PETROGENESIS AND TECTONIC SIGNIFICANCE OF EARLY CARBONIFEROUS A-TYPE GRAINTE IN HARLIK, XINJIANG
-
摘要: 对出露在哈尔里克山西段小白杨沟-南山口一带的早石炭世花岗岩进行了锆石LA-ICP-MS U-Pb定年,结果为331.3±1.9 Ma,属早石炭世晚期。其岩石组合为碱长花岗岩、碱性花岗岩,暗色矿物以黑云母为主,见钠质角闪石,具富碱、贫钙镁和低铝铁的特征,微量元素明显富集Rb、Th、K等大离子亲石元素和Zr、Hf等高场强元素而强烈亏损Ba、Sr、Eu等元素,10000 Ga/Al值变化于2.93~3.80之间,表明该碱性花岗岩属于典型的A型花岗岩,具板内花岗岩特征,并非前人认为的岛弧花岗岩,其正εNd(t)值(+5.66~+6.12)和年轻的Nd模式年龄(TDM2=0.60~0.62 Ga)显示岩浆来源于新生年轻地壳。从本次1:50000区调研究成果看,博格达自早石炭世开始伸展,早石炭世晚期进入闭合阶段,哈儿里克山早石炭世晚期岩体应处于博格达裂谷晚期阶段,并非前人所说的后碰撞和岛弧环境。Abstract: The alkali-feldspar granite is located at the area of Nanshankou, western part of the Harlik Mountain. Its LA-ICP-MS zircon U-Pb age is 331.3±1.9 Ma. Therefore, the granite is formed in the late stage of Early Carboniferous. The dark minerals in the rock are mainly biotite, with litte Na amphibolite. This type of granite is riched in alkali elements, poor in calsium, magnesium, and has low content of aluminum and iron oxide. The rock is riched in large ion lithosphile elements, such as Rb, Th and K. It has abundant HFSE elements and depleted in Ba, Sr and Eu. The 10000 Ga/Al value is varied from 2.93~3.80. It indicates that the rock is A-type granite, formed in intraplate tectonic settings, instead of the previous island arc environment. Its εNd(t) values range from 5.66 to 6.12, the Nd model ages are 600~620 Ma. It tells that the magma may originate from the young crust. Based on the results of the 1:50000 regional geological survey, the Bogada rift was extended during Early Carboniferous, and closed at the late stage of Early Carboniferous. The Late Early Carboniferous alkali-feldspar granites should formed in the rift environment, instead of coming from the previous post-collisional or arc tectonic setting.
-
Key words:
- A-type granites /
- late Early Carboniferous /
- rift /
- Harlik
-
图 8 南山口早石炭世晚期花岗岩类稀土元素配分曲线[39]及微量元素蛛网图
Figure 8. REE distribution curve and Trace elements spider diagram from the alkaline granite from Nanshankou
表 1 南山口碱性花岗岩(44-4) LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS U-Pb zircon analysis results for the alkaline granitic rocks from Nanshankou
测点 含量/10-6 Th/U 比值 年龄/Ma TotPb 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 4-1 110 350 620 0.56 0.0513 0.0015 0.3764 0.0112 0.0531 0.0007 324 8.3 334 4.2 4-2 325 488 1097 0.44 0.1079 0.0085 0.744 0.0612 0.0492 0.0005 565 35.6 310 3.3 4-3 155 298 551 0.54 0.1012 0.0098 0.9349 0.1369 0.0525 0.0013 670 71.8 330 8.2 4-4 227 214 472 0.45 0.1369 0.0164 1.7978 0.3039 0.0618 0.0023 1045 110 387 14.3 4-5 442 998 1628 0.61 0.0887 0.0051 0.6854 0.0471 0.0523 0.0007 530 28.4 328 4.2 4-6 275 867 1294 0.67 0.063 0.0032 0.4443 0.0212 0.0509 0.0005 373 14.9 320 3.2 4-7 207 671 1142 0.59 0.0552 0.0016 0.4041 0.012 0.0524 0.0006 345 8.7 329 3.6 4-8 116 320 677 0.47 0.0656 0.0035 0.4589 0.0277 0.0491 0.0007 384 19.3 309 4.3 4-9 139 430 821 0.52 0.0575 0.0016 0.4231 0.0119 0.0528 0.0006 358 8.5 332 3.6 4-10 77 237 560 0.42 0.0528 0.0015 0.3856 0.011 0.0526 0.0006 331 8.1 330 3.5 4-11 106 336 616 0.54 0.055 0.0017 0.4019 0.0128 0.0526 0.0006 343 9.3 330 3.5 4-12 103 312 699 0.45 0.057 0.0018 0.4066 0.0126 0.0515 0.0005 346 9.1 324 3.0 4-13 78 246 497 0.5 0.0512 0.0018 0.3721 0.0131 0.0526 0.0005 321 9.7 331 3.2 4-14 