留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘肃金川矿区古构造应力场恢复及演化研究

赵远方 施炜 张宇

赵远方,施炜,张宇,2023. 甘肃金川矿区古构造应力场恢复及演化研究[J]. 地质力学学报,29(6):770−785 doi: 10.12090/j.issn.1006-6616.2023161
引用本文: 赵远方,施炜,张宇,2023. 甘肃金川矿区古构造应力场恢复及演化研究[J]. 地质力学学报,29(6):770−785 doi: 10.12090/j.issn.1006-6616.2023161
ZHAO Y F,SHI W,ZHANG Y,2023. Study on the reconstruction of the paleo-tectonic stress field and its evolution in the Jinchuan mining district, Gansu Province, China[J]. Journal of Geomechanics,29(6):770−785 doi: 10.12090/j.issn.1006-6616.2023161
Citation: ZHAO Y F,SHI W,ZHANG Y,2023. Study on the reconstruction of the paleo-tectonic stress field and its evolution in the Jinchuan mining district, Gansu Province, China[J]. Journal of Geomechanics,29(6):770−785 doi: 10.12090/j.issn.1006-6616.2023161

甘肃金川矿区古构造应力场恢复及演化研究

doi: 10.12090/j.issn.1006-6616.2023161
基金项目: 中国地质调查局地质调查项目(DD20221644);国家自然科学基金项目(42302260);中国地质科学院基本科研业务费项目(DZLXJK202207)
详细信息
    作者简介:

    赵远方(1991—),男,博士,助理研究员,主要从事构造地质学方面的研究工作。E-mail:zhaoyuanfang12@163.com

  • 中图分类号: P535;P534.6

Study on the reconstruction of the paleo-tectonic stress field and its evolution in the Jinchuan mining district, Gansu Province, China

Funds: This research is financially supported by the Geological Survey Project of the China Geological Survey (Grant No.DD20221644), the National Natural Science Foundation of China (Grant No.42302260), and the Basic Research Expense of the Chinese Academy of the Geological Sciences (Grant No. DZLXJK202207)
  • 摘要: 金川矿区经历了复杂的构造演化历史,目前其成矿期后的构造变形特征和应力场演化阶段仍缺乏精细剖析。文章运用构造解析方法对金川矿区地表基岩中的断层进行了分期和配套,确定了构造变形序列,认为矿区存在4组重要的断层组合,包括北东向逆冲断层和北西向走滑断层、北东向走滑断层和北西向逆冲断层、北西向正断层以及北东东向走滑断层。通过研究断层破裂面及擦痕构造,利用赤平投影法恢复了断层的古构造应力场,结合区域大地构造演化历史,准确限定了金川矿区成矿期后的应力场演化阶段,对认识区域构造演化和开发新远景区具有重要意义。结果显示,金川矿区在成矿期后经历了4期古构造应力场作用,表现为多阶段不同方向的挤压和伸展过程,分别响应了区域中生代以来的一系列构造热事件,Ⅰ期表现为早—中侏罗世的北西—南东向挤压应力场,Ⅱ期为晚侏罗世的北东—南西向挤压应力场,Ⅲ期为早白垩世的北东—南西向伸展应力场,Ⅳ期为晚白垩世以来的北东—南西向挤压应力场。

     

  • 金川矿区地处中国甘肃省金昌市,是世界上最大的铜镍硫化物矿床之一,在长期的研究过程中积累了丰富的地质资料(汤中立,1990汤中立和李文渊,1995李文渊等,2004Li et al.,2004高亚林等,2009)。研究显示,金川铜镍硫化物矿床的成矿过程与基性—超基性岩岩浆作用密切相关,而断裂构造是关键的控矿因素,不仅控制了含矿岩体的侵位过程、为成矿提供空间,还在后期改造了含矿地质体的展布方向和深部结构,最终控制了矿体的分布格局(汤中立和白云来,19992000汤中立等,2006曾认宇等,2013宋谢炎等,2023)。

    学者们通过对金川矿区开展年代学、构造变形和成矿机理等方面的研究,解析了构造和成矿作用之间的联系,认为矿区的构造演化经历了多阶段不同方向的挤压和伸展过程(汤中立和李文渊,1995汤中立和白云来,2000米文满等,20112018)。随着构造解析工作的不断深入,提出了更全面的构造演化阶段。例如,廖文建(2016)根据成矿作用时代将矿区主应力方位划分为成矿前、成矿期和成矿后等3期6个阶段,并通过计算获得各期次的准确应力值;和秋姣等(2019)通过统计和总结共轭剪节理特征解析了矿区的构造变形及应力场特征,结合区域构造演化历史,确定了矿区经历的南北向挤压、北东—南西向挤压等4期应力场演化阶段;苏哲等(2023)借助空间距离分析、形态分析等定量分析手段对矿区的构造控矿规律进行研究,解析了特定断层在成矿过程中的具体作用,提出了断层—岩浆多阶段成矿模式。此外,一些研究者通过低温热年代学和大地构造分析方法确定了金川矿区及周缘经历的构造热事件,从宏观视角讨论了矿区的构造变形阶段和演化过程,为矿区的构造演化史研究提供了更全面的依据(Zhang et al.,2017Zhang et al.,2021a2021bTao et al.,2023)。

