Study on the influence of valley topographic parameter on the moving distance of landslide
-
摘要: 滑坡运动场地上的沟谷地形,对滑坡运动产生约束、偏转、导流、阻止等作用,导致了滑坡运动距离的差异。根据滑坡滑源区、运移区的运动方向与沟谷堆积区延伸方向的夹角,将沟谷型滑坡划分为沟谷顺直型和沟谷偏转型两种类型。通过建立滑坡体积、沟谷地形参数与运动参数的非线性回归模型,分析体积及地形参数变化率对沟谷型滑坡运动距离变化的影响特征。研究表明:随体积增加,沟谷顺直型和沟谷偏转型滑坡的运动距离差异逐渐增大。体积作为滑坡运动距离的显著性因素,其原因在于滑坡体积在数量级上的差异,而在同一数量级内,体积变化仅对沟谷型滑坡最大水平运动距离变化的影响最大;滑源区和沟谷堆积区坡度的变化对垂直运动距离和堆积区水平运动距离影响大于滑坡体积。偏转角度对沟谷偏转型滑坡运动距离的影响较小,其原因在于沟谷区地形坡度显著影响了偏转角度对滑坡运动距离的作用。研究结果为沟谷型滑坡的致灾程度评估提供了参考依据。Abstract: The valley topography, located on the landslide motion path, can restrain, deflect, divert and prevent the landslide movement and result in the difference of landslide moving distance. The valley topography of landslide is divided into straight-valley and deflection-valley based on the angle between the moving direction of the landslide source area and the migration area and the extension direction of the valley accumulation area. The nonlinear regression models, related to landslide volumes and valley topographic parameters, were deduced. On the basis of the models, the laws that the volumes and the topography parameters influenced on the landslide moving distance were revealed. The results show that, the difference of the moving distance between the straight-valley and deflection-valley landslides increases gradually with the increase of volume. The reason of volume as a significant factor for landslide moving distance lies in the difference of landslide volume in order of magnitude. However, in the same order of magnitude, the volume change only is the greatest influence factor of the maximum horizontal moving distance of valley landslide, and the angle change of the slope is more significant than volume for the vertical moving distance and horizontal moving distance of the accumulative area. The deflection angle is a minor factor for deflection-valley landslide moving distance, because the valley slope significantly affects the effect of the deflection angle on the landslide moving distance. The results provide future reference for the disaster assessment of valley landslide.
-
Key words:
- valley topography /
- moving distance /
- volume /
- topographic parameter /
- landslide
-
表 1 沟谷型滑坡数据
Table 1. Data of the valley landslides
序号 县 滑坡名称 H/m L/m L1/m V/m3 H1/m α/(°) β/(°) θ/(°) 1 安县 大屋基 644 1540 908 3651767 328 27 19 7 2 安县 龙神堂 332 600 250 228330 177 27 32 0 3 北川 三叉沟 254 480 210 194318 141 28 28 13 4 青川 石板沟村 631 1607 1094 4318157 317 32 16 15 5 青川 小溪湾 280 567 403 221173 111 34 23 20 6 彭州 谢家店子 700 1690 1000 3937240 395 30 17 17 7 都江堰 深溪沟 220 443 250 165495 112 30 23 13 8 安县 谢家山 617 1022 639 759611 214 29 32 8 9 安县 下石槽 376 640 405 315925 148 32 29 26 10 安县 红石沟 990 2837 2081 8673830 416 29 15 25 11 茂县 土门乡1# 315 642 490 184731 84 29 25 34 12 茂县 向家梁子 815 2777 1788 19541771 439 24 13 28 13 茂县 杨芋店 233 395 171 158077 81 20 42 22 14 北川 风岩子 363 790 505 617585 166 30 21 25 15 北川 马桑岭 326 792 456 534699 142 23 22 25 16 平武 毛虫山 564 933 657 453571 176 33 31 27 17 青川 赵家山 219 653 411 512117 111 25 15 24 18 青川 王大包 240 680 377 247736 129 23 16 15 19 青川 木红坪 409 940 605 433867 168 27 22 24 20 青川 东河口 633 2400 1564 16463666 413 26 8 23 21 青川 杜家岩 353 840 742 508077 49 27 22 21 22 青川 麻地坪 397 760 528 557724 114 26 28 40 23 青川 岩碉窝 381 783 555 466582 129 30 24 14 24 青川 红麻公 321 835 531 904368 173 30 16 23 25 绵竹 烂泥沟1# 170 267 167 33376 65 33 32 0 26 绵竹 文家沟 1322 4250 2730 41002270 611 22 15 10 27 什邡 水磨沟 838 2050 1297 8324718 469 32 16 12 28 什邡 金牛驼沟 782 1265 900 1247046 255 35 30 25 29 汶川 小湾 130 220 116 20431 47 24 36 28 30 茂县 土门乡2# 316 548 386 356278 167 46 21 52 31 安县 白堰塘1# 484 649 275 277669 419 48 13 35 32 安县 白堰塘2# 149 214 103 25412 85 37 32 40 33 安县 白堰塘3# 336 497 