granite in western Nanshankou

    图  7  哈尔里克山南山口早石炭晚期岩体主量元素特征

    Figure  7.  Major element characteristics of late Early Carboniferous granite in Nanshankou, Harlik

    图  8  南山口早石炭世晚期花岗岩类稀土元素配分曲线[39]及微量元素蛛网图

    Figure  8.  REE distribution curve and Trace elements spider diagram from the alkaline granite from Nanshankou

    图  9  早石炭晚期花岗岩成因类型判别图

    (a)—(e)底图据Whalen等[35]; I、S、M和A分别代表Ⅰ型、S型、M型和A型花岗岩; OGT代表未分异的I、S和M型花岗岩区; FG代表分异Ⅰ型花岗岩区; (f)底图据Sylvester[50]

    Figure  9.  Various chemical discrimination diagram of the late Early Carboniferous granites

    图  10  碱性花岗岩源区同位素特征(据文献[37])及A型花岗岩构造环境判别(据文献[49])

    Figure  10.  Isotopic characteristics of alkaline granite and tectonic environment discrimination of A-type granite

    图  11  花岗岩形成环境判别图[61~62]

    Figure  11.  Tectonic environment discrimination of granite

    表  1  南山口碱性花岗岩(44-4) LA-ICP-MS锆石U-Pb同位素分析结果

    Table  1.   LA-ICP-MS U-Pb zircon analysis results for the alkaline granitic rocks from Nanshankou

    测点含量/10-6Th/U比值年龄/Ma
    TotPb232Th238U207Pb/206Pb207Pb/235U206Pb/238U207Pb/235U206Pb/238U
    4-11103506200.560.05130.00150.37640.01120.05310.00073248.33344.2
    4-232548810970.440.10790.00850.7440.06120.04920.000556535.63103.3
    4-31552985510.540.10120.00980.93490.13690.05250.001367071.83308.2
    4-42272144720.450.13690.01641.79780.30390.06180.0023104511038714.3
    4-544299816280.610.08870.00510.68540.04710.05230.000753028.43284.2
    4-627586712940.670.0630.00320.44430.02120.05090.000537314.93203.2
    4-720767111420.590.05520.00160.40410.0120.05240.00063458.73293.6
    4-81163206770.470.06560.00350.45890.02770.04910.000738419.33094.3
    4-91394308210.520.05750.00160.42310.01190.05280.00063588.53323.6
    4-10772375600.420.05280.00150.38560.0110.05260.00063318.13303.5
    4-111063366160.540.0550.00170.40190.01280.05260.00063439.33303.5
    4-121033126990.450.0570.00180.40660.01260.05150.00053469.13243.0
    4-13782464970.50.05120.00180.37210.01310.05260.00053219.73313.2
    4-141023116140.510.05220.00170.38750.01310.05350.00063339.63363.8
    4-151043375890.570.05430.00180.39540.01320.05260.00053389.63313.0
    4-1651299414060.710.12930.00921.1460.09610.05710.000977545.53585.7
    4-171013395420.630.05630.00190.41250.01420.05290.000635110.23323.9
    4-18922906310.460.05410.00150.39660.0110.05310.00053398.03343.4
    4-19672064130.500.05180.00170.37950.01270.05310.00063279.33333.8
    4-2016454110390.520.05170.00120.38250.0090.05340.00053296.63353.2
    注: TotPb表示锆石总Pb含量, 测点样号省略"PM44-"
    下载: 导出CSV

    表  2  南山口早石炭世晚期侵入岩全岩主量元素(%)、微量元素和稀土元素(10-6)分析结果

    Table  2.   Whole-rock major elements and trace elements of late Early Carboniferous granite