    上述研究表明,金川矿区具有长期的地质演化历史,经历了多期构造热事件,其演化过程主要表现为不同性质构造应力场作用下的多阶段叠加变形。然而,由于金川矿区的构造变形特征复杂,并且在成矿期之后经历了非常强烈的变形改造作用,现有研究成果在构造变形、应力场演化和成矿作用关联等方面仍然存在分歧(曾南石等,2013曾认宇等,2013和秋娇等,2019苏哲等,2023Tao et al.,2023),尤其是对研究区成矿期后的构造变形特征和应力场转换过程缺乏精细剖析和准确划分,从而限制了对金川矿区成矿期后的演化阶段和晚期构造对矿体改造的认识,也影响了新远景区的勘探与开发。

    此次以金川铜镍硫化物矿区为研究区域,以地表基岩发育的断裂构造为研究对象,通过观测和研究断层、擦痕的几何学特征和运动学指向,确定了不同方向断层的构造性质;通过统计和分析断层相关的构造要素数据,重点利用赤平投影法反演断层的古构造应力场,以断层交切关系和擦痕叠加关系判定了构造次序;通过分析古构造应力场特征和构造序列综合厘定了古构造应力场演化阶段,结合区域地质演化历史确定了成矿期后的构造演化过程。此次研究将为金川矿区的找矿工作提供理论支撑。

    金川铜镍硫化物矿床位于阿拉善地块西南缘,北侧与潮水盆地相邻,南侧与河西走廊盆地相接,西侧与祁连早古生代造山带相连(宫江华,2013;闫海卿等,2015;图1a)。矿区出露地层主要包括龙首山群下部的白家嘴子组(Pt1b)和塔马子沟组(Pt1t),地层呈北西—南东向延伸,整体形成倾向南西的单斜构造。岩浆岩主要为侵入白家嘴子组地层中的超基性岩体(图1b)。

    图  1  研究区大地构造位置和地质简图
    a—研究区大地构造位置图(据Wan et al.,2009修改);b—研究区地层和构造格架简图(据汤中立和李文渊,1995修改)
    Figure  1.  Geological map and tectonic setting of the study area
    (a) Map of the tectonic setting in the study area (modified after Wan et al., 2009);(b) Geological map of the study area (modified after Tang and Li, 1995)

    白家嘴子组(Pt1b)是矿区出露的最老地层,南侧被塔马子沟组不整合覆盖(图1b),主要由大理岩夹黑云母片麻岩、含石榴子石二云母石英片岩和斜长角闪岩组成,是一套以海相碎屑岩−富镁碳酸盐建造为主的低角闪岩相变质岩组合,原岩沉积时代为古元古代中期(宫江华等,2011宫江华,2013闫海卿等,2015)。

    塔马子沟组(Pt1t)分布于矿区南侧,不整合覆盖于下伏的白家嘴子组之上(图1b)。岩石组合主要包括云母石英片岩、斜长角闪岩夹石墨大理岩、黑云斜长片麻岩和石英岩等,是一套以海相碳酸盐岩或类复理石建造为主的高绿片岩相−角闪岩相变质岩系,原岩沉积时代为古元古代中晚期(宫江华等,2011闫海卿等,2015)。

    矿区岩浆岩以基性—超基性岩体最为显著,其中白家嘴子超基性岩体的规模最大(图1b)。根据原岩类型和产状特征可将基性—超基性岩分为3组:第1组是发育于白家嘴子组和塔马子沟组地层裂隙中的变质基性岩脉和岩枝,形成时代为~1800 Ma(宫江华等,2011);第2组是侵入白家嘴子组地层内的北西走向超基性岩岩墙,形成时代为~827 Ma(李献华等,2004田毓龙等,2007);第3组为侵入泥盆系前所有层位中、基本未变质的晚期辉绿岩脉或辉绿岩墙(曾南石等,2013)。

