留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆哈密地区砂岩地震波速的实验研究及其对特殊地质填图物性工作的启示

王怀民 王红才 殷昌吉 李阿伟 赵卫华 杜威

王怀民, 王红才, 殷昌吉, 等, 2017. 新疆哈密地区砂岩地震波速的实验研究及其对特殊地质填图物性工作的启示. 地质力学学报, 23 (2): 224-231.
引用本文: 王怀民, 王红才, 殷昌吉, 等, 2017. 新疆哈密地区砂岩地震波速的实验研究及其对特殊地质填图物性工作的启示. 地质力学学报, 23 (2): 224-231.
WANG Huai-min, WANG Hong-cai, YIN Chang-ji, et al., 2017. THE EXPERIMENTAL RESEARCH OF SEISMIC WAVE VELOCITY OF SANDSTONES IN HAMI, XINJIANG AND THE ENLIGHTMENT TO THE WORK OF PROPERTY ON SPECIAL GEOLOGICAL MAPPING. Journal of Geomechanics, 23 (2): 224-231.
Citation: WANG Huai-min, WANG Hong-cai, YIN Chang-ji, et al., 2017. THE EXPERIMENTAL RESEARCH OF SEISMIC WAVE VELOCITY OF SANDSTONES IN HAMI, XINJIANG AND THE ENLIGHTMENT TO THE WORK OF PROPERTY ON SPECIAL GEOLOGICAL MAPPING. Journal of Geomechanics, 23 (2): 224-231.

新疆哈密地区砂岩地震波速的实验研究及其对特殊地质填图物性工作的启示

基金项目: 

中国地质调查局项目"特殊地质地貌区填图试点" DD20160060

详细信息
    作者简介:

    王怀民(1992-), 男, 硕士研究生, 地质工程专业, 主要从事石油地质、岩石物性的研究。E-mail:wanghuaimin1016@163.com

    通讯作者:

    王红才(1964-), 男, 研究员, 博士生导师, 主要从事岩石力学、岩石物性实验与应用及应力场模拟研究。E-mail:13911082285@139.com

  • 中图分类号: P623

THE EXPERIMENTAL RESEARCH OF SEISMIC WAVE VELOCITY OF SANDSTONES IN HAMI, XINJIANG AND THE ENLIGHTMENT TO THE WORK OF PROPERTY ON SPECIAL GEOLOGICAL MAPPING

  • 摘要: 本文在特殊地质填图的过程中研究了哈密地区砂岩的地震波速,利用ZBL-U520非金属超声检测仪和Autolab2000多功能岩石物性设备,在0~200 MPa(约0~7000 m地下深度)下研究了密度、孔隙度和压力三个因素对砂岩地震波速的影响。研究发现:砂岩的波速与密度呈正相关关系,但与孔隙度呈负相关关系;纵波与密度和孔隙度的线性关系好于横波;波速与压力呈对数关系。此外,本文还分析了ZBL-U520与Autolab2000两种仪器测试方法的适用性。最后针对地质填图的特点给出建议:在特殊地质填图中,不仅要按照规范采集标本,测试其在常温常压下的岩石波速,还应该适当考察不同地层压力状态下的速度特征,才能更全面地认识填图区地震波的性质。

     

  • 图  1  实验仪器

    Figure  1.  Experimental instruments

    图  2  不同压力条件下波速与密度的关系图

    Figure  2.  The relationship between wave velocity and density under different confining pressures

    图  3  不同压力下波速与孔隙度的关系图

    Figure  3.  The relationship between wave velocity and porosity under different pressures

    图  4  孔隙度与速度差的关系图

    Figure  4.  The relationship between porosity and wave velocity difference

    图  5  H1和H2样品波速与压力的关系图

    Figure  5.  The relationship between wave velocity and porosity for H1 and H2

    图  6  H1和H2样品在升压和降压过程中的波速变化对比图

    Figure  6.  The comparison diagram of velocity variation under the raising and reducing pressure process for H1 and H2

    表  1  不同压力条件下波速与密度和孔隙度的拟合关系

    Table  1.   The fitting of density and porosity with respect to wave velocity under different confining pressures