    元素44 +44-644-1344-1744-2044-2544-2844-3144-3445-12-245-12-345-17-345 -17-6
    SiO279. 5875.675.275.575.475.574.476.176.375.374.477.175.7
    TiO20.070.120.180.210.180.180.220.170.200.300.280.120.16
    Al2O310.6011.7012.2012.1512.2012.3512.6512.4512.3012.4512.5511.5512.15
    F2O3t1.521.752.042.011.941.671.861.611.701.912.061.761.86
    WnO0.030.030.040.040.030.030.030.020.020.060.050.040.04
    MgO0.080.090.120.160.150.170.290.170.210.260.230.050.12
    CaO0.090.610.330.530.550.410.750.370.480.390.310.270.32
    Na2O3.463.613.863.963.553.863.643.673.673.883.783.803.90
    K2O3. 984.884.874.735.094.714.775.254.844.554.794.694.81
    P2O50.010.010.010.020.010.010.030.010.020.020.020.010.01
    LOI0.350.660.250.190.360.270.440.310.510.470.510.180.36
    FeOt1.371.571.841.811.751.501.671.451.531.721.851.581.67
    Mg#9.49.210.413.613.316.823.617.319.721.218.15.311.3
    A/CNK1.040.951.000.960.991.011.011.001.011.041.050.981.00
    A/NK1.061.041.051.041.071.081.131.061.091.101.101.021.05
    V102028212825115537202311
    Cr20101010101020201010101010
    Ga21.221.321.820.820.521.321.319.320.421.922.123.222.3
    Rb112.5134.0126.0111.0134.5145.0142.5171.0166.098.4110.5144.0136.0
    Sr13.920.437.535.253.250.088.541.944.442.551.514.124.8
    Y41.842.847.641.151.744.148.148.148.773.566.051.049.3
    Zr207328387388336260.0257235240384385339347
    Nb11.812.414.511.115.016.414.814.415.125.525.112.617.2
    Cs0.851.711.241.631.131.240.751.541.901.131.303.242.52
    Ba35.051.883.8127.0135.0138.5231.0178.5157.0231.0242.033.874.7
    Hf5.28.09.79.09.28.47.27.17.311.610.79.09.6
    Ta1.01.11.21.01.41.91.41.31.41.91.71.01.5
    Th14.8018.0518.9013.0520.5021.9020.2020.7021.5016.7517.4017.0019.20
    U3.094.314.333.155.545.014.613.063.311.942.263.215.04
    La42.661.257.143.849.142.650.552.253.252.556.353.144.1
    Ce89.9129.5125.096.3106.092.8104.5109.0107.5124.5128.5114.094.0
    Pr10.1514.3013.6510.6511.509.8711.2511.5012.1515.2015.3012.6010.85
    Nd35.548.447.337.338.833.737.339.441.254.354.745.138.2
    Sm7.569.289.597.788.157.297.628.288.2811.9011.859.217.82
    Eu0.170.250.370.520.340.330.540.350.380.850.880.200.33
    Gd6.447.838.657.177.986.407.117.207.7311.2510.108.497.86
    Tb0.991.201.321.181.351.121.231.271.252.001.771.411.39
    Dy6.087.598.507.418.667.257.637.808.0113.4511.859.029.13
    Ho1.311.601.741.511.831.531.651.731.632.782.331.851.79
    Er3.934.605.254.475.364.884.694.994.807.786.835.475.79
    Tm0.600.690.800.650.850.780.750.740.801.110.990.800.86
    Yb3.995.015.294.525.795.425.075.255.326.956.075.175.81
    Lu0.610.820.870.730.930.830.760.800.781.020.930.870.92
    REE209.8292.3285.4224.0246.6214.8240.6250.5253.0305.6308.4267.3228.9
    δEu0.070.090.120.210.130.150.220.140.150.220.250.070.13
    (La/Yb)N7.668.767.746.956.085.647.147.137.175.426.657.375.44
    TZr819847869864853832829821824872873855858
    注:样品号均省略“PM”;样品岩性均为碱性花岗岩;Mg# = molar 100 × MgO/(MgO + FeOt); A/CNK = Al2O3/ (CaO +Na2O + K2O)分子比;A/NK = Al2O3/(Na2O+ K2O)分子比;TZr代表使用Watson和Harrison等公式计算的温度,℃
    下载: 导出CSV