    根据矿区断层的展布方向和性质可将其分为4组,分别为北西向逆冲断层、北西向正断层、北东东向走滑断层和北东向走滑断层(曾认宇等,2013)。

    北西向逆冲断层主要包括F1、F2、F3、F9和F18等(图1b)。该组断层规模较大,断层面以倾向南西为主,倾角为45°~65°,主要表现为上盘向北东的逆冲。其中断层F1延伸长度达200 km,总体走向北西、倾向南西,剖面呈上陡下缓的形态,在长期演化过程中由多条断裂连接贯通而成(米文满等,2018)。沿着断层部分区域可见变质岩逆冲到下盘第四系松散沉积物之上,显示出活动构造的特征,被认为是龙首山地块与北侧中—新生代潮水盆地的构造界线(曾认宇等,2013米文满等,2018)。该组断层中F1与F3均被晚期的F8错断,F18则被晚期的F23错断(图1b)。

    北西向正断层主要包括F4、F5和F6等。该组断层地表延伸长度为300~600 m,普遍倾向南西,倾角为45°~60°,主要表现为上盘向南西下滑。这组断层在早期地壳中深层次韧−脆性构造带的基础上发育,控制了含矿超基性岩的侵位,是重要的成矿期构造(汤中立和白云来,1999);其中,断层F5被断层F2错断,F6被晚期的F16错断(图1b)。

    北东东向走滑断层主要包括F8、F16、F23和F24等。断层倾向南南东或南,倾角为65°~85°,性质以左旋走滑为主,代表了成矿期后的破坏构造(李佐,2009)。其中,断层F8(左旋断层)规模最大,延伸长度超过2000 m,走向为北东东向或近东西向、倾向南东或南,倾角70°~85°,显著错断了白家嘴子组地层及超基性岩体,局部造成第四系松散沉积物错动,表明第四纪以来其仍然在活动(米文满等,2011)。其中断层F8错断了F1与F3,可能也错断了F7,断层F16错断了F6和F20两组不同性质的断层,断层F23则同时错断了F17和F18两组不同性质的断层(图1b)。

    北东向走滑断层主要包括F10、F12、F17、F19、F20和F21等。断层面倾向南东或北西,倾角为70°~85°,部分断层错断了含矿超基性岩体并控制矿体的空间展布,代表成矿期后的破坏性构造(曾认宇等,2013)。其中断层F17规模较大,呈北东向或近东西向延伸,倾向南东或南,倾角为70°~80°,延伸长度约为1200 m,性质以右旋走滑为主,被断层F23错断,而断层F20则被F16错断(图1b)。

    根据上述断层的空间展布、性质以及交切关系,可以初步划分金川矿区的断层期次。首先,最早期的断层为北西向正断层,分布局限并且普遍被晚期的走滑断层错断,导致现今正断层及含矿岩体在平面上分布不连续(图1b),并可能存在多期活动和构造反转。其次,北西向逆冲断层的形成时代也较早,断层延伸较远,并且被北东向走滑断层错断,但部分断层(F1)在第四纪以来仍然持续活动。另外,北东向走滑断层在矿区内分布广泛且均匀,但规模不大;断层性质包括左旋走滑和右旋走滑,部分断层直接错断了含矿地质体。最后,北东东向走滑断层规模较大、延伸较远并且断层面连续,以左旋走滑性质为主,这些断层均明显错断了含矿地质体,并且在不同位置截切了上述其他性质的断层,表明其形成时代最晚。然而,由于研究区成矿期后的变形叠加作用非常复杂,因此断层序列仍然需要进一步分析。

    以金川矿区地表基岩中发育的断层为研究对象,开展了详细的野外构造解析和室内分析。通过调查基岩中不同类型断层的几何学和运动学特征,依据断面擦痕及矿物生长方向、阶步指向以及地质体错动方向等标志综合判定断层运动性质,利用断层交切关系初步确定矿区的断层序列。在此基础上,系统测量断层面及擦痕的产状要素,包括断层走向、倾角以及断层面上擦痕的侧伏向、侧伏角,利用 Faultkin 软件(开发者Richard W. Allmendinger,软件版本Faultkin 7.4.1,下载地址https://macdownload.informer.com/faultkin/)输入构造要素数据计算并获得下半球赤平投影图。应力场由最大(σ1)、中间(σ2)和最小(σ3)3个主应力轴表示,应力比R = (σ2σ3)/(σ1σ3),0≤R≤1,通常通过对从不同露头获得的大量断层滑动矢量进行断层运动学分析来重建(Angelier,1984Mercier et al.,1991Ritz and Taboada,1993)。

    研究表明,区域构造应力场通常能够持续一段时间,通过上述断层运动学分析和计算,能够获得不同性质断层的主应力轴方位,并恢复古应力场及方向(Angelier,1984Ratschbacher et al.,2003)。而古应力场序列的重建主要是通过分析单个断层面上多组滑动矢量(如擦痕)的叠加关系,结合断层交切关系解释应力场的相对次序(Mercier et al.,1991Ratschbacher et al.,2003),已有研究提出修正的Anderson模型可以更好地解释先存断层的再活化和叠加过程(Tong and Yin,2011郑亚东等,2022)。