102 311 614 0.51 0.0522 0.0017 0.3875 0.0131 0.0535 0.0006 333 9.6 336 3.8 4-15 104 337 589 0.57 0.0543 0.0018 0.3954 0.0132 0.0526 0.0005 338 9.6 331 3.0 4-16 512 994 1406 0.71 0.1293 0.0092 1.146 0.0961 0.0571 0.0009 775 45.5 358 5.7 4-17 101 339 542 0.63 0.0563 0.0019 0.4125 0.0142 0.0529 0.0006 351 10.2 332 3.9 4-18 92 290 631 0.46 0.0541 0.0015 0.3966 0.011 0.0531 0.0005 339 8.0 334 3.4 4-19 67 206 413 0.50 0.0518 0.0017 0.3795 0.0127 0.0531 0.0006 327 9.3 333 3.8 4-20 164 541 1039 0.52 0.0517 0.0012 0.3825 0.009 0.0534 0.0005 329 6.6 335 3.2 注: TotPb表示锆石总Pb含量, 测点样号省略"PM44-" 表 2 南山口早石炭世晚期侵入岩全岩主量元素(%)、微量元素和稀土元素(10-6)分析结果
Table 2. Whole-rock major elements and trace elements of late Early Carboniferous granite
元素 44 + 44-6 44-13 44-17 44-20 44-25 44-28 44-31 44-34 45-12-2 45-12-3 45-17-3 45 -17-6 SiO2 79. 58 75.6 75.2 75.5 75.4 75.5 74.4 76.1 76.3 75.3 74.4 77.1 75.7 TiO2 0.07 0.12 0.18 0.21 0.18 0.18 0.22 0.17 0.20 0.30 0.28 0.12 0.16 Al2O3 10.60 11.70 12.20 12.15 12.20 12.35 12.65 12.45 12.30 12.45 12.55 11.55 12.15 F2O3t 1.52 1.75 2.04 2.01 1.94 1.67 1.86 1.61 1.70 1.91 2.06 1.76 1.86 WnO 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.06 0.05 0.04 0.04 MgO 0.08 0.09 0.12 0.16 0.15 0.17 0.29 0.17 0.21 0.26 0.23 0.05 0.12 CaO 0.09 0.61 0.33 0.53 0.55 0.41 0.75 0.37 0.48 0.39 0.31 0.27 0.32 Na2O 3.46 3.61 3.86 3.96 3.55 3.86 3.64 3.67 3.67 3.88 3.78 3.80 3.90 K2O 3. 98 4.88 4.87 4.73 5.09 4.71 4.77 5.25 4.84 4.55 4.79 4.69 4.81 P2O5 0.01 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.02 0.02 0.02 0.01 0.01 LOI 0.35 0.66 0.25 0.19 0.36 0.27 0.44 0.31 0.51 0.47 0.51 0.18 0.36 FeOt 1.37 1.57 1.84 1.81 1.75 1.50 1.67 1.45 1.53 1.72 1.85 1.58 1.67 Mg# 9.4 9.2 10.4 13.6 13.3 16.8 23.6 17.3 19.7 21.2 18.1 5.3 11.3 A/CNK 1.04 0.95 1.00 0.96 0.99 1.01 1.01 1.00 1.01 1.04 1.05 0.98 1.00 A/NK 1.06 1.04 1.05 1.04 1.07 1.08 1.13 1.06 1.09 1.10 1.10 1.02 1.05 V 10 20 28 21 28 25 11 5 5 37 20 23 11 Cr 20 10 10 10 10 10 20 20 10 10 10 10 10 Ga 21.2 21.3 21.8 20.8 20.5 21.3 21.3 19.3 20.4 21.9 22.1 23.2 22.3 Rb 112.5 134.0 126.0 111.0 134.5 145.0 142.5 171.0 166.0 98.4 110.5 144.0 136.0 Sr 13.9 20.4 37.5 35.2 53.2 50.0 88.5 41.9 44.4 42.5 51.5 14.1 24.8 Y 41.8 42.8 47.6 41.1 51.7 44.1 48.1 48.1 48.7 73.5 66.0 51.0 49.3 Zr 207 328 387 388 336 260.0 257 235 240 384 385 339 347 Nb 11.8 12.4 14.5 11.1 15.0 16.4 14.8 14.4 15.1 25.5 25.1 12.6 17.2 Cs 0.85 1.71 1.24 1.63 1.13 1.24 0.75 1.54 1.90 1.13 1.30 3.24 2.52 Ba 35.0 51.8 83.8 127.0 135.0 138.5 231.0 178.5 157.0 231.0 242.0 33.8 74.7 Hf 5.2 8.0 9.7 9.0 9.2 8.4 7.2 7.1 7.3 11.6 10.7 9.0 9.6 Ta 1.0 1.1 1.2 1.0 1.4 1.9 1.4 1.3 1.4 1.9 1.7 1.0 1.5 Th 14.80 18.05 18.90 13.05 20.50 21.90 20.20 20.70 21.50 16.75 17.40 17.00 19.20 U 3.09 4.31 4.33 3.15 5.54 5.01 4.61 3.06 3.31 1.94 2.26 3.21 5.04 La 42.6 61.2 57.1 43.8 49.1 42.6 50.5 52.2 53.2 52.5 56.3 53.1 44.1 Ce 89.9 129.5 125.0 96.3 106.0 92.8 104.5 109.0 107.5 124.5 128.5 114.0 94.0 Pr 10.15 14.30 13.65 10.65 11.50 9.87 11.25 11.50 12.15 15.20 15.30 12.60 10.85 Nd 35.5 48.4 47.3 37.3 38.8 33.7 37.3 39.4 41.2 54.3 54.7 45.1 38.2 Sm 7.56 9.28 9.59 7.78 8.15 7.29 7.62 8.28 8.28 11.90 11.85 9.21 7.82 Eu 0.17 0.25 0.37 0.52 0.34 0.33 0.54 0.35 0.38 0.85 0.88 0.20 0.33 Gd 6.44 7.83 8.65 7.17 