    表  3  南山口碱性花岗岩Sr-Nd同位素分析结果

    Table  3.   Sr-Nd isotopes analysis results for the alkaline granitic rocks from Nanshankou

    样号岩性年龄/ Ma87Rb/86Sr87Sr/86Sr147Sm/144Nd143Nd/144NdfSm/NdISrεNd(t)TDM1/MaTDM2/MaFx1Fx2
    44-6碱性花岗岩33119.160.793567 ±50. 11590.512753 ±5-0.410.7033+ 5.666206300.870.93
    45-17碱性花岗岩33129.910.833196 ±70.12350.512793 ±3-0.370.6923+6.126005900.900.95
    注:87Rb/86Sr、147Sm/144Nd通过全岩Rb、Sr、Sm、Nd含量计算;t采用岩体锆石年龄;ISr代表87Sr/86Sr初始值,ISr =87Sr/86Sr-87Rb/86Sr×(e0.0142t-1); εNd(t) = [(143Nd/144Nd)(t)/(143Nd/144Nd)CHUR(t)-1]×104; fSm/NdTDM1TDM2计算见文献(Li,2003),参与式中计算的(143Nd/144Nd)CHUR = 0.51263,(147Sm/144Nd)CHUR = 0.1967, (143Nd/144Nd)DM = 0.51315, (147Sm/144Nd)DM = 0. 2136;Fx1 = (εc1 -εr)Ndcl/[ εr(Ndm-Ndc1) -(εmNdm-εc1Ndc1)]; Fx2 = (εc2-εr)Ndc2)/[εr(Ndm-Ndc2) -(εmNdm-εe2Ndc2)]; Fx1代表幔源组分(以玄武岩为代表)与地壳混合所占的百分含量;Fx2代表幔源组分(以玄武岩为代表)与大洋沉积物混合所占的百分含量;εc1εc2εrεm,分别代表地壳、大洋沉积物、所测岩体、地幔同位素组分;Ndc1、Ndc2、Ndm分别代表地壳、大洋沉积物、地幔中Nd的含量,其中地壳端元(据文献[39]) εc1 = -4, Ndc1 =25×10-6; 地幔端元以玄武岩为代表(据文献[39]),εm=-4, Ndm=15;大洋沉积物拟用现今大西洋大洋沉积物(据White[40])
    下载: 导出CSV
  • [1] 韩宝福, 何国琦, 王式洸, 等.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长[J].地质论评, 1998, 44(4):396~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804008.htm

    HAN Bao-fu, HE Guo-qi, WANG Shi-guang, et al. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xin jiang[J]. Geological Review, 1998, 44(4):396~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804008.htm
    [2] WU F, SUN D, LI H, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143~173.
    [3] WU F, JAHN B, WILDE S, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1/2):89~113.
    [4] JAHN B, WU F, CAPDEVILA R, et al. Highly evolved juvenile granites with tetrad REE patterns:The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 2001, 59(4):171~198. doi: 10.1016/S0024-4937(01)00066-4
    [5] 王宗秀. 博格达山链的造山活动与山体形成演化[D]. 北京: 中国地震局地质研究所, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096211.htm

    WANG Zong-xiu. Orogeny, Formation and evolution in the Bogeda Mountain Chains, Northwestern China[D] Beijing:Institute of Geology, Seismological Bureau of China, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096211.htm
    [6] XIAO W J. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4):370~395. doi: 10.2475/ajs.304.4.370
    [7] 李锦轶, 何国琦, 徐新, 等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报, 2006, 80(1):148~168. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm

    LI Jin-yi, HE Guo-qi, XU Xin, et al. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation[J]. Acta Geologica Sinica, 2006, 80(1):148~168. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm
    [8] 李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报:地球科学版, 2009, 39(4):584~605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm

    LI Jin-yi, ZHANG Jin, YANG Tian-nan, et al. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas[J]. Journal of Jilin University:Earth Science Edition, 2009, 39(4):584~605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
    [9] 孙桂华. 新疆哈尔里克山古生代以来构造变形及构造演化[D]. 北京: 中国地质科学院, 2007. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213366.htm