256 245177 142 30 37 60 34 安县 翻山岭 272 395 218 111249 167 43 26 50 35 安县 七郎庙 431 626 205 251674 362 41 19 56 36 茂县 九道拐 579 1264 482 2223568 470 31 13 40 37 北川 东溪沟 463 1085 427 1833068 366 29 13 65 38 北川 柏树岭 611 1170 802 1343106 338 43 19 50 39 北川 龙湾村 489 847 514 819151 203 31 29 40 40 北川 张家沟 363 615 292 326764 266 40 18 60 41 北川 观音堂 111 197 113 22779 41 26 32 60 42 北川 旋转沟 232 331 176 114400 145 43 26 35 43 北川 田梁上 167 279 156 78654 96 38 25 60 44 北川 白沙沟 243 399 234 209400 147 42 22 65 45 平武 林家山 288 737 465 998884 205 37 10 67 46 平武 屋基包 146 319 125 85247 114 30 14 77 47 青川 古埋沟 408 935 461 1008962 291 32 14 45 48 青川 柳树坪 225 584 197 273177 193 26 9 66 49 青川 青龙村 294 897 439 1646265 251 29 6 60 50 青川 坪上 304 595 287 271656 207 34 19 42 51 青川 蒲家沟 249 593 271 258837 197 32 11 50 52 青川 窝前 555 2077 1526 1200000 270 26 11 50 53 青川 岭头 242 607 411 470334 110 29 18 50 54 青川 瓦前山 182 429 225 294865 105 27 19 46 55 绵竹 海心沟 876 1675 855 4796336 672 39 13 76 56 绵竹 窗子沟 257 512 291 501585 174 38 16 55 57 绵竹 烂泥沟2# 314 604 348 329139 211 39 16 45 58 绵竹 杨家山 202 278 81 50912 147 37 34 37 59 绵竹 马槽滩 450 893 477 1587140 360 41 11 60 60 绵竹 王家包 352 611 421 575937 163 41 24 65 61 什邡 牛滚氹沟 374 546 246 357403 180 31 38 75 62 什邡 断头崖 405 624 320 629147 270 42 23 35 63 彭州 冰口石1# 846 1428 1147 4552297 586 64 13 50 64 彭州 冰口石2# 993 1164 667 2738746 841 59 13 45 65 彭州 骆家山 189 295 153 34765 111 38 27 63 66 都江堰 大崩山沟 301 611 320 437880 229 38 13 52 67 都江堰 二道河 414 647 357 601360 236 39 27 55 68 崇州 九龙沟 140 259 142 34463 70 31 26 67 69 汶川 刘家磨子 426 615 366 274338 263 47 24 42 70 汶川 两河口 344 492 199 276341 226 38 31 50 71 汶川 罗圈湾沟 262 313 224 85998 122 54 32 42 72 汶川 杉树林 433 709 278 224168 322 37 22 62 73 汶川 福烟沟 505 712 265 404264 382 41 25 32 74 汶川 老虎嘴沟 296 638 190 404068 222 26 21 60 75 汶川 无音寺 108 237 150 22206 59 34 18 35 76 汶川 头梁子 215 335 134 27917 165 39 20 47 77 汶川 倒栽桥 466 985 784 1319570 315 57 11 65 78 汶川 皂角湾沟 333 475 242 168573 208 42 27 60 79 汶川 黄坝狮 412 535 273 489642 262 45 29 50 -
DAI Z L, HUANG Y, CHENG H L, et al., 2014. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake[J]. Engineering Geology, 180:21-33. doi: 10.1016/j.enggeo.2014.03.018 FAN X Y, LENG X Y, DUAN X D, 2015. Influence of topographical factors on movement distances of toe-type and turning-type landslides triggered by earthquake[J]. Rock and Soil Mechanics, 36(5):1380-1388. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx201505021 HAO M H, XU Q, YANG L, et al., 2014. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics, 35(S1):127-132. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2014z1018 HU X B, FAN X Y, TANG J J, 2019. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM:a case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract) LARSEN I J, MONTGOMERY D R, KORUP O, 2010. Landslide erosion controlled by hillslope material[J]. Nature Geoscience, 3(4):247-251. doi: 10.1038/ngeo776 LEGROS F, 2002. The mobility of long-runout landslides[J]. Engineering Geology, 63(3-4):301-331. doi: 10.1016/S0013-7952(01)00090-4 LI X Z, KONG J M, 2010. Runout distance estimation of landslides triggered by "5·12" Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 42(5):243-249. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201005034 LU P Y, YANG X G, SHAO S, et al., 2018. Particle discrete element simulation on punching-shear and scraping effect of landslide-debris flow[J]. Water Resources and Hydropower Engineering, 49(7):19-27. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdjs201807003 MENG H J, JIANG Y J, ZHANG S X, et al., 2017. Analysis on the change of influence factors on slipping displacement of landslides in Dujiangyan area before and after the Wenchuan earthquake[J]. Journal of Geomechanics, 23(6):904-913. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201706011 OUYANG C J, ZHOU K Q, XU Q, et al., 2017. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China[J]. Landslides, 14(2):705-718. doi: 10.1007/s10346-016-0764-9 QI S W, XU Q, ZHANG B, et al., 2011. Source characteristics of long runout rock avalanches triggered by the 2008 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 40(4):896-906. doi: 10.1016/j.jseaes.2010.05.010 TANG H M, LIU X, HU X L, et al., 2015. Evaluation of landslide mechanisms characterized by high-speed mass ejection and long-run-out based on events following the Wenchuan earthquake[J]. Engineering Geology, 194:12-24. doi: 10.1016/j.enggeo.2015.01.004 XING A G, WANG G, YIN Y P, et al., 2014. Dynamic analysis and field investigation of a fluidized landslide in Guanling, Guizhou, China[J]. Engineering Geology, 181:1-14. doi: 10.1016/j.enggeo.2014.07.022 XU Q, PEI X J, HUANG R Q, et al., 2009. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing:Science Press. (in Chinese) YANG HL, FAN X Y, ZHAO Y H, et al., 2017. Model tests on influence of deflection angle on the movement of landslide -debris avalanches[J]. Mountain Research, 35(3):316-322. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/sdxb201703009 YANG LW, WEI Y J, WANG W P, et al., 2018. Research on dynamic characteristics of the Kalayagaqi landslide in Yining country, Xinjiang[J]. Journal of Geomechanics, 24(5):699-705. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201805013 YIN Y P, LI B, WANG W P, et al., 2016. Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering, 2(2):230-249. doi: 10.1016/J.ENG.2016.02.005 YOSHIDA H, SUGAI T, OHMORI H, 2012. Size-distance relationships for hummocks on volcanic rockslide-debris avalanche deposits in Japan[J]. Geomorphology, 136(1):76-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=327ca09cfdf1b12ffb141ed912a9cc92 ZHAN W W, HUANG R Q, PEI X J, et al., 2017. Empirical prediction model for movement distance of gully-type rock avalanches[J]. Journal of Engineering Geology, 25(1):154-163. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201701021 ZHU S B, SHI Y L, LU M, et al., 2013. Dynamic mechanisms of earthquake-triggered landslides[J]. Science China Earth Sciences, 56(10):1769-1779. doi: 10.1007/s11430-013-4582-9 樊晓一, 冷晓玉, 段晓冬, 2015.坡脚型与偏转型地震滑坡运动距离及地形因素作用[J].岩土力学, 36(5):1380-1388. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201505021 郝明辉, 许强, 杨磊, 等, 2014.滑坡-碎屑流物理模型试验及运动机制探讨[J].岩土力学, 35(S1):127-132. http://d.old.wanfangdata.com.cn/Periodical/ytlx2014z1018 胡晓波, 樊晓一, 唐俊杰, 2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究——以三溪村滑坡为例[J].地质力学学报, 25(4):527-535. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190410&journal_id=dzlxxb 李秀珍, 孔纪名, 2010. "5.12"汶川地震诱发滑坡的滑动距离预测[J].四川大学学报(工程科学版), 42(5):243-249. 陆鹏源, 杨兴国, 邵帅, 等, 2018.滑坡-碎屑流冲切铲刮效应的颗粒离散元模拟[J].水利水电技术, 49(7):19-27. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201807003 孟华君, 姜元俊, 张树轩, 等, 2017.汶川地震前后都江堰山区滑坡滑动距离影响因素变化分析[J].地质力学学报, 23(6):904-913. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170611&journal_id=dzlxxb 许强, 裴向军, 黄润秋, 等, 2009.汶川地震大型滑坡研究[M].北京:科学出版社. 杨海龙, 樊晓一, 赵运会, 等, 2017.偏转角度对滑坡-碎屑流运动影响的模型试验[J].山地学报, 35(3):316-322. http://d.old.wanfangdata.com.cn/Periodical/sdxb201703009 杨龙伟, 魏云杰, 王文沛, 等, 2018.新疆伊宁县喀拉亚尕奇滑坡动力学特征研究[J].地质力学学报, 24(5):699-705. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180513&journal_id=dzlxxb 詹威威, 黄润秋, 裴向军, 等, 2017.沟道型滑坡-碎屑流运动距离经验预测模型研究[J].工程地质学报, 25(1):154-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201701021 朱守彪, 石耀霖, 陆鸣, 等, 2013.地震滑坡的动力学机制研究[J].中国科学:地球科学, 43(7):1096-1105. http://d.old.wanfangdata.com.cn/Conference/7864539