7.98 6.40 7.11 7.20 7.73 11.25 10.10 8.49 7.86 Tb 0.99 1.20 1.32 1.18 1.35 1.12 1.23 1.27 1.25 2.00 1.77 1.41 1.39 Dy 6.08 7.59 8.50 7.41 8.66 7.25 7.63 7.80 8.01 13.45 11.85 9.02 9.13 Ho 1.31 1.60 1.74 1.51 1.83 1.53 1.65 1.73 1.63 2.78 2.33 1.85 1.79 Er 3.93 4.60 5.25 4.47 5.36 4.88 4.69 4.99 4.80 7.78 6.83 5.47 5.79 Tm 0.60 0.69 0.80 0.65 0.85 0.78 0.75 0.74 0.80 1.11 0.99 0.80 0.86 Yb 3.99 5.01 5.29 4.52 5.79 5.42 5.07 5.25 5.32 6.95 6.07 5.17 5.81 Lu 0.61 0.82 0.87 0.73 0.93 0.83 0.76 0.80 0.78 1.02 0.93 0.87 0.92 REE 209.8 292.3 285.4 224.0 246.6 214.8 240.6 250.5 253.0 305.6 308.4 267.3 228.9 δEu 0.07 0.09 0.12 0.21 0.13 0.15 0.22 0.14 0.15 0.22 0.25 0.07 0.13 (La/Yb)N 7.66 8.76 7.74 6.95 6.08 5.64 7.14 7.13 7.17 5.42 6.65 7.37 5.44 TZr 819 847 869 864 853 832 829 821 824 872 873 855 858 注:样品号均省略“PM”;样品岩性均为碱性花岗岩;Mg# = molar 100 × MgO/(MgO + FeOt); A/CNK = Al2O3/ (CaO +Na2O + K2O)分子比;A/NK = Al2O3/(Na2O+ K2O)分子比;TZr代表使用Watson和Harrison等公式计算的温度,℃ 表 3 南山口碱性花岗岩Sr-Nd同位素分析结果
Table 3. Sr-Nd isotopes analysis results for the alkaline granitic rocks from Nanshankou
样号 岩性 年龄/ Ma 87Rb/86Sr 87Sr/86Sr 147Sm/144Nd 143Nd/144Nd fSm/Nd ISr εNd(t) TDM1/Ma TDM2/Ma Fx1 Fx2 44-6 碱性花岗岩 331 19.16 0.793567 ±5 0. 1159 0.512753 ±5 -0.41 0.7033 + 5.66 620 630 0.87 0.93 45-17 碱性花岗岩 331 29.91 0.833196 ±7 0.1235 0.512793 ±3 -0.37 0.6923 +6.12 600 590 0.90 0.95 注:87Rb/86Sr、147Sm/144Nd通过全岩Rb、Sr、Sm、Nd含量计算;t采用岩体锆石年龄;ISr代表87Sr/86Sr初始值,ISr =87Sr/86Sr-87Rb/86Sr×(e0.0142t-1); εNd(t) = [(143Nd/144Nd)(t)/(143Nd/144Nd)CHUR(t)-1]×104; fSm/Nd、TDM1、TDM2计算见文献(Li,2003),参与式中计算的(143Nd/144Nd)CHUR = 0.51263,(147Sm/144Nd)CHUR = 0.1967, (143Nd/144Nd)DM = 0.51315, (147Sm/144Nd)DM = 0. 2136;Fx1 = (εc1 -εr)Ndcl/[ εr(Ndm-Ndc1) -(εmNdm-εc1Ndc1)]; Fx2 = (εc2-εr)Ndc2)/[εr(Ndm-Ndc2) -(εmNdm-εe2Ndc2)]; Fx1代表幔源组分(以玄武岩为代表)与地壳混合所占的百分含量;Fx2代表幔源组分(以玄武岩为代表)与大洋沉积物混合所占的百分含量;εc1、εc2、εr、εm,分别代表地壳、大洋沉积物、所测岩体、地幔同位素组分;Ndc1、Ndc2、Ndm分别代表地壳、大洋沉积物、地幔中Nd的含量,其中地壳端元(据文献[39]) εc1 = -4, Ndc1 =25×10-6; 地幔端元以玄武岩为代表(据文献[39]),εm=-4, Ndm=15;大洋沉积物拟用现今大西洋大洋沉积物(据White[40]) -
[1] 韩宝福, 何国琦, 王式洸, 等.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长[J].地质论评, 1998, 44(4):396~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804008.htmHAN Bao-fu, HE Guo-qi, WANG Shi-guang, et al. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xin jiang[J]. Geological Review, 1998, 44(4):396~404. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804008.htm [2] WU F, SUN D, LI H, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143~173. [3] WU F, JAHN B, WILDE S, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1/2):89~113. [4] JAHN B, WU F, CAPDEVILA R, et al. Highly evolved juvenile granites with tetrad REE patterns:The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 2001, 59(4):171~198. doi: 10.1016/S0024-4937(01)00066-4 [5] 王宗秀. 博格达山链的造山活动与山体形成演化[D]. 北京: 中国地震局地质研究所, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096211.htmWANG Zong-xiu. Orogeny, Formation and evolution in the Bogeda Mountain Chains, Northwestern China[D] Beijing:Institute of Geology, Seismological Bureau of China, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096211.htm [6] XIAO W J. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4):370~395. doi: 10.2475/ajs.304.4.370 [7] 李锦轶, 何国琦, 徐新, 等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报, 2006, 80(1):148~168. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htmLI Jin-yi, HE Guo-qi, XU Xin, et al. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation[J]. Acta Geologica Sinica, 2006, 80(1):148~168. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm [8] 李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报:地球科学版, 2009, 39(4):584~605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htmLI Jin-yi, ZHANG Jin, YANG Tian-nan, et al. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas[J]. Journal of Jilin University:Earth Science Edition, 2009, 39(4):584~605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm [9] 孙桂华. 新疆哈尔里克山古生代以来构造变形及构造演化[D]. 北京: 中国地质科学院, 2007. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213366.htmSUN Gui-hua. Structural Deformation and Tectonic Evolution of Harlik Mountain, in Xinjiang since the Paleozoic[D]. Beijing:Chinese Academy of Geological Sciences, 2007. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213366.htm [10] 王京彬, 徐新.新疆北部后碰撞构造演化与成矿[J].地质学报, 2006, 80(1):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htmWANG Jing-bin, XU Xin, et al. Post-collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm [11] 夏林圻, 夏祖春, 徐学义, 等.天山古生代洋陆转化特点的几点思考[J].西北地质, 2002, 35(4):9~20. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204001.htmXIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Some thoughts on the characteristics of Paleozoic ocean-continent transition from Tian shan mountoins[J]. Northwestern Geology, 2002, 35(4):9~20. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204001.htm [12] 夏林圻, 夏祖春, 徐学义, 等.天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因[J].西北地质, 2008, 41(4):1~68. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200804002.htmXIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 41(4):1~68. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200804002.htm [13] 夏林圻, 李向民, 夏祖春, 等. 天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 2006, 39(1): 1~49. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200601001.htmXIA Lin-qi, LI Xiang-min, XIA Zu-chun, XU Xue-yi, et al. Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tian shan, Northwestern China[J]. Northwestern Geology, 2006, 39(1):1~49. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200601001.htm [14] 顾连兴, 胡受奚, 于春水, 等.论博格达俯冲撕裂型裂谷的形成与演化[J].岩石学报, 2001, 17(4):585~597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htmGU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Initiation and evolution of the Bogda subduction-torn-type rift[J]. Acta Petrologica Sinica, 2001, 17(4):585~597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htm [15] 王银喜, 顾连兴, 张遵忠, 等.博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征[J].岩石学报, 2006, 22(5):1215~1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605013.htmWANG Yin-xi, GU Lian-xing, ZHANG Zun-zhong, et al. Geochronology and Nd-Sr-Pb isotope of the bimodal volcanic rocks of the Bogda rift[J]. Acta Petrologica Sinica, 2006, 22(5):1215~1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605013.htm [16] 顾连兴, 胡受奚, 于春水, 等.东天山博格达造山带石炭纪火山岩及其形成地质环境[J].