    SUN Gui-hua. Structural Deformation and Tectonic Evolution of Harlik Mountain, in Xinjiang since the Paleozoic[D]. Beijing:Chinese Academy of Geological Sciences, 2007. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213366.htm
    [10] 王京彬, 徐新.新疆北部后碰撞构造演化与成矿[J].地质学报, 2006, 80(1):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm

    WANG Jing-bin, XU Xin, et al. Post-collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm
    [11] 夏林圻, 夏祖春, 徐学义, 等.天山古生代洋陆转化特点的几点思考[J].西北地质, 2002, 35(4):9~20. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204001.htm

    XIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Some thoughts on the characteristics of Paleozoic ocean-continent transition from Tian shan mountoins[J]. Northwestern Geology, 2002, 35(4):9~20. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204001.htm
    [12] 夏林圻, 夏祖春, 徐学义, 等.天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因[J].西北地质, 2008, 41(4):1~68. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200804002.htm

    XIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 41(4):1~68. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200804002.htm
    [13] 夏林圻, 李向民, 夏祖春, 等. 天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 2006, 39(1): 1~49. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200601001.htm

    XIA Lin-qi, LI Xiang-min, XIA Zu-chun, XU Xue-yi, et al. Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tian shan, Northwestern China[J]. Northwestern Geology, 2006, 39(1):1~49. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200601001.htm
    [14] 顾连兴, 胡受奚, 于春水, 等.论博格达俯冲撕裂型裂谷的形成与演化[J].岩石学报, 2001, 17(4):585~597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htm

    GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Initiation and evolution of the Bogda subduction-torn-type rift[J]. Acta Petrologica Sinica, 2001, 17(4):585~597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htm
    [15] 王银喜, 顾连兴, 张遵忠, 等.博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征[J].岩石学报, 2006, 22(5):1215~1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605013.htm

    WANG Yin-xi, GU Lian-xing, ZHANG Zun-zhong, et al. Geochronology and Nd-Sr-Pb isotope of the bimodal volcanic rocks of the Bogda rift[J]. Acta Petrologica Sinica, 2006, 22(5):1215~1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605013.htm
    [16] 顾连兴, 胡受奚, 于春水, 等.东天山博格达造山带石炭纪火山岩及其形成地质环境[J].岩石学报, 2000, 16(3):305~316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htm

    GU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Carbonif erous volcanites in the Bogda orogenic belt of eastern Tianshan:their tectonic implications[J]. Acta Petrologica Sinica, 2000, 16(3):305~316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htm
    [17] 李锦轶, 王克卓, 孙桂华, 等.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J].岩石学报, 2006, 22(5):1087~1102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm

    LI Jin-yi, WANG Ke-zhuo, SUN Gui-hua, et al. Paleozoie active margin slices in the southern Turfan-Hami basin:geologlcal records of subduction of the Paleo-Asian Ocean Plate in central Asian regions[J]. Acta Petrologica Sinica, 2006, 22(5):1087~1102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm
    [18] XIAO W, HAN C, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/4):102~117.
    [19] JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 2004, 226(1):73~100. doi: 10.1144/GSL.SP.2004.226.01.05
    [20] 新疆省地质矿产局. 中华人民共和国区域地质调查报告——口门子(K46E005015) 幅(1: 5万). 2016.
    [21] Creaser R A, 杨庚. A型花岗岩回顾——对残留源区模式的评价[J].地质科学译丛, 1992, (1):21~26. http://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199201007.htm
    [22] LIU Y, HU Z, ZONG K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535~1546. doi: 10.1007/s11434-010-3052-4
    [23] LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34~43.
    [24] LUDWIG K R. Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1):631~656. doi: 10.2113/0520631
    [25] ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59~79.
    [26] GAO S, RUDNICK R L, YUAN H, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019):892~897. doi: 10.1038/nature03162
    [27] HOSKIN P W O, BLACK L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423~439.
    [28] HOSKIN P W O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27~62. doi: 10.2113/0530027
    [29] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm

    WU Yuan-bao, ZHENG Yong-fei, et al. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Science Bulletin, 2004, 49(15):1589~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
    [30] 路风香, 桑隆康.岩石学[M].北京:地质出版社, 2007.