    压力/MPa密度/(g·cm-3)孔隙度/%
    拟合公式R2拟合公式R2
    5Vp=4419ρ-65760.541 Vp=-161.6 $\varphi $ +59020.739
    60Vp=4252ρ-58710.638 Vp =-103.1 $\varphi $ +60070.614
    120Vp=4079ρ-52610.657 Vp =-83.41 $\varphi $ +60290.526
    200Vp=3830ρ-45240.667 Vp=-77.22 $\varphi $ +60680.507
    5Vs=1651ρ-12760.374 Vs=-58.35 $\varphi $ +34200.493
    60Vs=1461ρ-6230.347 Vs=-53.86 $\varphi $ +35350.375
    120Vs=1246ρ+38.290.351 Vs=-52.57 $\varphi $ +35850.362
    200Vs=964ρ+8690.342 Vs=-40.08 $\varphi $ +35640.420
    下载: 导出CSV

    表  2  实验样品基本信息

    Table  2.   The basic information of experimental samples

    样品编号密度/(g·cm-3)状态矿物组成/%孔隙度/%
    石英长石其它
    H12.604自然5525202.66
    H22.629自然5525204.61
    下载: 导出CSV

    表  3  ZBL-U520和Autolab2000两种仪器下的三次纵波速度值

    Table  3.   The three measurements of P-wave velocity values under ZBL-U520 and Autolab2000

    ZBL-U520非金属超声检测仪Autolab2000多功能岩石物性设备(5 MPa)
    第一次第二次第三次第一次第二次第三次
    H1的纵波速度/(m·s-1)519852175179552155555538
    H2的纵波速度/(m·s-1)490748714913529353215306
    下载: 导出CSV

    表  4  ZBL-U520和Autolab2000两种仪器的三次纵波测量数据精度分析

    Table  4.   The analysis of the accuracy of three P-wave measurements of ZBL-U520 and Autolab2000

    样品号ZBL-U520非金属超声检测仪Autolab2000多功能岩石物性设备(5 MPa)
    极差平均值/(m·s-1)标准差最大波动幅度极差平均值/(m·s-1)标准差最大波动幅度
    H1385198190.73%345538170.62%
    H242489722.71560.86%28530714.01190.53%
    下载: 导出CSV
  • [1] Gao S, Kern H, Liu Y S, et al. Measured and calculated seismic velocities and densities for granulites from xenolith occurrences and adjacent exposed lower crustal sections:a comparative study from the North China craton[J]. Journal of Geophysical Research, 2000, 105(B8):18965~18976. doi: 10.1029/2000JB900100
    [2] 郝晋昇, 刘晓红, 李纪汉.华北地区典型岩石在1万巴压力下的密度和弹性波速度的实验研究[J].地震学报, 1985, 7(3):276~284. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198503003.htm

    HAO Jin-sheng, LIU Xiao-hong, LI Ji-han.An experimental study on the density and elastic wave velocity of typical rocks of north China under high pressure up to 10kb[J]. Acta Seismologica Sinica, 1985, 7(3):276~284. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198503003.htm
    [3] 刘永祥, 吴福元, 张世红.高温高压下岩石弹性波速特征及其在深部地质研究中的意义[J].地球物理学进展, 1995, 10(3):82~94. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ503.006.htm

    LIU Yong-xiang, WU Fu-yuan, ZHANG Shi-hong.The characteristics of elastic wave velocity of rocks at high T and P:implications for the study of deep seated geology[J]. Progress in Geophysics, 1995, 10(3):82~94. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ503.006.htm
    [4] 李华, 王良书, 李成, 等.塔里木盆地岩石高温高压下波速的实验研究及其地质意义[J].高校地质学报, 2005, 11(4):601~607. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504017.htm

    LI Hua, WANG Liang-shu, LI Cheng, et al. Experimental study on wave velocity of rocks from Tarim basin at high PT conditions and its geological implications[J]. Geological Journal of China Universities, 2005, 11(4):601~607. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504017.htm
    [5] 卢琳, 闫桂京, 陈建文.地层温度和压力对地震波速的影响[J].海洋地质动态, 2005, 21(9):13~16, 21. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200509003.htm