岩石学报, 2000, 16(3):305~316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htmGU Lian-xing, HU Shou-xi, YU Chun-shui, et al. Carbonif erous volcanites in the Bogda orogenic belt of eastern Tianshan:their tectonic implications[J]. Acta Petrologica Sinica, 2000, 16(3):305~316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htm [17] 李锦轶, 王克卓, 孙桂华, 等.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J].岩石学报, 2006, 22(5):1087~1102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htmLI Jin-yi, WANG Ke-zhuo, SUN Gui-hua, et al. Paleozoie active margin slices in the southern Turfan-Hami basin:geologlcal records of subduction of the Paleo-Asian Ocean Plate in central Asian regions[J]. Acta Petrologica Sinica, 2006, 22(5):1087~1102. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm [18] XIAO W, HAN C, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/4):102~117. [19] JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 2004, 226(1):73~100. doi: 10.1144/GSL.SP.2004.226.01.05 [20] 新疆省地质矿产局. 中华人民共和国区域地质调查报告——口门子(K46E005015) 幅(1: 5万). 2016. [21] Creaser R A, 杨庚. A型花岗岩回顾——对残留源区模式的评价[J].地质科学译丛, 1992, (1):21~26. http://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199201007.htm [22] LIU Y, HU Z, ZONG K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535~1546. doi: 10.1007/s11434-010-3052-4 [23] LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34~43. [24] LUDWIG K R. Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1):631~656. doi: 10.2113/0520631 [25] ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59~79. [26] GAO S, RUDNICK R L, YUAN H, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019):892~897. doi: 10.1038/nature03162 [27] HOSKIN P W O, BLACK L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423~439. [28] HOSKIN P W O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27~62. doi: 10.2113/0530027 [29] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htmWU Yuan-bao, ZHENG Yong-fei, et al. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Science Bulletin, 2004, 49(15):1589~1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm [30] 路风香, 桑隆康.岩石学[M].北京:地质出版社, 2007.LU Feng-xiang, SANG Long-kang. Petrology[M]. Beijing:Geological Publishing House, 2007. [31] FROST C D, FROST B R. On ferroan (A-type) granitoids:Their compositional variability and modes of origin[J]. Journal of Petrology, 2010, 52(1):39~53. [32] SHAND S J. Eruptive rocks[M]. Murby London, 1927. [33] De la ROCHE H, LETERRIER J, GRANDCLAUDE P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses:Its relationships with current nomenclature[J]. Chemical Geology, 1980, 29(1/4):183~210. [34] 苏玉平, 唐红峰. A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报, 2005, 24(3):245~251. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503012.htmSU Yu-ping, TANG Hong-feng, et al. Trace Element Geochemistry of A-Type Granites[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):245~251. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503012.htm [35] WHALEN J B. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contrib Mineral Petrol, 1987, 95(4):407~419. doi: 10.1007/BF00402202 [36] WU F, SUN D, GE W, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1~30. doi: 10.1016/j.jseaes.2010.11.014 [37] HAN B, WANG S, JAHN B, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4):135~159. [38] 李献华. Sm-Nd模式年龄和等时线年龄的适用性与局限性[J].