LiDAR TECHNOLOGY AND ITS APPLICATION AND PROSPECT IN GEOLOGICAL ENVIRONMENT
-
摘要: 介绍了LiDAR激光探测与测距系统的组成和基本原理, 并对LiDAR技术在地质灾害、活动断裂、冰川及海岸线测绘等地质环境领域的国内外应用现状与进展进行了系统分析和总结, 对该技术的应用前景进行了展望。LiDAR系统集激光、GPS和惯性导航系统(Inertial Navigation System, INS)三种技术于一身, 能够快速、精确地获取地面目标的三维空间信息, 是继GPS空间定位系统之后又一项测绘技术新突破。LiDAR作为一种新型的遥感测量技术未来在自动、快速提取滑坡体、自动提取与断裂相关的微地貌结构信息、海岸带附近精细地物分类、海岸带调查以及潮间带生物多样性研究等方面具有很大的发展空间。Abstract: Based on the composition and fundamental of LiDAR, we summarize its application status and progress in the field of geology, such as geological disasters, active faults, glaciers and coastline mapping, and prospect its application in the future. LiDAR system includes three technologies: laser, GPS and inertial navigation systems, which make a breakthrough in spatial mapping technology following GPS, it obtains three-dimensional information on ground targets quickly and accurately. As a new remote sensing technology, LiDAR will have great development in automatically extracting the landslides and the micro geomorphology structure information of faults. In addition, LiDAR will be widely used in terrain classification, coastal zone investigation and the study on biological diversity in intertidal coastal zone in the future.
-
图 1 机载LiDAR系统[2]
Figure 1. Airborne LiDAR system
图 3 基于Leica ALS50Ⅱ机载激光雷达获取的都江堰—汶川公路高分辨率DEM立体影像的滑坡解译结果[6]
Figure 3. Results of the landslide interpretation of high resolution DEM stereo images obtained from the airborne LiDAR based on ALS50Ⅱ Leica airborne LiDAR
图 4 海原断裂微地貌形态和断层几何的高清晰度三维再现[13]
Figure 4. High resolution three-dimensional reconstruction of the Haiyuan fault and the fault geometry of the micro topography
图 5 富蕴地震地表破裂带及走滑位移分布图[15]
Figure 5. The 1931 Fuyun earthquake surface rupture zone and distribution of cumulative slips
图 6 Taylor Rock及Andrews冰川LiDAR DEM与USGS DEM的比较[19]
Figure 6. Curvature comparisons for LiDAR and USGS DEM sources for Taylor Rock Glacier and Andrews Glacier
图 7 基于机载LiDAR数据的自然岸线提取结果及推算岸线与“908专项”航空遥感海岸线叠加效果图[23]
Figure 7. Natural coastline extracted based on airborne LiDAR data and estimated coastlines overlying with "908 coastline"
表 1 四种LiDAR系统的比较
Table 1. Comparison of four LiDAR systems
LiDAR类型 搭载平台 常见LiDAR系统 应用领域 优势 空间分辨率 地面 地面固定站点 Leica公司的Cyrax;
Optech公司的ILRIS-3D;
RIEGL公司的各种产品林业调查;基础测绘;文化遗产保护;“数字城市”建设;工程测量;地质地貌调查监测 快速获取小型的零件、商品,到文物、雕塑,再到大型的建筑、街道城市的三维信息 cm或mm级 车载 汽车 3D Laser Mapping系统;
Street Mapper系统农田三维地形测量;铁路复测;区域边界层污染监测 主要对地物的侧面进行激光扫描 平面精度和垂直精
度均10 cm以下机载 飞机或直升机 LeicaALS系列;Optech的ALTM系列;Falcon系列;LitterMaper系列 带状目标地形图测量;城市三维建模;森林资源调查;水利;电力 高速度、高性能、长距离、效率高、覆盖面积广,能获取高分辨率的地面信息 m到cm级 星载 卫星 主要是美国NASA发射的ICESat卫星上的GLAS激光雷达 全球植被;极地冰川;云层和大气的研究 运行轨道高、观测视野广,可以触及世界的每一个角落 平面精度20 cm,垂
直精度13.8 cm -
[1] 马洪超.激光雷达测量技术在地学中的若干应用[J].地球科学:中国地质大学学报, 2011, 36 (2): 347~354 http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102022.htmMA Hong-chao. Review on applications of LiDAR mapping technology to geoscience [J]. Earth Science: Journal of China University of Geoscience, 2011, 36 (2): 347~354. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102022.htm [2] 郭向前, 郝伟涛, 李响.基于机载LIDAR技术的研究及其展望[J].测绘与空间地理信息, 2013, 36 (2): 69~72 http://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201302021.htmGUO Xiang-qian, HAO Wei-tao, LI Xiang. Based on the airborne LIDAR technology research and its prospect [J]. Geomatics & Spatial Information Technology, 2013, 36 (2): 69~72. http://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201302021.htm [3] 谢谟文, 胡嫚, 杜岩, 等. TLS技术及其在滑坡监测中的应用进展[J].