    值得注意的是,在野外统计构造数据过程中,要求构造点上的断层面和擦痕均清晰可见,能够准确测量必要的构造要素数据,并准确判定每组擦痕所指示的运动学方向,应尽量保证构造点在研究区内均匀分布,避免在某条断层附近重复采集。另外,此次研究中统计和分析的构造数据均为地壳浅层次发育的破裂面及滑动矢量,而构造应力反演的可信度受限于断层形成时代,根据应力反演和分析方法,恢复构造应力场的有效时限基本在中生代之后(Shi et al.,20192020)。

    在野外观测和室内整理基础上,此次研究共获得30组有效数据(图2),这些数据分别来自23个构造点(图1),由于部分构造点具有两组断层面和擦痕的组合,其数据在图2中以点号-1和点号-2进行区分。此外,LS10等6个构造点具有典型的断层叠加特征,对其变形特征、应力方位和叠加关系单独进行统计分析(表1)。

    图  2  不同构造点的古构造应力特征
    σ1σ2σ3分别为最大、中间和最小主应力轴,数字代表应力轴倾向和倾角(°);P代表擦痕;L代表断层面;N为统计数量,(下图同);红色箭头代表挤压方向;橙色箭头代表伸展方向
    Figure  2.  Features of paleo-tectonic stress at different points
    σ1, σ2 and σ3 represent the maximum, intermediate and minimum principal stress axes respectively, the number represents inclination and dip angle of the stress axis; P represents striation, L represents fault plane, N represents statistical quantity; The red arrows represent the direction of compression, and the orange arrows represent the direction of extension.
    表  1  金川矿区叠加变形构造点的断层性质及应力特征
    Table  1.  Geometry, kinematics and stress features of faults on structural points with superimposition deformation in the Jinchuan mining district
    构造点断层倾向断层倾角擦痕侧伏向擦痕侧伏角断层性质新生矿物应力方向
    LS10 313° 81° 253° 64° 左旋斜滑 方解石 北东—南西挤压
    40° 15° 左旋走滑 方解石 北东—南西挤压
    LS12 87° 93° 10° 右旋走滑 石棉  北西—南东挤压
    73° 76° 283° 25° 右旋走滑 石棉  北东—南西挤压
    147° 65° 176° 60° 正断层  无   北东—南西伸展
    LS13 223° 70° 183° 63° 正断层  石棉  北东—南西伸展
    312° 32° 右旋走滑 石棉  北东—南西挤压
    LS21 132° 27° 112° 23° 逆冲   无   北西—南东挤压
    80° 37° 70° 33° 正断层  无   北东—南西伸展
    LS28 196° 83° 264° 12° 右旋走滑 方解石 北西—南东挤压
    123° 30° 左旋斜滑 方解石 北东—南西挤压
    212° 75° 逆冲   方解石 北东—南西挤压
    LS46 26° 64° 60° 52° 正断层  无   北东—南西伸展
    334° 55° 逆冲   云母  北东—南西挤压
    下载: 导出CSV 
    | 显示表格

    通过恢复的古构造应力特征可以看出,金川矿区成矿期后的古构造应力场主要包括北东—南西向挤压、北西—南东向挤压以及和北东—南西向伸展。

    北东—南西向挤压应力场主要来自走滑断层和逆断层,该组应力场在不同构造点出现频率最高、分布最广泛,是矿区最显著的古构造应力场,其最大主应力轴(σ1)倾向的数值区间为20°~60°,部分应力轴倾向为210°~230°,倾角为2°~15°,极少数的倾角达到20°以上,最小主应力轴(σ3)的倾向集中在130°~145°,部分应力轴倾向为300°~320°,倾角为1°~20°,极少数的倾角达到60°以上,显示出逆断层的应力特征。

    北西—南东向挤压应力场主要来自走滑断层和逆断层,也在多个构造点出现,代表了区域另一期较强的应力场,其最大主应力轴(σ1)倾向的数值区间包括两组,分别为130°~160°和310°~340°,倾角为1°~20°,最小主应力轴(σ3)的倾向数值区间包括40°~70°和210°~245°,倾角为2°~10°,少数构造点的倾角值达到15°以上。

    另外一组北东—南西向伸展应力场与正断层相关,其最大主应力轴(σ1)倾向的数值区间波动较大,主要包括15°~60°和290°~310°,部分应力轴倾向南西,倾角多为70°~85°,最小主应力轴(σ3)的倾向集中在200°~220°和25°~50°,倾角多为5°~20°,极少数构造点的倾角数值大于20°。