地质科学, 1996, 31(1):97~104. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.010.htmLI Xian-hua. Li X H, A discussion on the model and isochron ages of Sm-Nd isotopic systematics:Suitability and limitation[J].Scientia Geologica Sinica, 1996, 31(1):97~104. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.010.htm [39] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313~345. doi: 10.1144/GSL.SP.1989.042.01.19 [40] JAHN B, WU F, HONG D. Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia[J]. Journal of Earth System Science, 2000, 109(1):5~20. doi: 10.1007/BF02719146 [41] WHITE W M, DUPRÉ B, VIDAL P. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 1985, 49(9):1875~1886. doi: 10.1016/0016-7037(85)90082-1 [42] WHITE B W C A. I-and S-type granites in the Lachlan Fold Belt[J]. GSA Special Papers, 1992, 272:1~26. doi: 10.1130/SPE272 [43] LOISELLE M C W D R. Characteristics and origin of anorogenic granites[J]. California:San Diego, 1979:468. [44] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217~1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htmWU Fu-yuan, LI Xian-hua, YANG Jin-hui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6):1217~1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm [45] CHAPPELL B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535~551. doi: 10.1016/S0024-4937(98)00086-3 [46] 李小伟, 莫宣学, 赵志丹, 等.关于A型花岗岩判别过程中若干问题的讨论[J].地质通报, 2010, (Z1):278~285. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1013.htmLI Xiao-wei, MO Xuan-xue, ZHAO Zhi-dan, et al. A discussion on how to discriminate A-type granite[J]. Geological Bulletin of China, 2010, (Z1):278~285. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1013.htm [47] KING P L. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371~391. doi: 10.1093/petroj/38.3.371 [48] 顾连兴. A型花岗岩的特征、成因及成矿[J].地质科技情报, 1990, (1):25~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199001006.htmGU Lian-xing. Geological features, petrogenesis and metallogeny of A-type granites[J]. Geological Science and Technology Information, 1990, (1):25~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199001006.htm [49] EBY N G. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 7(20):641~644. [50] SYLVESTER P J. Post-Collisional Alkaline Granites[J]. The Journal of Geology, 1989, 97(3):261~280. doi: 10.1086/629302 [51] 刘红涛, 孙世华, 刘建明, 等.华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质[J].岩石学报, 2002, 18(3):257~274. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203000.htmLlU Hong-tao, SUN Shi-hua, LlU Jian-ming, et al. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton geochemistry and source region[J]. Acta Petrologica Sinica, 2002, 18(3):257~274. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203000.htm [52] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J].大地构造与成矿学, 2009, 33(3):465~480. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htmJIA Xiao-hui, WANG Qian, TANG Gong-jian, et al. A-type granites:Research progress and implications[J]. Geotectonica et Metallogenia, 2009, 33(3):465~480. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htm [53] BONIN B. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2):1~29. [54] 童英, 王涛, 洪大卫, 等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志, 2010, 29(6):619~641. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006003.htmTONG Ying, WANG Tao, HONG Da-wei, et al. Spatial and temporal distribution of the Carboniferous-Permian granitoidsin northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica Et Mineralogica, 2010, 29(6):619~641. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006003.htm [55] 田健. 东准噶尔卡拉麦里地区早石炭世侵入岩的岩石学特征及其地质意义[D]. 武汉: 中国地质大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340953.htmTIAN Jian. The petrologic characteristics and tectonic implications for Early Carboniferous intrusions from the area of Karamaili in eastern Junggar[D]. Wuhan:China University of Geosciences, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340953.htm [56] 黄伟. 东天山哈密地区石炭-二叠纪碱性花岗岩年代学、地球化学及成因[D]. 北京: 中国地质大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014238306.htmHUANG Wei. Geochoronology, Geochemistry and Origin of Carboniferous-Permian Alkali Granites inEastern Tianshan Hami, NW China[D]. Beijing:China University of Geosciences, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014238306.htm [57] 郑建平, 王方正, 成中梅, 等.拼合的准噶尔盆地基底:基底火山岩Sr-Nd同位素证据[J].地球科学. 2000(02):179~185. doi: 10.3321/j.issn:1000-2383.2000.02.013ZHENG Jian-ping, WANG Fang-zheng, CHENG Zhong-mei, et al. Nature and evolution of amalgamated basement of Junggar Basin, northwestern China:Sr-Nd isotope evidences of basement igneous rock[J]. Earth Science. 2000(02):179~185. doi: 10.3321/j.issn:1000-2383.2000.02.013 [58] 田黎萍, 王金荣, 汤中立, 等.新疆博格达山东段早石炭世火山岩地球化学特征及其构造意义[J].兰州大学学报:自然科学版, 2010, 46(4):30~36. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201004007.htmTIAN Li-ping, WANG Jin-rong, TANG Zhong-li, et al. Geochemical characteristic and tectonic significance of the early carboniferous volcanic rocks in eastern Bogda mountains of Xinjiang region[J]. Journal of Lanzhou University:Natural Science, 2010, 46(4):30~36. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201004007.htm [59] 易鹏飞. 东天山博格达-巴里坤塔格石炭纪-早二叠世陆内裂谷演化特征[D]. 西安: 长安大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014023313.htmYI Peng-fei. Evolution characteristics of Bogda-Balkun intracontinental rift in Carboniferous-Early Permian[D]. Xi'an:Chang'an University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014023313.htm [60] 王银喜, 顾连兴, 张遵忠, 等.东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究[J].岩石学报, 2007, 23(7):1749~1755. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707019.htmWANG Yin-xi, GU Lian-xing, ZHANG Zun-zhi, et al. Sr-Nd-Pb isotope geochemistry of Rhyolite of the Late Carboniferous Dashitou group in eastern Tianshan[J]. Acta Petrologica Sinica, 2007, 23(7):1749~1755. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707019.htm [61] 张旗, 潘国强, 李承东, 等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报, 2007, 23(11):2683~2698. doi: 10.3969/j.issn.1000-0569.2007.11.002ZHANG Qi, PAN Guoqiang, Li Chengdong, et al. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3)[J]. Acta Petrologica Sinica, 2007, 23(11):2683~2698. doi: 10.3969/j.issn.1000-0569.2007.11.002 [62] PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications. 1984, 16(1):77~94. doi: 10.1144/GSL.SP.1984.016.01.06