国土资源遥感, 2014, 26 (3): 8~15 doi: 10.6046/gtzyyg.2014.03.02XIE Mo-wen, HU Man, DU Yan, et al. Application of TLS technique to landslide monitoring: Summarization and prospect [J]. Remote Sensing for Land and Resources, 2014, 26 (3): 8~15. doi: 10.6046/gtzyyg.2014.03.02 [4] Schulz W H. Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington [J]. Engineering Geology, 2007, 89 (1): 67~87. doi: 10.1007/s10346-015-0587-0 [5] 沈永林, 李晓静, 吴立新.基于航空影像和LiDAR数据的海地地震滑坡识别研究[J].地理与地理信息科学, 2011, 27 (1): 16~20 http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201101005.htmSHEN Yong-lin, LI Xiao-jing, WU Li-xin. Research of urban spatial intelligence computation platform [J]. Geography and Geo-Information Science, 2011, 27 (1): 16~20. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201101005.htm [6] 马洪超, 姚春静, 张生德.机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J].遥感学报, 2008, 12 (6): 925~932 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200806014.htmMA Hong-chao, YAO Chun-jing, ZHANG Sheng-de. Some technical issues of airborne LiDAR system applied to Wenchuan Earthquake relief works [J]. Journal of Remote Sensing, 2008, 12 (6): 925~932. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200806014.htm [7] Roering J J, Stimely L L, Mackey B H, et al. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport [J]. Geophysical Research Letters, 2009, 36 (19): 206~221. doi: 10.1080/19475705.2013.860407 [8] 徐进军, 王海城, 罗喻真, 等.基于三维激光扫描的滑坡变形监测与数据处理[J].岩土力学, 2010, 31 (7): 2188~2191 http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201708045.htmXU Jin-jun, WANG Hai-cheng, LUO Yu-zhen, et al. Deformation monitoring and data processingof landslide based on 3D laser scanning [J]. Rock and Soil Mechanics, 2010, 31 (7): 2188~2191. http://www.cnki.com.cn/Article/CJFDTOTAL-COLO201708045.htm [9] 刘圣伟, 郭大海, 陈伟涛, 等.机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J].中国地质, 2012, 39 (2): 507~517 http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202020.htmLIU Sheng-wei, GUO Da-hai, CHEN Wei-tao, et al. The application of airborne Lidar technology in landslide investigation and monitoring of Three Gorges Reservoir Area [J]. Geology in China, 2012, 39 (2): 507~517. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202020.htm [10] 吴中海, 张岳桥, 胡道功.新构造、活动构造与地震地质[J].地质通报, 2014, 33 (4): 391~402 http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201404001.htmWU Zhong-hai, ZHANG Yue-qiao, HU Dao-gong. Neotectonics, active tectonics and earthquake geology [J]. Geological Bulletin of China, 2014, 33 (4): 391~402. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201404001.htm [11] 王林. 盆地边界活动正断层多尺度构造地貌研究[D]. 中国地震局地质研究所, 2012 http://edu.wanfangdata.com.cn/Periodical/Detail/gjdzdt201310011WANG Lin. Researvh of basin marginal active normal faults through multi-scale tectonic geomorphology [D]. Institute of Geology, China Earthquake Adminstration, 2012. http://edu.wanfangdata.com.cn/Periodical/Detail/gjdzdt201310011 [12] Chan Y C, Chen Y G, Shih T Y, et al. Characterizing the Hsincheng active fault in northern Taiwan using airborne LiDAR data: Detailed geomorphic features and their structural implications [J]. Journal of Asian Earth Sciences, 2007, 31 (3): 303~316. doi: 10.1016/j.jseaes.2006.07.029 [13] 刘静, 陈涛, 张培震, 等.机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J].科学通报, 2013 58 (1): 41~45 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201301003.htmLIU Jing, CHEN Tao, ZHANG Pei-zhen, et al. Illuminating the active Haiyuan fault, China by Airborne Light Detection and Ranging [J]. Chinese Science Bulletin, 2013 58 (1): 41~45. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201301003.htm [14] Karabacak V, Altunel E, Cakir Z. Monitoring aseismic surface creep along the North Anatolian Fault (Turkey) using ground-based LIDAR [J]. Earth and Planetary Science Letters, 2011, 304 (s 1/2): 64~70. http://www.doc88.com/p-9522135890146.html [15] 徐锡伟, 孙鑫喆, 谭锡斌, 等.富蕴断裂:低应变速率条件下断层滑动习性[J].地震地质, 2012, 34 (4): 606~617 http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201204010.htmXU Xi-wei, SUN Xin-zhen, TAN Xi-bin, et al. Fuyun Fault: Long-term faulting behavior under low crustal strain rate [J]. Seismology and Geology, 2012, 34 (4): 606~617. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201204010.htm [16] 李然, 王成, 苏国中, 等.星载激光雷达的发展与应用[J].科技导报, 2007, 25 (14): 58~63 doi: 10.3321/j.issn:1000-7857.2007.14.010LI Ran, WANG Cheng, SU Guo-zhong, et al. Development and applications of spaceborne LiDAR [J]. Science & Technology Review, 2007, 25 (14): 58~63. doi: 10.3321/j.issn:1000-7857.2007.14.010 [17] Yamamoto K. Interpretation of the GRACE-derived mass trend in Enderby Land, Antarctica [J]. Polar Science, 2008, 2 (4): 267~276. doi: 10.1016/j.polar.2008.10.001 [18] Wesche C, Riedel S, Steinhage D. Precise surface topography of the grounded ice ridges at the Ekstromisen, Antarctica, based on several geophysical data sets [J]. Isprs Journal of Photogrammetry & Remote Sensing, 2009, 64 (4): 381~386. http://epic.awi.de/18396/ [19] Janke J R. Using airborne LiDAR and USGS DEM data for assessing rock glaciers and glaciers [J]. Geomorphology, 2013, 195 (4): 118~130. http://adsabs.harvard.edu/abs/2013Geomo.195..118J [20] 李光辉, 王成, 习晓环, 等.机载LiDAR和高光谱数据融合提取冰川雪线[J].国土资源遥感, 2013, 25 (3): 79~84 doi: 10.6046/gtzyyg.2013.03.14LI Guang-hui, WANG Cheng, XI Xiao-huan, et al. Extraction of glacier snowline based on airborne LiDAR and hyperspectral data fusion [J]. Remote Sensing for Land and Resources, 2013, 25 (3): 79~84. doi: 10.6046/gtzyyg.2013.03.14 [21] Stockdonf H F, Holman R A. Estimation of shoreline position and change using airborne topographic Lidar data [J]. Journal of Coastal Research, 2002, 18 (3): 502~513. https://pubs.usgs.gov/of/2005/1326/references.html [22] William R V, Leatherman S P. Mapping shoreline position using airborne laser altimetry [J]. Journal of Coastal Research, 2004, 20 (20): 884~892. http://www.academia.edu/7716684/Mapping_Shoreline_Position_Using_Airborne_Laser_Altimetry [23] 倪绍起, 张杰, 马毅, 等.基于机载LiDAR与潮汐推算的海岸带自然岸线遥感提取方法研究[J].海洋学研究, 2013, 31 (3): 55~61 http://www.cnki.com.cn/Article/CJFDTOTAL-DHHY201303008.htmNI Shao-qi, ZHANG Jie, MA Yi, et al. Natural coastline extraction based on airborne LiDAR data and tidal estimation [J]. Journal of Marine Sciences, 2013, 31 (3): 55~61. http://www.cnki.com.cn/Article/CJFDTOTAL-DHHY201303008.htm [24] 李显巨. 基于LiDAR技术的复杂地质环境区滑坡识别研究[D]. 中国地质大学, 2012 http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403019.htmLI Xian-ju. Research of the landslide recognition based on LiDAR technology in the complex geologic environment area [D]. China University of Geosciences, 2012. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403019.htm [25] 任治坤, 陈涛, 张会平, 等. LiDAR技术在活动构造研究中的应用[J].地质学报, 2014 88 (6): 1196~1207 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406019.htmREN Zhi-kun, CHEN Tao, ZHANG Hui-ping, et al. LiDAR survey in active tectonics studies: An introduction and overview [J]. Acta Geologica Sinica, 2014 88 (6): 1196~1207. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406019.htm