    野外调查确认了不同构造点的断层交切关系或擦痕叠加关系(图3表1)。其中,构造点LS10发育倾向北西的断层面及两组擦痕,早期斜向擦痕显示为左旋斜滑运动,指示了北东—南西向挤压应力场,晚期水平擦痕显示为左旋走滑运动,指示了另一期北东—南西向挤压应力场(图3a)。构造点LS12发育3组断层,断层交切关系显示:第1期为近东西向右旋走滑断层,指示了北西—南东向挤压应力场;第2期为北西向右旋走滑断层,指示了北东—南西向挤压应力场;第3期为北东向正断层,指示北东—南西向伸展应力场(图3b)。构造点LS13发育倾向南西的断层面,早期陡倾擦痕显示为上盘向南西下滑,指示了北东—南西向伸展应力场,晚期缓倾擦痕显示为右旋走滑运动,指示了北东—南西向挤压应力场(图3c)。构造点LS21发育2组断层,地层牵引褶皱及擦痕特征显示早期为倾向南东的逆冲断层,指示北西—南东向挤压应力场,晚期为倾向北东东的正断层,指示北东—南西向伸展应力场(图3d)。构造点LS28发育倾向南西的断层面及3组擦痕:第1期擦痕显示为右旋走滑运动,指示了北西—南东向挤压;第2期擦痕显示为左旋走滑运动,指示了北东—南西向挤压应力场;第3期擦痕显示了上盘向北东的逆冲,指示了另一期北东—南西向挤压应力场(图3e)。构造点LS46发育倾向北东的断层面,早期擦痕显示为上盘向北东下滑,指示北东—南西向伸展应力场,晚期擦痕显示上盘向南逆冲,指示了北东—南西向挤压应力场(图3f)。

    图  3  断层交切关系和叠加擦痕特征
    长箭头代表擦痕和对盘运动方向,数字①、②和③分别代表对应照片中的断层或擦痕期次;赤平投影图中红色箭头代表挤压方向,橙色箭头代表伸展方向a—LS10大理岩中倾向北西的断层面,早期擦痕显示为左旋斜滑运动,晚期擦痕显示为左旋走滑运动;b—LS12大理岩中发育3组断层,第1期为近东西向右旋走滑断层,第2期为北西向右旋走滑断层,第3期为北东向正断层;c—LS13大理岩中向南西陡倾的断层面,早期陡倾擦痕显示为上盘向南西的下滑,晚期缓倾擦痕显示为右旋走滑运动;d—LS21云母石英片岩中发育2组断层及牵引褶皱,早期为倾向南东的逆冲断层,晚期为倾向北东东的正断层;e—LS28大理岩中向南西陡倾的断层面发育3组擦痕,新生矿物为方解石,第1期擦痕指示右旋走滑运动,第2期擦痕指示左旋走滑运动,第3期擦痕指示向北东的逆冲;f—LS46云母石英片岩中倾向北东的断层面,早期擦痕指示上盘向北东下滑,晚期擦痕指示上盘向南的逆冲
    Figure  3.  The characteristics of fault intersection and superimposed striation
    (a) LS10 shows the fault dip to the NW developed in metamorphosed ultramafic rocks; the early striation indicates sinistral strike-slip motion associated with normal faulting, and the late striation indicated sinistral strike-slip motion; (b) LS12 shows three groups of faults developed in marble; the first group of faults with near E–W orientation shows dextral strike-slip motion, the second group of faults with NW orientation indicated dextral strike-slip motion, and the third stage is normal faults on NE orientation; (c) LS13 shows the fault dip to the SW developed in marble; the early striation indicated the top-to-the-SW downslide of the hanging wall, and the late striation show the dextral strike-slip motion; (d) LS21 shows two groups of faults with traction folds developed in mica-quartz schist; the early fault indicated the top-to-the NW thrust of the hanging wall, while the late fault indicated the top-to-the NEE downslide of the hanging wall; (e) LS28 shows three groups of striation developed on the fault dip to the SW with mineral represented by calcite in marble; The striation of the first stage indicated dextral strike-slip motion, the striation of the second stage indicated sinistral strike-slip motion, and the striation of the third stage indicated the top-to-the-NE thrust; (f) LS46 shows the NE trending fault developed in mica-quartz schist, early striation indicated the top-to-the NE downslide of the hanging wall, late striation indicate the top-to-the S thrust of the hanging wall. The long arrow represents the direction of striation and the motion of fault wall; Number ①, ② and ③ represent the stages of faults or striation in corresponding photo; In the stereographic projection, the red arrow represents the direction of compression while the orange arrow represents the direction of extension.

