ZIRCON U-PB CHRONOLOGY AND GEOCHEMICAL CHARACTERISTICS OF THE WUHEERTU GRANITE MASS IN LANGSHAN, INNER MONGOLIA
-
摘要: 乌和尔图花岗岩岩体位于华北板块北缘,内蒙古狼山地区,岩石类型主要为正长花岗岩及二长花岗岩。LA-ICP-MS锆石U-Pb年龄为236.1±1.0Ma,晚三叠世。岩石高硅(SiO2为71.94~73.91%)、富碱(K2O+Na2O为8.34~8.88%)、弱过铝(A/CNK为0.98~1.07),贫钙、镁。在SiO2-K2O图中,样品点落入高钾钙碱性系列-钾玄系列的过渡区域。在原始地幔标准化蛛网图上,不同程度富集Rb、Th、K、Nd、Zr、Hf、Sm,亏损Ba、Nb、Ta、Sr、P、Ti,具中等-弱的负Eu异常(δEu=0.47-0.66)。主量元素、稀土元素和微量元素特征表明,乌和尔图花岗岩岩体形成于由挤压体制向拉张体制转换的构造背景,属后碰撞花岗岩类。锆石Hf同位素显示,乌和尔图花岗岩岩体的εHf(t)为-20.6~7.6,二阶模式年龄为780~2559Ma,变化范围较大,反映源区物质以古老地壳为主,可能有年轻组分的参与。对该岩体的综合研究有助于进一步认识和探讨华北板块北缘二叠纪末-三叠纪的构造-岩浆演化过程。Abstract: The WuheErtu granite mass, with the main rock types of syenogranite and monzogranite, are distributed in Langshan area, Inner Mongolia, northern margin of the North China Plate. Zircon U-Pb ageis 236.1±1.0Ma, indicating the WuherErtu granite mass formed in late Triassic.Geochemical results show high content of SiO2(71.94~73.91%), K2O+Na2O(8.34~8.88%), low content of Ca and Mg, and weak content of aluminum(0.98 < A/CNK < 1.07). In SiO2-K2O diagram, sample points fall into the transitional region between high-K calc-alkaline and Shoshonite series. In the primitive mantle-normalized spider diagram, the geochemical characteristics of the granite mass show in some degree enrichment in Rb、Th、K、Nd、Zr、Hf、Sm and depletion in Ba、Nb、Ta、Sr、P、Ti, with medium to negligible Eu anomalies (δEu=0.47~0.66), which indicate the WuherErtu granite mass belong to the post-collisional granite formed in the tectonic setting transformed from compression system to extension system. Zircon Hf isotopic displays that εHf(t) values vary from -20.6 to +7.6 and Hf model ages (TDM2) vary from 780~2559 Ma, which suggest a mixed magma source of old continental crust with a small involvement of juvenile components.The comprehensive study of this granite mass helps to further understand and explore the tectonic-magmatic evolution of the northern margin of the North China plate in late Permian-Triassic.
-
Key words:
- Inner Mongolia /
- Langshan area /
- the triassic granite /
- post-collision /
- geochemistry
-
图 6 原始地幔标准化蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)[51]
Figure 6. primitive mantle-normalized trace element spider diagram (a) and chondrite-normalized REE patterns (b)
图 9 乌和尔图花岗岩构造判别图
a—Rb-Yb+Ta; b—Rb-Y+Nb判别图(底图据[54]); c—AL2O3-SiO2; d—FeOt/(FeOt+MgO)-SiO2图解(底图据[49]), ORG-大洋脊花岗岩; WPG-板内花岗岩; VAG-火山弧花岗岩; Syn-COLG-同碰撞花岗岩; Post-COLG-后碰撞花岗岩; IAG-岛弧花岗岩类; CAG-大陆弧花岗岩类; CCG-大陆碰撞花岗岩类; POG-后造山花岗岩类; RRG-与裂谷有关的花岗岩类; CEUG-与大陆的造陆抬升有关的花岗岩类
Figure 9. Determinant diagram of the tectonic setting of the WuherErtu granite mass
表 1 乌和尔图花岗岩岩体LA-MC-ICP-MS锆石U-Pb同位素分析数据
Table 1. LA-MC-ICP-MS Zircon U-Pb isotope analysis data of the WuherErtu granite mass
样品号 含量(×10-6) 同位素比值 年龄(Ma) Pb U 232Th/238U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 3306.1.1 62 1630 0.256 0.0379 0.0002 0.2963 0.003 0.0567 0.0006 240 2 263 4 3306.1.2 64 1790 0.138 0.0374 0.0002 0.2660 0.004 0.0516 0.0010 237 2 240 3 3306.1.3 44 1112 0.520 0.0372 0.0002 0.2611 0.010 0.0509 0.0028 235 2 236 3 3306.1.4 78 1990 0.117 0.0413 0.0003 0.3021 0.009 0.0531 0.0023 261 3 268 4 3306.1.5 82 2040 0.578 0.0373 0.0003 0.2936 0.027 0.0570 0.0076 236 2 261 4 3306.1.6 52 1234 0.805 0.0372 0.0002 0.2616 0.004 0.0510 0.0010 236 2 236 3 3306.1.7 47 1214 0.478 0.0375 0.0003 0.2636 0.009 0.0509 0.0024 238 2 238 3 3306.1.8 58 1425 0.800 0.0373 0.0002 0.2622 0.004 0.0510 0.0010 236 2 236 3 3306.1.9 81 2080 0.533 0.0374 0.0002 