    LU Lin, YAN Gui-jing, CHEN Jian-wen.Influences of temperature and pressure on velocities of seismic wave[J]. Marine Geology Letters, 2005, 21(9):13~16, 21. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200509003.htm
    [6] 陈祖安, 伍向阳.砂岩孔隙度和含泥量与波速关系的模型[J].地球物理学进展, 2000, 15(1):78~82. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200001006.htm

    CHEN Zu-an, WU Xiang-yang.A model for the relation between wave velocity and porosity as well as clay content in sandstone[J]. Progress in Geophysics, 2000, 15(1):78~82. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200001006.htm
    [7] GUO Bin-bin, WANG Hong-cai, ZHAO Wei-hua, et al. Analysis of seismic anisotropy of the typical slate from the Gaoligong Mountains, Yunnan Province, China[J]. Chinese Journal of Geophysics, 2014, 57(2):154~165. doi: 10.1002/cjg2.2014.57.issue-2
    [8] 马中高, 解吉高.岩石的纵、横波速度与密度的规律研究[J].地球物理学进展, 2005, 20(4):905~910. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200504003.htm

    MA Zhong-gao, XIE Ji-gao.Relationship among compressional wave, shear wave velocities and density in rocks[J]. Progress in Geophysics, 2005, 20(4):905~910. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200504003.htm
    [9] 杨树锋, 陈汉林, 姜继双, 等.高温高压下华南Ⅰ型和S型花岗岩的波速特征及其地质意义[J].中国科学(D辑), 1997, 27(1):33~38. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199701005.htm

    YANG Shu-feng, CHEN Han-lin, JIANG Ji-shuang, et al.The velocity characteristics and its geological significance of Ⅰ and S type granite from Southern China under high temperature and high pressure[J]. Science in China, 1997, 27(1):33~38. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199701005.htm
    [10] Birch F. The velocity of compressional waves in rocks to 10 kilobars, Part 1[J]. Journal of Geophysical Research, 1960, 65(4):1083~1102. doi: 10.1029/JZ065i004p01083
    [11] Bajuk E I, Volarovich M P, Klíma K, et al. Velocity of longitudinal waves in eclogite and ultrabasic rocks under pressures to 4 kilobars[J]. Studia Geophysicaet Geodaetica, 1967, 11(3):271~280. doi: 10.1007/BF02585458
    [12] 史謌, 杨东全.岩石波速和孔隙度、泥质含量之间的关系研究[J].北京大学学报(自然科学版), 2001, 37(3):379~384. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200103016.htm

    SHI Ge, YANG Dong-quan.The regression analysis study on velocity and porisity, and clay content of rocks[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(3):379~384. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200103016.htm
    [13] Tao H, Zou C C, Pei F G, et al. Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones[J]. Applied Geophysics, 2010, 7(2):114~126. doi: 10.1007/s11770-010-0235-3
    [14] Purcell C, Mur A, Soong Y, et al. Integrating velocity measurements in a reservoir rock sample from the SACROC unit with an AVO proxy for subsurface supercritical CO2[J]. The Leading Edge, 2010, 29(2):192~195. doi: 10.1190/1.3304823
    [15] Mur A, Purcell C, Soong Y, et al. Integration of core sample velocity measurements into a 4D seismic survey and analysis of SEM and CT images to obtain pore scale properties[J]. Energy Procedia, 2011, 4:3676~3683. doi: 10.1016/j.egypro.2011.02.299
    [16] Godfrey N J, Christensen N I, Okaya D A. Anisotropy of schists:contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations[J]. Journal of Geophysical Research, 2000, 105(B12):27991~28007. doi: 10.1029/2000JB900286
    [17] Hornby B E. Experimental laboratory determination of the dynamic elastic properties of wet, drained shales[J]. Journal of Geophysical Research, 1998, 103(B12):29945~29964. doi: 10.1029/97JB02380
    [18] Li A W, Sun D S, Wang H C, et al. Seismic velocity and shear-wave splitting under cyclic loading[A].2011 International Conference on Electronics, Communications and Control[C]. Zhejiang:IEEE, 2011, 4506~4508.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  63
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-15
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回