THE EXPERIMENTAL RESEARCH OF SEISMIC WAVE VELOCITY OF SANDSTONES IN HAMI, XINJIANG AND THE ENLIGHTMENT TO THE WORK OF PROPERTY ON SPECIAL GEOLOGICAL MAPPING
-
摘要: 本文在特殊地质填图的过程中研究了哈密地区砂岩的地震波速,利用ZBL-U520非金属超声检测仪和Autolab2000多功能岩石物性设备,在0~200 MPa(约0~7000 m地下深度)下研究了密度、孔隙度和压力三个因素对砂岩地震波速的影响。研究发现:砂岩的波速与密度呈正相关关系,但与孔隙度呈负相关关系;纵波与密度和孔隙度的线性关系好于横波;波速与压力呈对数关系。此外,本文还分析了ZBL-U520与Autolab2000两种仪器测试方法的适用性。最后针对地质填图的特点给出建议:在特殊地质填图中,不仅要按照规范采集标本,测试其在常温常压下的岩石波速,还应该适当考察不同地层压力状态下的速度特征,才能更全面地认识填图区地震波的性质。
-
关键词:
- 特殊地质填图 /
- 哈密地区砂岩地震波速 /
- 围压 /
- 孔隙度 /
- 密度
Abstract: The seismic wave velocity of sandstones in Hami in the process of special geological mapping isstudied in this article. The effects of density, porosity and pressure on seismic wave velocity under different pressure(0~200 MPa)are analyzed by applying ZBL-U520 nonmetal ultrasonic detector and AutoLab 2000 computer-controlled servo hydraulic triaxial test system. The results show that wave velocity and density are positively correlated, but there is a negative correlation between wave velocity and porosity. The degree of linear relationship between density or porosity and P-wave is higher than that of S-wave. Both P-and S-wave velocities of sandstones in Hami area increase notably with the increasing pressure which denotes a strong logarithmic relationship.Besides, the adaptability of test methods of ZBL-U520 nonmetal ultrasonic detector and AutoLab 2000 computer-controlled servo hydraulic triaxial test system are analyzed.In conclusion, in respect of geological mapping it is suggested that not only should we collect samples to test the seismic wave velocity of rocks at normal temperatures and pressure, but also we should analyze the seismic wave characteristics under different formation pressure to comprehensively understand the seismic properties in special geological mapping. -
表 1 不同压力条件下波速与密度和孔隙度的拟合关系
Table 1. The fitting of density and porosity with respect to wave velocity under different confining pressures
压力/MPa 密度/(g·cm-3) 孔隙度/% 拟合公式 R2 拟合公式 R2 5 Vp=4419ρ-6576 0.541 Vp=-161.6 $\varphi $ +5902 0.739 60 Vp=4252ρ-5871 0.638 Vp =-103.1 $\varphi $ +6007 0.614 120 Vp=4079ρ-5261 0.657 Vp =-83.41 $\varphi $ +6029 0.526 200 Vp=3830ρ-4524 0.667 Vp=-77.22 $\varphi $ +6068 0.507 5 Vs=1651ρ-1276 0.374 Vs=-58.35 $\varphi $ +3420 0.493 60 Vs=1461ρ-623 0.347 Vs=-53.86 $\varphi $ +3535 0.375 120 Vs=1246ρ+38.29 0.351 Vs=-52.57 $\varphi $ +3585 0.362 200 Vs=964ρ+869 0.342 Vs=-40.08 $\varphi $ +3564 0.420 表 2 实验样品基本信息
Table 2. The basic information of experimental samples
样品编号 密度/(g·cm-3) 状态 矿物组成/% 孔隙度/% 石英 长石 其它 H1 2.604 自然 55 25 20 2.66 H2 2.629 自然 55 25 20 4.61 表 3 ZBL-U520和Autolab2000两种仪器下的三次纵波速度值
Table 3. The three measurements of P-wave velocity values under ZBL-U520 and Autolab2000
ZBL-U520非金属超声检测仪 Autolab2000多功能岩石物性设备(5 MPa) 第一次 第二次 第三次 第一次 第二次 第三次 H1的纵波速度/(m·s-1) 5198 5217 5179 5521 5555 5538 H2的纵波速度/(m·s-1) 4907 4871 4913 5293 5321 5306 表 4 ZBL-U520和Autolab2000两种仪器的三次纵波测量数据精度分析
Table 4. The analysis of the accuracy of three P-wave measurements of ZBL-U520 and Autolab2000
样品号 ZBL-U520非金属超声检测仪 Autolab2000多功能岩石物性设备(5 MPa) 极差 平均值/(m·s-1) 标准差 最大波动幅度 极差 平均值/(m·s-1) 标准差 最大波动幅度 H1 38 5198 19 0.73% 34 5538 17 0.62% H2 42 4897 22.7156 0.86% 28 5307 14.0119 0.53% -
[1] Gao S, Kern H, Liu Y S, et al. Measured and calculated seismic velocities and densities for granulites from xenolith occurrences and adjacent exposed lower crustal sections:a comparative study from the North China craton[J]. Journal of Geophysical Research, 2000, 105(B8):18965~18976. doi: 10.1029/2000JB900100 [2] 郝晋昇, 刘晓红, 李纪汉.华北地区典型岩石在1万巴压力下的密度和弹性波速度的实验研究[J].地震学报, 1985, 7(3):276~284. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198503003.htmHAO Jin-sheng, LIU Xiao-hong, LI Ji-han.An experimental study on the density and elastic wave velocity of typical rocks of north China under high pressure up to 10kb[J]. Acta Seismologica Sinica, 1985, 7(3):276~284. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198503003.htm [3] 刘永祥, 吴福元, 张世红.高温高压下岩石弹性波速特征及其在深部地质研究中的意义[J].地球物理学进展, 1995, 10(3):82~94. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ503.006.htmLIU Yong-xiang, WU Fu-yuan, ZHANG Shi-hong.The characteristics of elastic wave velocity of rocks at high T and P:implications for the study of deep seated geology[J]. Progress in Geophysics, 1995, 10(3):82~94. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ503.006.htm [4] 李华, 王良书, 李成, 等.塔里木盆地岩石高温高压下波速的实验研究及其地质意义[J].高校地质学报, 2005, 11(4):601~607. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504017.htmLI Hua, WANG Liang-shu, LI Cheng, et al. Experimental study on wave velocity of rocks from Tarim basin at high PT conditions and its geological implications[J]. Geological Journal of China Universities, 2005, 11(4):601~607. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504017.htm [5] 卢琳, 闫桂京, 陈建文.地层温度和压力对地震波速的影响[J].海洋地质动态, 2005, 21(9):13~16, 21. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200509003.htmLU Lin, YAN Gui-jing, CHEN Jian-wen.Influences of temperature and pressure on velocities of seismic wave[J]. Marine Geology Letters, 2005, 21(9):13~16, 21. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200509003.htm [6] 陈祖安, 伍向阳.砂岩孔隙度和含泥量与波速关系的模型[J].地球物理学进展, 2000, 15(1):78~82. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200001006.htmCHEN Zu-an, WU Xiang-yang.A model for the relation between wave velocity and porosity as well as clay content in sandstone[J]. Progress in Geophysics, 2000, 15(1):78~82. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200001006.htm [7] GUO Bin-bin, WANG Hong-cai, ZHAO Wei-hua, et al. Analysis of seismic anisotropy of the typical slate from the Gaoligong Mountains, Yunnan Province, China[J]. Chinese Journal of Geophysics, 2014, 57(2):154~165. doi: 10.1002/cjg2.2014.57.issue-2 [8] 马中高, 解吉高.岩石的纵、横波速度与密度的规律研究[J].地球物理学进展, 2005, 20(4):905~910. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200504003.htmMA Zhong-gao, XIE Ji-gao.Relationship among compressional wave, shear wave velocities and density in rocks[J]. Progress in Geophysics, 2005, 20(4):905~910. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200504003.htm [9] 杨树锋, 陈汉林, 姜继双, 等.高温高压下华南Ⅰ型和S型花岗岩的波速特征及其地质意义[J].中国科学(D辑), 1997, 27(1):33~38. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199701005.htmYANG Shu-feng, CHEN Han-lin, JIANG Ji-shuang, et al.The velocity characteristics and its geological significance of Ⅰ and S type granite from Southern China under high temperature and high pressure[J]. Science in China, 1997, 27(1):33~38. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199701005.htm [10] Birch F. The velocity of compressional waves in rocks to 10 kilobars, Part 1[J]. Journal of Geophysical Research, 1960, 65(4):1083~1102. doi: 10.1029/JZ065i004p01083 [11] Bajuk E I, Volarovich M P, Klíma K, et al. Velocity of longitudinal waves in eclogite and ultrabasic rocks under pressures to 4 kilobars[J]. Studia Geophysicaet Geodaetica, 1967, 11(3):271~280. doi: 10.1007/BF02585458 [12] 史謌, 杨东全.岩石波速和孔隙度、泥质含量之间的关系研究[J].北京大学学报(自然科学版), 2001, 37(3):379~384. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200103016.htmSHI Ge, YANG Dong-quan.The regression analysis study on velocity and porisity, and clay content of rocks[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(3):379~384. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200103016.htm [13] Tao H, Zou C C, Pei F G, et al. Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones[J]. Applied Geophysics, 2010, 7(2):114~126. doi: 10.1007/s11770-010-0235-3 [14] Purcell C, Mur A, Soong Y, et al. Integrating velocity measurements in a reservoir rock sample from the SACROC unit with an AVO proxy for subsurface supercritical CO2[J]. The Leading Edge, 2010, 29(2):192~195. doi: 10.1190/1.3304823 [15] Mur A, Purcell C, Soong Y, et al. Integration of core sample velocity measurements into a 4D seismic survey and analysis of SEM and CT images to obtain pore scale properties[J]. Energy Procedia, 2011, 4:3676~3683. doi: 10.1016/j.egypro.2011.02.299 [16] Godfrey N J, Christensen N I, Okaya D A. Anisotropy of schists:contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations[J]. Journal of Geophysical Research, 2000, 105(B12):27991~28007. doi: 10.1029/2000JB900286 [17] Hornby B E. Experimental laboratory determination of the dynamic elastic properties of wet, drained shales[J]. Journal of Geophysical Research, 1998, 103(B12):29945~29964. doi: 10.1029/97JB02380 [18] Li A W, Sun D S, Wang H C, et al. Seismic velocity and shear-wave splitting under cyclic loading[A].2011 International Conference on Electronics, Communications and Control[C]. Zhejiang:IEEE, 2011, 4506~4508.