0.2637 0.004 0.0511 0.0013 237 2 238 3 3306.1.10 176 4774 0.207 0.0372 0.0002 0.3251 0.004 0.0634 0.0011 236 2 286 4 3306.1.11 15 406 0.322 0.0374 0.0002 0.2840 0.003 0.0551 0.0008 237 2 254 5 3306.1.12 84 2130 0.592 0.0371 0.0002 0.2673 0.007 0.0523 0.0018 235 3 241 3 3306.1.13 51 1375 0.321 0.0371 0.0002 0.2656 0.002 0.0519 0.0005 235 2 239 3 3306.1.14 53 1449 0.247 0.0372 0.0002 0.2623 0.003 0.0511 0.0006 236 2 236 3 3306.1.15 42 1000 0.780 0.0374 0.0002 0.2629 0.003 0.0509 0.0007 237 2 237 3 3306.1.16 43 1153 0.356 0.0372 0.0002 0.2649 0.003 0.0516 0.0007 235 2 239 3 3306.1.17 32 787 0.608 0.0373 0.0002 0.2717 0.007 0.0528 0.0020 236 2 244 4 3306.1.18 78 2095 0.323 0.0374 0.0002 0.2722 0.005 0.0528 0.0012 237 2 244 3 3306.1.19 34 882 0.452 0.0373 0.0002 0.2634 0.006 0.0512 0.0018 236 2 237 4 3306.1.20 62 1592 0.608 0.0372 0.0003 0.2609 0.008 0.0509 0.0017 235 2 235 3 3306.1.21 101 3400 0.410 0.0230 0.0002 0.5061 0.005 0.1594 0.0012 147 2 416 6 3306.1.22 14 339 0.833 0.0373 0.0002 0.3126 0.002 0.0608 0.0005 236 2 276 5 3306.1.23 96 2615 0.252 0.0372 0.0002 0.3226 0.003 0.0630 0.0008 235 2 284 4 3306.1.24 53 1358 0.635 0.0371 0.0002 0.2695 0.004 0.0526 0.0010 235 2 242 4 3306.1.25 67 1778 0.455 0.0374 0.0003 0.2625 0.003 0.0509 0.0010 237 2 237 3 3306.1.26 33 973 0.066 0.0372 0.0002 0.2616 0.003 0.0510 0.0007 235 3 236 4 3306.1.27 37 902 0.890 0.0371 0.0002 0.2605 0.006 0.0509 0.0017 235 2 235 3 3306.1.28 27 776 0.166 0.0373 0.0002 0.2648 0.002 0.0515 0.0007 236 3 239 4 3306.1.29 72 2035 0.183 0.0372 0.0002 0.2615 0.002 0.0510 0.0005 235 2 236 3 3306.1.30 57 1505 0.421 0.0375 0.0002 0.2657 0.005 0.0514 0.0015 237 2 239 3 3306.1.31 48 1304 0.294 0.0376 0.0003 0.2671 0.013 0.0516 0.0035 238 2 240 3 3306.1.32 59 1539 0.480 0.0374 0.0004 0.2650 0.004 0.0514 0.0010 237 2 239 3 表 2 乌和尔图花岗岩岩体主量元素、微量元素及稀土元素分析结果
Table 2. Analysis results of major elements, trace elements and rare earth elements of the WuherErtu granite mass
编号 3306-1 3187-1 3611-1 3611-2 3612-1 3241-1 Ls15-1 Ls15-2 Ls15-3 样品名称 二长花岗岩 二长花岗岩 正长花岗岩 正长花岗岩 二长花岗岩 正长花岗岩 正长花岗岩 正长花岗岩 正长花岗岩 SiO2 72.41 73.84 72.34 71.94 72.56 73.91 72.8 72.85 72.89 TiO2 0.19 0.17 0.26 0.29 0.2 0.18 0.21 0.24 0.24 Al2O3 13.9 14.18 14.35 14.5 14.28 14.07 14.16 14.14 14.21 Fe2O3 1.33 0.43 0.57 0.4 0.48 0.54 0.47 0.53 0.6 FeO 0.91 0.68 1.17 1.45 0.96 0.65 0.97 1.05 1.01 MnO 0.05 0.019 0.032 0.025 0.03 0.024 0.028 0.027 0.028 MgO 0.38 0.28 0.45 0.52 0.35 0.29 0.33 0.35 0.38 CaO 1.76 1.44 1.44 1.24 1.48 1.2 1.36 1.19 1.12 Na2O 3.29 3.42 3.04 3.26 3.39 3.38 3.33 3.29 3.38 K2O 5.19 4.92 5.64 5.62 5.4 5.16 5.39 5.34 5.26 P2O5 0.08 0.049 0.086 0.092 0.064 0.039 0.059 0.069 0.068 TOI 0.41 0.34 0.37 0.33 0.52 0.36 0.66 0.6 0.51 Total 99.90 99.77 99.75 99.67 99.71 99.80 99.77 99.68 99.70 Cs 8.66 2.63 5.03 18.3 3.94 5.41 8.64 7.3 10.6 Rb 261 179 211 235 190 205 225 198 212 Sr 154 132 171 185 151 139 139 150 153 Ba 690 785 1060 1230 844 687 842 878 871 Ga 17.4 18.2 18.4 18.6 18.6 17.7 20.1 19 19.6 Nb 20.2 13 16.1 18.6 11.9 12.8 16.5 15.5 16.6 Ta 2.43 0.82 1.04 1.25 0.85 1.49 1.7 1.28 1.48 Zr 154 116 239 229 162 136 159 191 190 Hf 4.76 3.89 7.54 7.07 5.58 4.9 5.35 6.51 6.54 Th 23.2 27.9 36.2 39.3 38.8 37.9 37.1 43.3 33.2 V 15.8 13.6 22.5 24.9 15.1 12.1 15 17 17.2 Cr 6.38 3.59 5.37 5.06 3.62 3.24 6.55 4.38 5.14 Co 1.57 1.24 2.12 2.07 1.54 1.28 1.56 1.81 1.8 Ni 3.55 0.74 1.4 1.45 1.04 0.9 1.96 0.85 1.12 Li 81.9 24.8 30.5 27.5 24.8 22.8 64.1 47.9 72.1 Sc 5.55 2.97 3.33 3.45 3.65 3.31 3.79 3.97 3.64 U 2.39 2.77 