    根据上述断层交切关系和擦痕叠加关系,将多个构造点的断层数据反演获得的主应力方位进行统计、整合和梳理,根据各点位所呈现出的叠加次序重新排序。综合分析叠加擦痕特征及其应力特征显示,最早期的古应力场为北西—南东向挤压,在构造点LS12、LS21和LS28上,该组应力场形成的擦痕均在第1期出现,在其之后叠加了其他不同类型的擦痕。第2期古应力场为北东—南西向挤压,该组应力场在区域上最为显著,构造点LS12和LS28的叠加特征显示,其晚于第1期的北西—南东向挤压应力场,构造点LS12和LS21的叠加特征则表明其早于北东—南西向伸展应力场。然而,构造点LS10和LS28显示出两期北东—南西向挤压应力场的叠加,结合构造点LS12、LS13和LS46的叠加关系,北东—南西向伸展应力场应处于两期北东—南西向挤压应力场之间。综上,金川矿区成矿期后的古构造应力场至少可以划分为4期,从早到晚依次为北西—南东向挤压、北东—南西向挤压(早期)、北东—南西向伸展和北东—南西向挤压(晚期)。

    野外观察和室内分析结果显示,不同构造应力场作用下形成断层的延伸方向、规模和性质存在明显差异,相应的运动学标志如擦痕、阶步、牵引褶皱和构造面等特征也不尽相同。

    最早期的北西—南东向挤压应力场主要形成了北西向走滑断层和北东向逆冲断层。走滑断层总体走向为120°~160°,以倾向北东为主,倾角为70°~85°,常见直立断层面。断层普遍发育构造破碎带,构造角砾以片麻状花岗岩和大理岩为主,围岩多发生绿泥石化、绿帘石化和绢云母化蚀变。断层面上普遍发育擦痕构造,产状多为缓倾或近水平延伸,部分断层面上形成新生矿物,主要包括方解石、绿泥石以及石棉等,常见发育正阶步,局部形成断层镜面(图4a)。部分区域两组走滑断层以共轭形式出现,两组断层规模相近、近垂直相交且无明显截切关系,二者的断层运动方向相反(图4b4c),形成于统一的构造应力场中。逆冲断层以倾向北西为主,倾角为40°~65°,沿着断层形成破碎带,部分断层面可见低角度擦痕,局部可见两盘相对运动形成的不对称透镜体,指示上盘向南东方向的逆冲过程(图4d)。

    图  4  北西—南东向挤压应力场形成的变形特征
    长箭头代表擦痕方向,①和①’代表共轭断层的两组断层面;赤平投影图中的红色箭头代表挤压方向,橙色箭头代表伸展方向a—LS17片麻状花岗岩中发育北西向右旋走滑断层,可见断层镜面和近水平擦痕构造;b—LS18片麻状花岗岩中近南北向左旋走滑断层和近东西向右旋走滑断层组成共轭断层;c—LS20大理岩中北西向右旋走滑断层和近东西向左旋走滑断层组成共轭断层;d—LS25大理岩中的不对称透镜体构造,指示上盘向南东方向逆冲
    Figure  4.  Typical deformation features under the NW–SE compression
    (a) LS17 shows the NW-trending dextral strike-slip fault developed in granitic gneiss with fault polish and low-angle striation; (b) LS18 shows the conjugated fault consists of the NS-trending sinistral strike-slip fault and the EW-trending dextral strike-slip fault developed in granitic gneiss; (c) LS20 shows the conjugated fault consists of the NW-trending dextral strike-slip fault and the EW-trending sinistral strike-slip fault developed in marble; (d) LS25 shows the asymmetric lens developed in marble indicated the top-to-the SE thrust of the hanging wall. The long arrow represents the direction of striation and the motion of fault wall; Number ① and ①’ represent the striation of the conjugated fault; In the stereographic projection, the red arrow represents the direction of compression while the orange arrow represents the direction of extension.

    北东—南西向挤压(早期)应力场主要形成北东向走滑断层和北西向逆冲断层。其中,走滑断层总体走向为40°~75°,倾向南东或北西,倾角为70°~85°,局部形成直立断层面,断面附近常形成构造破碎带。断层面上常发育缓倾的擦痕构造,部分擦痕倾角可达35°~45°,常见两盘基岩相对运动形成的断层擦槽和正阶步构造(图5a),部分断层面发育新生方解石等矿物。走滑断层的破碎带内局部可见多米诺构造及S-C组构,指示左旋走滑运动(图5b)。北西向逆冲断层延伸较远但分布较为局限,以倾向南西为主,倾角为25°~50°,擦痕侧伏向与断层面倾向基本一致,沿断层形成构造破碎带,局部可见断层泥(图5c)。在片麻岩地层中发育露头尺度的连续褶皱(图5d),显示了地层在区域应力场作用下沿北东—南西方向的缩短效应。