    LU Feng-xiang, SANG Long-kang. Petrology[M]. Beijing:Geological Publishing House, 2007.
    [31] FROST C D, FROST B R. On ferroan (A-type) granitoids:Their compositional variability and modes of origin[J]. Journal of Petrology, 2010, 52(1):39~53.
    [32] SHAND S J. Eruptive rocks[M]. Murby London, 1927.
    [33] De la ROCHE H, LETERRIER J, GRANDCLAUDE P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses:Its relationships with current nomenclature[J]. Chemical Geology, 1980, 29(1/4):183~210.
    [34] 苏玉平, 唐红峰. A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报, 2005, 24(3):245~251. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503012.htm

    SU Yu-ping, TANG Hong-feng, et al. Trace Element Geochemistry of A-Type Granites[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):245~251. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503012.htm
    [35] WHALEN J B. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contrib Mineral Petrol, 1987, 95(4):407~419. doi: 10.1007/BF00402202
    [36] WU F, SUN D, GE W, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1~30. doi: 10.1016/j.jseaes.2010.11.014
    [37] HAN B, WANG S, JAHN B, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4):135~159.
    [38] 李献华. Sm-Nd模式年龄和等时线年龄的适用性与局限性[J].地质科学, 1996, 31(1):97~104. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.010.htm

    LI Xian-hua. Li X H, A discussion on the model and isochron ages of Sm-Nd isotopic systematics:Suitability and limitation[J].Scientia Geologica Sinica, 1996, 31(1):97~104. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.010.htm
    [39] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313~345. doi: 10.1144/GSL.SP.1989.042.01.19
    [40] JAHN B, WU F, HONG D. Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia[J]. Journal of Earth System Science, 2000, 109(1):5~20. doi: 10.1007/BF02719146
    [41] WHITE W M, DUPRÉ B, VIDAL P. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 1985, 49(9):1875~1886. doi: 10.1016/0016-7037(85)90082-1
    [42] WHITE B W C A. I-and S-type granites in the Lachlan Fold Belt[J]. GSA Special Papers, 1992, 272:1~26. doi: 10.1130/SPE272
    [43] LOISELLE M C W D R. Characteristics and origin of anorogenic granites[J]. California:San Diego, 1979:468.
    [44] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217~1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm

    WU Fu-yuan, LI Xian-hua, YANG Jin-hui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6):1217~1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm
    [45] CHAPPELL B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535~551. doi: 10.1016/S0024-4937(98)00086-3
    [46] 李小伟, 莫宣学, 赵志丹, 等.关于A型花岗岩判别过程中若干问题的讨论[J].地质通报, 2010, (Z1):278~285. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1013.htm

    LI Xiao-wei, MO Xuan-xue, ZHAO Zhi-dan, et al. A discussion on how to discriminate A-type granite[J]. Geological Bulletin of China, 2010, (Z1):278~285. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1013.htm
    [47] KING P L. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371~391. doi: 10.1093/petroj/38.3.371
    [48] 顾连兴. A型花岗岩的特征、成因及成矿[J].地质科技情报, 1990, (1):25~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199001006.htm

    GU Lian-xing. Geological features, petrogenesis and metallogeny of A-type granites[J]. Geological Science and Technology Information, 1990, (1):25~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199001006.htm
    [49] EBY N G. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 7(20):641~644.
    [50] SYLVESTER P J. Post-Collisional Alkaline Granites[J]. The Journal of Geology, 1989, 97(3):261~280. doi: 10.1086/629302
    [51] 刘红涛, 孙世华, 刘建明, 等.华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质[J].岩石学报, 2002, 18(3):257~274. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203000.htm

    LlU Hong-tao, SUN Shi-hua, LlU Jian-ming, et al. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton geochemistry and source region[J]. Acta Petrologica Sinica, 2002, 18(3):257~274. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203000.htm
    [52] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J].大地构造与成矿学, 2009, 33(3):465~480. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htm

