CURRENT STATUS OF HYPERSPECTRAL TECHNIQUES FOR OIL AND GAS EXPLORATION IN VEGETATION COVERING AREA
-
摘要: 高光谱遥感油气勘探技术利用油气微渗漏所致的地表蚀变矿物异常和地植物异常在光谱上的异常表现提取油气微渗漏信息, 是油气勘探的辅助手段。针对高光谱遥感油气勘探技术在植被覆盖区应用中存在的植被遮挡地表真实情况的问题开展研究, 总结相关领域的国内外研究现状, 指出其存在的问题, 提出了与植被反射率相关的指数作为油气微渗漏的指示标志, 确定了适用于植被覆盖区的高光谱遥感油气微渗漏信息大面积普查的工作流程, 研究成果可为建立更加广泛、适用的高光谱遥感油气勘探模式提供新的参考依据。Abstract: The technology of oil-gas exploration using hyperspectral remote sensing is based on the spectrum anomalies of alteration minerals and plants to extract the information of hydrocarbon microseepage, which is an auxiliary means of oil and gas exploration. But in the study area covered by vegetation, the real situation of the surface is occluded by the existence of vegetation, which will affect the application efficiency to the technology of oil-gas exploration using hyperspectral remote sensing. In order to explore the solution of this block, the real situation of the related domestic and foreign researches is summarized and the existing problems are pointed out. The vegetation reflectance indices which can be used as the indication sign of hydrocarbon microseepage are summed up, and the work flow which can apply to the large area census of hydrocarbon microseepage using hyperspectral remote sensing is put forwarded. The research result of this paper provide a new reference for the establishment of the more extensive and applicable work model of oil and gas exploration using hyperspectral remote sensing.
-
Key words:
- hyperspectral /
- remote sensing /
- oil and gas microseepage /
- vegetation
-
图 3 实验室模拟烃类渗漏环境[15]
Figure 3. Laboratory simulation of hydrocarbon seepage environment
图 4 油气宏观渗漏[16]
Figure 4. Macro leakage of oil and gas
图 5 油气渗漏点周围植被可视症状明显[4]
Figure 5. Visual symptoms of plants surrounding the location of oil and gas seepage
-
[1] Mouat D A, Lin Shudao. Vegetation response of geochemical status[J]. Remote Sensing Information, 1988, (4): 37~38. [2] Zhang Yongjiang. Studies on passive sensing of plant chlorophyll fluorescence and application of stress detection[D]. Hangzhou: Zhejing University, 2006. [3] Luo Ya, Xu Jianhua, Yue Wenze. Research on vegetation indices based on the remote sensing images[J]. Ecologic Science, 2005, 24(1): 75~79. http://en.cnki.com.cn/Article_en/CJFDTOTAL-STKX200501022.htm [4] Yang H, Zhang J, van der Meer F, et al. Geochemistry and field spectrometry for detecting hydrocarbon microseepage [J]. Terra Nova, 1998, 10 (5): 231~235. doi: 10.1046/j.1365-3121.1998.00196.x [5] He Zaicheng, Lv Huiping, Wang Yunpeng, et al. Simulating experiment on ecological and spectral changes of three kinds of plants caused by hydrocarbon microseepage[J]. Bullutin of Mineralogy Petrology and Geochemistry, 1996, 15(2): 94~96. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH602.006.htm [6] Cao Wengzhong, Zhang Fenglin, Li Ziping, et al. The effect of crude oil upon grasslands vegetation[J]. Journal of Environmental Protection for Oil and Gas Fields, 1997, 7(3): 28~32. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQTB199703007.htm [7] Smith K L, Steven M D, Colls J J. Use of hyperspectral derivatives ratios in the red-edge region to identify plant stress responses to gas leaks[J]. Remote Sensing of Environment, 2004, 92(2): 207~217. doi: 10.1016/j.rse.2004.06.002 [8] Smith K L, Steven M D, Colls J J. Spectral responses of pot-grown plants to displacement of soil oxygen[J]. International Journal of Remote Sensing, 2004, 25(20): 4395~4410. doi: 10.1080/01431160410001729172 [9] Smith K L, Steven M D, Colls J J. Plant spectral responses to gas leaks and other stresses[J]. International Journal of Remote Sensing, 2005, 26(10): 4067~4081. doi: 10.1080/01431160500165625?journalCode=tres20 [10] Noomen F M, Skidmore A K, van der Meer F D, et al. Continuum removed band depth analysis for detecting the effects of natural gas, methane and ethane on maize reflectance[J]. Remote Sensing of Environment, 2006, 105(3): 262~270. doi: 10.1016/j.rse.2006.07.009 [11] Noomen F M, Smith K L, Colls J J, et al. Predicting soil oxygen concentrations using indices based on hyperspectral reflectance of maize and wheat canopies[J]. International Journal of Remote Sensing, 2009, 30(2): 481~497. doi: 10.1080/01431160802339431 [12] Li Lin, Ustin S L, Lay M. Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico[J]. Remote Sensing of Environment, 2005, 94(1): 1~16. doi: 10.1016/j.rse.2004.08.010 [13] van der Werff H M A, Noomen M F, van der Meijde M, et al. Use of hyperspectral remote sensing to detect hazardous gas leakage from pipelines[C]//Bochenek Z. New developments and challenges in remote sensing. Rotterdam: Millpress, 2007: 707~715. [14] Noomen M F, van der Werff H M A, van der Meer F D. Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[J]. Ecological Informatics, 2012, (8): 55~64. http://www.sciencedirect.com/science/article/pii/S1574954112000039 [15] Hese S, Schmullius C. High spatial resolution image object classification for terrestrialoil spill contamination mapping in West Siberia[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, (11): 130~141. http://www.sciencedirect.com/science/article/pii/S0303243408000895 [16] Noomen M F, Skidmore A K, van der Meer F D. Detecting the influence of gas seepage on vegetation, using hyperspectral remote sensing[C]// The 3rd EARSel Workshop on Imaging Spectroscopy, 2003: 252~256.