    图  5  北东—南西向挤压应力场(早期)形成的变形特征
    长箭头代表擦痕及对盘运动方向;赤平投影图中红色短箭头代表挤压方向,橙色箭头代表伸展方向a—LS16-2片麻状花岗岩中左旋走滑断层,断面上可见缓倾擦痕及正阶步构造;b—LS27大理岩中北东向左旋走滑断层带内的多米诺构造,断面发育缓倾擦痕;c—LS22大理岩中北西向逆冲断层组成破碎带和断层泥; d—LS11片麻岩夹大理岩地层中形成轴向南东的褶皱。
    Figure  5.  Typical deformation features under the NE–SW compression (early stage)
    (a) LS16-2 shows the sinistral strike-slip fault developed in granitic gneiss with fault step and low-angle striation on the fault plane; (b) LS27 shows the NE-trending sinistral strike-slip fault developed in marble with domino structures and low-angle striation; (c) LS22 shows the NW-trending thrust fault developed in marble with fracture zone and fault gouge; (d) LS11 shows the fold with axis dip to SE developed in gneiss with marble.The long arrow represents the direction of striation and the motion of fault wall; In the stereographic projection, the red arrow represents the direction of compression while the orange arrow represents the direction of extension.

    北东—南西向伸展应力场形成的构造以北西向正断层为主。该组断层总体规模不大,多被晚期断层面截切,部分断层面可能源自早期正断层的重新活动。断层总体走向为110°~160°,倾向南西为主、倾向南西次之,极少数倾向北西,断层倾角普遍为55°~75°。在大理岩和变质超基性岩中局部形成断层镜面(图6a),断层破碎带内的构造角砾以大理岩、片岩和变质超基性岩为主,部分超基性岩强烈蚀变,断层泥不发育,偶见发育密集节理带。断层面上常发育擦痕和正阶步构造,擦痕侧伏向与断层倾向基本一致,新生矿物主要包括方解石和石棉(图6b6c)。部分正断层的断面呈阶梯状断续延伸,晚期出现的石棉和绢云母等矿物叠加在早期方解石之上(图6d),显示断层活动过程中形成了显著的张性裂隙。在以片岩、片麻岩和大理岩为主的地层中,局部可见正断层上下两盘相对运动形成的牵引褶皱(图3d)。

    图  6  北东—南西向伸展应力场形成的变形特征
    长箭头代表擦痕及对盘运动方向;赤平投影图中橙色箭头代表伸展方向a—LS24大理岩中北西向的正断层局部组成断层镜面;b—LS13大理岩中北西向正断层,出现石棉和方解石等新生矿物;c—LS30大理岩中北西西向正断层发育方解石为主的新生矿物,正阶步指示上盘向北东方向下滑;d—LS35大理岩中北西西向正断层及擦痕,具新生的石棉、绢云母和方解石等矿物
    Figure  6.  Typical deformation features under the NE-SW extension
    (a) LS24 shows the NW-trending normal fault developed in marble with fault polish; (b) LS13 shows the NW-trending normal fault developed in marble with new-born minerals of calcite and asbestos; (c) LS30 shows the NWN-trending normal fault developed in marble with new-born mineral of calcite, the positive fault step indicated the top-to-the NE downslide of the hanging wall; (d) LS35 shows the NWW-trending normal fault developed in marble with new-born minerals of asbestos, sericite and calcite. The long arrow represents the direction of striation and the motion of fault wall; The orange arrow represents the direction of extension in the stereographic projection.

    北东—南西向挤压应力场(晚期)形成的构造主要包括北东东向走滑断层和北西向逆冲断层。其中逆冲断层规模较大、延伸较远,但分布较局限,总体走向130°~180°,倾角为35°~60°,部分断层面发育擦痕构造,擦痕侧伏角与断层面倾向基本一致,下盘的地层中常见牵引褶皱(图7a)。走滑断层总体走向为80°~125°,倾向北东或北北东,断层倾角普遍为65°~80°,局部形成直立的断层面,部分断层延伸较远并形成大规模构造破碎带。断层面上普遍发育擦痕构造,多数呈近水平延伸,但少数侧伏角可达30°~40°,常见两盘摩擦形成的断层擦槽以及正阶步构造(图7b),断层面新生矿物以方解石为主,偶见灰黑色炭质条带(图7c)。同一断层面上形成两组擦痕,代表不同性质断层的运动方向,二者具有显著的叠加关系,但都指示了北东—南西向挤压应力,显示存在两期北东—南西向的挤压应力场(图7d)。