    JIA Xiao-hui, WANG Qian, TANG Gong-jian, et al. A-type granites:Research progress and implications[J]. Geotectonica et Metallogenia, 2009, 33(3):465~480. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htm
    [53] BONIN B. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2):1~29.
    [54] 童英, 王涛, 洪大卫, 等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志, 2010, 29(6):619~641. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006003.htm

    TONG Ying, WANG Tao, HONG Da-wei, et al. Spatial and temporal distribution of the Carboniferous-Permian granitoidsin northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica Et Mineralogica, 2010, 29(6):619~641. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006003.htm
    [55] 田健. 东准噶尔卡拉麦里地区早石炭世侵入岩的岩石学特征及其地质意义[D]. 武汉: 中国地质大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340953.htm

    TIAN Jian. The petrologic characteristics and tectonic implications for Early Carboniferous intrusions from the area of Karamaili in eastern Junggar[D]. Wuhan:China University of Geosciences, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340953.htm
    [56] 黄伟. 东天山哈密地区石炭-二叠纪碱性花岗岩年代学、地球化学及成因[D]. 北京: 中国地质大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014238306.htm

    HUANG Wei. Geochoronology, Geochemistry and Origin of Carboniferous-Permian Alkali Granites inEastern Tianshan Hami, NW China[D]. Beijing:China University of Geosciences, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014238306.htm
    [57] 郑建平, 王方正, 成中梅, 等.拼合的准噶尔盆地基底:基底火山岩Sr-Nd同位素证据[J].地球科学. 2000(02):179~185. doi: 10.3321/j.issn:1000-2383.2000.02.013

    ZHENG Jian-ping, WANG Fang-zheng, CHENG Zhong-mei, et al. Nature and evolution of amalgamated basement of Junggar Basin, northwestern China:Sr-Nd isotope evidences of basement igneous rock[J]. Earth Science. 2000(02):179~185. doi: 10.3321/j.issn:1000-2383.2000.02.013
    [58] 田黎萍, 王金荣, 汤中立, 等.新疆博格达山东段早石炭世火山岩地球化学特征及其构造意义[J].兰州大学学报:自然科学版, 2010, 46(4):30~36. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201004007.htm

    TIAN Li-ping, WANG Jin-rong, TANG Zhong-li, et al. Geochemical characteristic and tectonic significance of the early carboniferous volcanic rocks in eastern Bogda mountains of Xinjiang region[J]. Journal of Lanzhou University:Natural Science, 2010, 46(4):30~36. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201004007.htm
    [59] 易鹏飞. 东天山博格达-巴里坤塔格石炭纪-早二叠世陆内裂谷演化特征[D]. 西安: 长安大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014023313.htm

    YI Peng-fei. Evolution characteristics of Bogda-Balkun intracontinental rift in Carboniferous-Early Permian[D]. Xi'an:Chang'an University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014023313.htm
    [60] 王银喜, 顾连兴, 张遵忠, 等.东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究[J].岩石学报, 2007, 23(7):1749~1755. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707019.htm

    WANG Yin-xi, GU Lian-xing, ZHANG Zun-zhi, et al. Sr-Nd-Pb isotope geochemistry of Rhyolite of the Late Carboniferous Dashitou group in eastern Tianshan[J]. Acta Petrologica Sinica, 2007, 23(7):1749~1755. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707019.htm
    [61] 张旗, 潘国强, 李承东, 等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报, 2007, 23(11):2683~2698. doi: 10.3969/j.issn.1000-0569.2007.11.002

    ZHANG Qi, PAN Guoqiang, Li Chengdong, et al. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3)[J]. Acta Petrologica Sinica, 2007, 23(11):2683~2698. doi: 10.3969/j.issn.1000-0569.2007.11.002
    [62] PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications. 1984, 16(1):77~94. doi: 10.1144/GSL.SP.1984.016.01.06
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  202
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-15
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回