2.48 3.52 4.33 3.3 3.72 3.51 2.64 Pb 26 39.1 35.3 35.7 43.3 36 35.5 37.7 37.6 Zn 36.6 23.9 33.8 24.5 33.3 25 33.9 36.8 35.2 Cu 12.8 4.23 8.2 3.67 5.31 10.1 6.89 9.43 9.62 La 42.6 35.3 55.9 73.8 55.5 47.5 55.6 63.9 62.6 Ce 73.1 63.1 97.9 130 94.8 78.2 96.3 111 110 Pr 7.98 6.99 10.7 13.9 10.4 8.68 10.6 12.3 12 Nd 26.3 23.3 35.7 46.4 34.6 28.8 35.2 41.2 40 Sm 3.86 3.36 5.33 6.39 4.91 4.21 4.96 5.76 5.7 Eu 0.6 0.68 0.94 0.92 0.82 0.7 0.8 0.88 0.86 Gd 2.99 2.82 4.35 5.21 3.92 3.31 4.02 4.49 4.51 Tb 0.39 0.34 0.51 0.56 0.44 0.34 0.51 0.5 0.5 Dy 1.97 1.74 2.54 2.66 2.1 1.51 2.7 2.33 2.41 Ho 0.38 0.32 0.45 0.48 0.38 0.25 0.54 0.43 0.44 Er 1.04 0.84 1.21 1.3 1.02 0.69 1.5 1.14 1.2 Tm 0.15 0.12 0.17 0.18 0.14 0.099 0.21 0.16 0.18 Yb 1.01 0.73 1.09 1.1 0.9 0.7 1.35 1.08 1.16 Lu 0.15 0.11 0.17 0.17 0.14 0.11 0.2 0.17 0.18 Y 9.79 7.5 10.9 11.5 9.1 6 13.9 10.4 10.8 表 3 乌和尔图花岗岩岩体LA-MC-ICP-MS锆石Hf同位素分析数据
Table 3. LA-MC-ICP-MS zircon Hf isotope analysis date of the WuherErtu granite mass
Sample
numberAge
(Ma)176Yb/177Hf
(corr)176Lu/177Hf
(corr)176Hf/177Hf
(corr)2σ εHf(0) εHf(t) 2s TDM1
(Ma)2s fLu/Hf TDM2
(Ma)3306.1.1 235 0.06032 0.00118 0.28252 0.000023 -8.8 -3.8 0.8 1038 66 -0.96 1506 3306.1.2 236 0.07091 0.00139 0.28240 0.000019 -13.3 -8.4 0.7 1224 53 -0.96 1793 3306.1.3 236 0.06697 0.00131 0.28245 0.000022 -11.5 -6.5 0.8 1148 63 -0.96 1676 3306.1.4 238 0.04772 0.00084 0.28284 0.000028 2.5 7.6 1.0 577 80 -0.97 780 3306.1.5 236 0.05095 0.00117 0.28242 0.000020 -12.5 -7.5 0.7 1183 56 -0.96 1737 3306.1.6 237 0.05790 0.00137 0.28250 0.000021 -9.8 -4.8 0.7 1081 59 -0.96 1567 3306.1.7 236 0.05788 0.00136 0.28247 0.000017 -10.8 -5.8 0.6 1120 47 -0.96 1630 3306.1.8 235 0.04618 0.00110 0.28244 0.000019 -11.7 -6.7 0.7 1149 53 -0.97 1686 3306.1.9 235 0.04757 0.00115 0.28248 0.000018 -10.3 -5.3 0.7 1096 52 -0.97 1599 3306.1.10 236 0.04250 0.00101 0.28246 0.000016 -11.0 -6.0 0.6 1121 46 -0.97 1644 3306.1.11 237 0.03138 0.00075 0.28256 0.000015 -7.4 -2.3 0.5 969 41 -0.98 1410 3306.1.12 235 0.03725 0.00092 0.28245 0.000014 -11.3 -6.3 0.5 1128 38 -0.97 1659 3306.1.13 235 0.04494 0.00109 0.28244 0.000018 -11.6 -6.6 0.6 1146 51 -0.97 1681 3306.1.14 237 0.04976 0.00118 0.28245 0.000018 -11.5 -6.5 0.7 1146 52 -0.96 1676 3306.1.15 235 0.05675 0.00133 0.28255 0.000017 -7.9 -3.0 0.6 1006 48 -0.96 1451 3306.1.16 236 0.01323 0.00036 0.28205 0.000020 -25.7 -20.6 0.7 1672 53 -0.99 2559 -
[1] Cawood P A, Kröner A, Collins W J, et al. Accretionary orogens through Earth history[A]. Cawood P A, Kröner A. Earth Accretionary Systems in Space and Time[M].Geological Society, London, Special Publications, 2009, 318(1):1~36. [2] Xiao W J, Windley B F, Yuan C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3):221~270. doi: 10.2475/03.2009.02 [3] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31~47. doi: 10.1144/0016-76492006-022 [4] Kovalenko V I, Yarmolyuk V V, Kovach V P, et al. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt:Geological and isotopic evidence[J]. Journal of Asian Earth Sciences, 2004, 23(5):605~627. doi: 10.1016/S1367-9120(03)00130-5 [5] Jahn B M, Wu F Y, Chen B. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23(2):82~92. [6] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342~1364. doi: 10.1016/j.gr.2012.05.015 [7] Zhang X, Gao Y, Wang Z, et al. Carboniferous appinitic intrusions from the northern North China craton:Geochemistry, petrogenesis and tectonic implications[J]. Journal of the Geological Society, 2012, 169(3):337~351. doi: 10.1144/0016-76492011-062 [8] Xu Z, Han B F, Ren R, et al. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China:Implications for Paleozoic intra-oceanic subduction-accretion process[J]. Lithos, 2012, 132~133:141~161. doi: 10.1016/j.lithos.2011.11.016 [9] Han B F, He G Q, Wang X C, et al. Late Carboniferous collision between the Tarim and Kazakhstan-Yili Terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth-Science Reviews, 2011, 109(3/4):74~93. doi: 10.1134/S0016852115040020 [10] Fu D, Huang B, Peng S B, et al. Geochronology and geochemistry of Late Carboniferous volcanic rocks from northern Inner Mongolia, North China:Petrogenesis and tectonic implications[J]. Gondwana Research, 2016, 36:545~560. doi: 10.1016/j.gr.2015.08.007 [11] Zhang W, Wu T R, Zheng R G, et al. Post-collisional Southeastern Beishan granites:Geochemistry, geochronology, Sr-Nd-Hf isotopes and their implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 2012, 58:51~63. doi: 10.1016/j.jseaes.2012.07.004 [12] Luo H L, Wu T R, Zhao L, et al. Permian high Ba-Sr granitoids:Geochemistry, age and tectonic implications of Erlangshan Pluton, Urad Zhongqi, Inner Mongolia[J]. Acta Geologica Sinica (English Edition), 2009, 83(3):603~614. doi: 10.1111/j.1755-6724.2009.00054.x [13] 罗红玲, 吴泰然, 赵磊.华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J].岩石学报, 2009, 25(3):515~526. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903005.htmLUO Hong-ling, WU Tai-ran, ZHAO Lei. Zicron SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China Plate and tectonic significance[J]. Acta Petrologica Sinica, 2009, 25(3):515~526. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903005.htm [14] Tang K D. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton[J]. Tectonics, 1990, 9(2):249~260. doi: 10.1029/TC009i002p00249 [15] Zhang S H, Zhao Y, Liu J M, et al. Different sources involved in generation of continental arc volcanism:The Carboniferous-Permian volcanic rocks in the northern margin of the North China block[J]. Lithos, 2016, 240~243:382~401. doi: 10.1016/j.lithos.2015.11.027 [16] Wilde S A. Final amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction-A review of the evidence[J]. Tectonophysics, 2015, 662:345~362. doi: 10.1016/j.tecto.2015.05.006 [17] Wang Z J, Xu W L, Pei F P, et al. Geochronology and geochemistry of middle Permian-Middle Triassic intrusive rocks from central-eastern Jilin Province, NE China:Constraints on the tectonic evolution of the eastern segment of the Paleo-Asian Ocean[J]. Lithos, 2015, 238:13~25. doi: 10.1016/j.lithos.2015.09.019 [18] Jian P, Liu D Y, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118(1/2):169~190. https://www.intechopen.com/books/updates-in-volcanology-from-volcano-modelling-to-volcano-geology/ordovician-and-carboniferous-volcanism-plutonism-in-central-inner-mongolia-china-and-paleozoic-evolu [19] Zhang S H, Zhao Y, Song B, et al. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton:Geochronology, petrogenesis, and tectonic implications[J]. GSA Bulletin, 2009, 121(1/2):181~200. http://www.academia.edu/4427885/Contrasting_Late_Carboniferous_and_Late_Permian-Middle_Triassic_intrusive_suites_from_the_northern_margin_of_the_North_China_craton_Geochronology_petrogenesis_and_tectonic_implications [20] Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1441~1467. doi: 10.1007/s00531-008-0368-2 [21] Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction-and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 2009, 34(3):245~257. doi: 10.1016/j.jseaes.2008.05.007 [22] Jian P, Liu D Y, Kröner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for continental growth[J]. Lithos, 2008, 101(3/4):233~259. doi: 10.1007/s12583-016-0912-2 [23] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6):123~136. http://adsabs.harvard.edu/abs/2003Tecto..22.1069X [24] Chen B, Jahn B M, Wilde S, et al. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China:petrogenesis and tectonic implications[J]. Tectonophysics, 2000, 328(1/2):1069. http://www.academia.edu/13775019/Two_contrasting_paleozoic_magmatic_belts_in_northern_Inner_Mongolia_China_petrogenesis_and_tectonic_implications [25] Liégeois J P. Preface-some words on the post-collisional magmatism[J]. Lithos, 1998, 45:15~18. doi: 10.1007/s12583-016-0912-2 [26] Liu M, Zhang D, Xiong G Q, et al. Zircon U-Pb age, Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia:Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2016, 120:139~158. doi: 10.1016/j.jseaes.2016.01.005 [27] Wang Z Z, Han B F, Feng L X, et al. Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2015, 97:337~351. doi: 10.1016/j.jseaes.2014.08.005 [28] Lin L N, Xiao W J, Wan B, et al. Geochronologicand Geochemicalevidenceforpersistence of South-dipping subduction to Late Permian time, Langshan area, Inner Mongolia(China):Significance for termination of accretionary orogenesis in the Southern Altaids[J]. American Journal of Science, 2014, 314(2):679-703. doi: 10.2475/02.2014.08 [29] 吴亚飞, 曾键年, 曹建劲, 等.内蒙古东升庙海西期岩体锆石U-Pb年龄及Hf同位素特征[J].地质科技情报, 2013, 32(6):22~29. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306005.htmWU Ya-fei, ZENG Jian-nian, CAO Jian-jin, et al. Zircon U-Pb ages and Hf isotopes of hercynian intrusion in Dongshengmiao, Inner Mongolia[J]. Geological Science and Technology Information, 2013, 32(6):22~29. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306005.htm [30] 刘晔, 钱建强, 杨斌.内蒙古东升庙一带花岗质岩体锆石年代学及其构造意义[J].甘肃地质, 2013, 22(4):37~44. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201304007.htmLIU Ye, QIAN Jian-qiang, YANG Bin. Zircon geochronology of granitic mass in Dongshengmiao of Inner Mongolia and tectonic significance[J]. Gansu Geology, 2013, 22(4):37~44. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201304007.htm [31] 于延秋, 郭守钰, 王立峰.内蒙古狼山浩日格山海西期花岗岩体特征与形成环境[J].世界地质, 2011, 30(3):345~351. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201103005.htmYU Yan-qiu, GUO Shou-yu, WANG Li-feng, et al. Characteristics and formation environment of Hercynian granites in Haorigeshan of Langshan, Inner Mongolia[J]. Global Geology, 2011, 30(3):345~351. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201103005.htm [32] 鲁有朋, 俞胜, 张永全, 等.内蒙狼山地区中生代构造演化及年代学特征[J].甘肃地质, 2015, 24(2):24~29. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201502005.htmLU You-peng, YU Sheng, ZHANG Yong-quan, et al. Tectonic evolution and chronology constrains of Langshan region in Inner Mongolia autonomous[J]. Gansu Geology, 2015, 24(2):24~29. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201502005.htm [33] 高洪雷. 内蒙古狼山地区中生代构造演化与年代学约束[D]北京: 中国地质大学(北京), 2010. http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085195.htmGAO Hong-lei. Structure evolution and chronology constrains of Lang Shan in Neimeng autonomous region[D]. Beijing:China University of Geosciences (Beijing), 2010. http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085195.htm [34] Sengör A M C, Natal' In B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299~307. doi: 10.1038/364299a0 [35] Shi X J, Wang T, Zhang L, et al. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa:Constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 201, 208~209:158~177. http://adsabs.harvard.edu/abs/2014Litho.208..158S [36] 刘晔. 内蒙古东升庙-带花岗质片麻岩及侵入岩的地球化学、年代学特征及其构造意义[D]. 兰州: 兰州大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10730-1012375117.htmLIU Ye. Geochemical and chronological characteristicsof the granitic gneisses and intrusive rocks in Dongshengmiao region, Inner Mongolia and their tectonic implications[D]. Lanzhou:Lanzhou University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10730-1012375117.htm [37] Hu J M, Gong W B, Wu S J, et al. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 2014, 255:756~770. doi: 10.1016/j.precamres.2014.08.013 [38] 彭润民, 翟裕生, 王建平, 等.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报, 2010, 55(26):2611~2620. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201026009.htmPENG Run-min, ZHAI Yu-sheng, WANG Jian-ping, et al. Discovery of Neoproterozoic acid volcanic rock in the south-western section of Langshan, Inner Mongolia[J]. Chinese Science Bulletin (Chinese Version), 2010, 55(26):2611~2620. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201026009.htm [39] 赵勇, 蔡向民, 李亚林, 等.内蒙古宝音图晚二叠世-晚三叠世花岗岩岩石化学特征及其构造环境[J].矿物岩石, 2011, 31(1):49~55. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201101007.htmZHAO Yong, CAI Xiang-min, LI Ya-lin, et al. The petrochemical characteristics and tectonic setting of the Late Permian and the Late Triassic for the granitic batholith in Buyant area, Inner Mongolia[J]. Journal of Mineralogy and Petrology, 2011, 31(1):49~55. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201101007.htm [40] 皮桥辉, 刘长征, 陈岳龙, 等.内蒙古霍各乞海西期侵入岩形成时代、成因及其与铜矿体的关系[J].矿床地质, 2010, 29(3):437~451. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201003005.htmPI Qiao-hui, LIU Chang-zheng, CHEN Yue-long, et al. Formation epoch and genesis of intrusive rocks in Huogeqi orefield of Inner Mongolia and their relationship with copper mineralization[J]. Mineral Deposits, 2010, 29(3):437~451. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201003005.htm [41] 李怀坤, 朱士兴, 相振群, 等.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J].岩石学报, 2010, 26(7):2131~2140. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htmLI Huai-kun, ZHU Shi-xing, XIANG Zhen-qun, et al. Zircon U-Pb dating on tuffbed from Gaoyuzhuang formation in Yanqing, Beijing:Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7):2131~2140. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm [42] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537~571. [43] Ludwig KR. Isoplot/Ex:A Geochronological toolkit for microsoftexcel version 3.00[M]. Berkeley:Berkeley Geochronology Center, 2003, 4:1~70. [44] 耿建珍, 李怀坤, 张健, 等.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报, 2011, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004GENG Jian-zhen, LI Huai-kun, ZHANG Jian, et al. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10):1508~1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 [45] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1/2):105~126. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001063.htm [46] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology, 2004, 209(1/2):121~135. http://www.sciencedirect.com/science/article/pii/S0009254104001731 [47] Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2):243~258. http://www.academia.edu/5433105/The_Lu-Hf_isotope_geochemistry_of_chondrites_and_the_evolution_of_the_mantle-crust_system [48] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133~147. doi: 10.1016/S0016-7037(99)00343-9 [49] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101(5):635~643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [50] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63~81. doi: 10.1007/BF00384745 [51] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[A].Saunders A D, Norry M J. Magmatism in the Ocean Basin[M].Geological Society, London, Special Publications, 1989, 42(1):313~345. [52] 李献华, 李武显, 李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 2007, 52(9):981~991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htmLI Xian-hua, LI Wu-xian, LI Zheng-xiang. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China[J]. Chinese Science Bulletin, 2007, 52(14):1873~1885. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm [53] Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4):336~352. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001074.htm [54] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956~983. doi: 10.1093/petrology/25.4.956 [55] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3):605~626. doi: 10.1016/S0024-4937(98)00085-1 [56] Barbarin B. Granitoids:Main petrogenetic classifications in relation to origin and tectonic setting[J]. Geological Journal, 1990, 25(3/4):227~238. http://d.wanfangdata.com.cn/nstlqk_10.1002-gj.3350250306.aspx [57] Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[A]. Coward MP, Ries AC. Collision tectonics[M].Geological Society, London, Special Publications, 1986, 19(1):67~81. [58] 程裕淇.中国区域地质概论[M].北京:地质出版社, 1994.CHENG Yu-qi. Regional geological survey China[M]. Beijing:Geological Publishing House, 1994. [59] 张招崇, 王永强.冀北印支期碱性岩浆活动及其地球动力学意义[J].矿物岩石地球化学通报, 1997, 16(4):214~217. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH704.001.htmZHANG Zhao-chong, WANG Yong-qiang. Indosinian alkaline magmatism in North Hebei Province and its geodynamic significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1997, 16(4):214~217. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH704.001.htm [60] 柳长峰, 刘文灿, 周志广.内蒙古四子王旗地区古生代-早中生代侵入岩活动期次、特征及构造背景[J].地质学报, 2014, 88(6):992~1002. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406003.htmLIU Chang-feng, LIU Wen-can, ZHOU Zhi-guang. Geochronology, geochemistry and tectonic setting of the Paleozoic-Early Mesozoic intrusive in Siziwangqi, Inner Mongolia[J]. Acta Geologica Sinica, 2014, 88(6):992~1002. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406003.htm [61] 张维, 简平.华北北缘固阳二叠纪闪长岩-石英闪长岩-英云闪长岩套SHRIMP年代学[J].中国地质, 2012, 39(6):1593~1603. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201206008.htmZHANG Wei, JIAN Ping. SHRIMP dating of the Permian Guyang diorite-quartz diorite-tonalite suite in the northern margin of the North China Craton[J]. Geology in China, 2012, 39(6):1593~1603. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201206008.htm [62] Yu Q, Ge W C, Zhang J, et al. Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China[J]. Gondwana Research, 2017, 43:164~177. doi: 10.1016/j.gr.2016.01.010 [63] 尚庆华.北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义[J].科学通报, 2004, 49(24):2574~2579. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB20042400D.htmSHANG Qing-hua. Occurrences of Permian radiolarians in central and eastern Nei Mongol (Inner Mongolia) and their geological significance to the Northern China Orogen[J]. Chinese Science Bulletin, 2004, 49(24):2613~2619. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB20042400D.htm [64] 王玉净, 樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报, 1997, 36(1):58~69. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX701.004.htmWANG Yu-jing, FAN Zhi-yong. Discovery of Permian radiolarians in ophiolite belt on northern side of XAR Moron River, Nei Monggol and its geological significance[J]. Acta Palaeontologica Sinica, 1997, 36(1):58~69. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX701.004.htm [65] 樊志勇.内蒙古西拉木伦河北岸杏树洼一带石炭纪洋壳"残片"的发现及其构造意义[J].中国区域地质, 1996, 15(4):382. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD604.016.htmFAN Zhi-yong. Discovery of the carboniferous oceanic crust fragments and its tectonic in the north of the Xila Mu River, Inner Mongolia[J]. Regional Geology of China, 1996, 15(4):382. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD604.016.htm [66] 任荣, 牟保磊, 韩宝福, 等.河北矾山钾质碱性超镁铁岩-正长岩杂岩体的锆石SHRIMP U-Pb年龄[J].岩石学报, 2009, 25(3):588~594. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903012.htmREN Rong, MU Bao-lei, HAN Bao-fu, et al. ZirconSHRIMP U-Pb dating of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China[J]. Acta Petrologica Sinica, 2009, 25(3):588~594. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903012.htm [67] 吴福元, 徐义刚, 高山, 等.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报, 2008, 24(6):1145~1174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806001.htmWU Fu-yuan, XU Yi-gang, GAO Shan, et al. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica, 2008, 24(6):1145~1174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806001.htm [68] 吕林素, 毛景文, 刘珺, 等.华北克拉通北缘岩浆Ni-Cu-(PGE)硫化物矿床地质特征、形成时代及其地球动力学背景[J].地球学报, 2007, 28(2):148~166. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200702005.htmLV Lin-su, MAO Jing-wen, LIU Jun, et al. Geological characteristics, geochronology and tectonic settings of typical magmatic Ni-Cu-(PGE) sulfide deposits in thenorthern margin of the North China Craton[J]. Acta Geoscientica Sinica, 2007, 28(2):148~166. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200702005.htm [69] 田伟, 陈斌, 刘超群, 等.冀北小张家口超基性岩体的锆石U-Pb年龄和Hf同位素组成[J].岩石学报, 2007, 23(3):583~590. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703007.htmTIAN Wei, CHEN Bin, LIU Chao-qun, et al. Zircon U-Pb age and Hf isotopic composition of the Xiaozhangjiakou ultramafic pluton in northern Hebei[J]. Acta Petrologica Sinica, 2007, 23(3):583~590. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703007.htm [70] 韩宝福, 加加美宽雄, 李惠民.河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义[J].岩石学报, 2004, 20(6):74~87. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406006.htmHAN Bao-fu, Kagami H, LI Hui-min. Age and Nd-Sr isotopic geochemistry of the Guangtoushan alkaline granite, Hebei province, China:Implications for early Mesozoic crust-mantle interaction in North China Block[J]. Acta Petrologica Sinica, 2004, 20(6):74~87. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406006.htm [71] 牟保磊, 邵济安, 储著银, 等.河北矾山钾质碱性超镁铁岩-正长岩杂岩体Sm-Nd年龄和Sr、Nd同位素特征[J].岩石学报, 2001, 17(3):358~365. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103002.htmMU Bao-lei, SHAO Ji-an, CHU Zhu-yin, et al. Sm-Nd age and Sr, Nd isotopic characteristics of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei province, China[J]. Acta Petrologica Sinica, 2001, 17(3):358~365. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103002.htm