    图  7  北东—南西向挤压应力场(晚期)形成的变形特征
    长箭头代表擦痕及对盘运动方向,数字①和②代表擦痕期次;赤平投影图中红色短箭头代表挤压方向,橙色箭头代表伸展方向a—LS16-1 片麻状花岗岩逆冲到大理岩之上,主断层面倾向南西;b—LS24花岗岩中北西向左旋走滑断层面及斜向擦痕构造;c—LS37大理岩中北西西向左旋走滑断层面和缓倾的擦痕构造,新生矿物为方解石,局部形成灰黑色炭质;d—LS29大理岩中北西西向断层面上叠加了两组不同方向的擦痕,早期指示左旋走滑而晚期指示上盘向北东的逆冲作用,显示存在两期北东—南西向挤压应力
    Figure  7.  Typical deformation features under the NE–SW compression (late stage)
    (a) LS16-1 shows the thrust of the granitic gneiss as the hanging wall to the marbles as the footwall, the main fault plane dips to the SW; (b) LS24 shows the NW-trending sinistral strike-slip fault developed in granite with oblique striation; (c) LS37 shows the WNW-trending sinistral strike-slip fault and gentle striation developed in marble with new-born calcite and carbon; (d) LS29 shows the superimposition of two groups of striation on the NWW-trending fault plane, the early striation indicated the sinistral strike-slip faulting and the later one indicated the top-to-the NE thrust which showed the existence of two stages of NE–SW compression. The long arrow represents the direction of striation and the motion of fault wall; In the stereographic projection, the red arrow represents the direction of compression while the orange arrow represents the direction of extension.

    金川矿区位于阿拉善地块南缘,其古老基底为古元古代龙首山群(宫江华等,2011宫江华,2013闫海卿等,2015)。岩浆、变质和碎屑锆石年龄分布特征对比结果表明,阿拉善地块在古元古代与华北克拉通具有明显的亲缘性(宫江华等,2011闫海卿等,2015),早期受近南北向挤压应力控制,矿区形成倾向南西的单斜构造,晚期受北东—南西向挤压应力控制形成北西向的深大断裂(和秋姣等,2019)。新元古代中期在Rodinia超大陆裂解背景下,含矿超基性岩体沿着北西向构造裂隙侵位,成矿作用基本完成(汤中立和白云来,2000李文渊等,2004)。早古生代在祁连洋向北俯冲过程及造山背景下,矿区形成一系列逆冲断层和紧闭褶皱,形成北东向韧脆性构造且矿体被破坏,基本奠定了现今的构造格局(曾认宇等,2013)。

    中生代以来,阿拉善地块经历了多期构造热事件(Zhang et al.,20172021a)。早—中侏罗世阿拉善地块处于伸展环境中,形成了潮水、雅布赖以及银根–额济纳等伸展盆地,可能是由于欧亚板块南缘碰撞造成的挤压作用减弱造成的(郑孟林等,2003Zhang et al.,2021a)。晚侏罗世,欧亚板块东部的重大构造事件导致阿拉善地块遭受来自多个方向的强烈挤压,包括蒙古–鄂霍次克洋闭合事件(Yang et al.,2015)、古太平洋板块低角度西向俯冲(Faure et al.,2012Zhu et al.,2017)以及拉萨和羌塘地块沿班公湖−怒江缝合带发生低角度俯冲和碰撞(Li et al.,2016Zhang et al.,2017)。早白垩世阿拉善地块再次处于伸展环境中,早期断层发生活化和性质反转并控制盆地发育,古太平洋板块俯冲过程中板片回弹和向东的地幔流作用是区域伸展的重要原因(Zhang et al.,2021a)。晚白垩世以来阿拉善地块处于强烈挤压环境中,磷灰石裂变径迹实验和热模拟结果显示,地块南缘在晚中生代至新生代早期和新生代晚期分别经历两次重要的剥露事件,早期(~130~50 Ma)可能源于拉萨地块与羌塘地块的持续挤压和新特提斯洋壳的平板俯冲,晚期(~50~25 Ma)的持续隆升可能是由于印度–欧亚板块碰撞的远程效应所致,而新生代晚期(~5 Ma)的挤压过程则与青藏高原北东向持续扩展有关(Zhang et al.,2017)。

    通过解析金川矿区基岩断层的几何学和运动学特征,确定了构造叠加次序,利用断层运动学数据恢复了古构造应力及方向,厘定了矿区的古构造应力场演化阶段(图8)。

    图  8  金川矿区成矿期后的构造演化模式图
    a—Ⅰ期为早—中侏罗世挤压作用,矿区形成北西向走滑断层和北东向逆冲断层;b—Ⅱ期为晚侏罗世的—挤压作用,矿区形成北东向走滑断层,北西向逆冲断层活化;c—Ⅲ期为早白垩世的伸展作用,矿区形成北西向正断层,部分早期断层性质发生反转;d—Ⅳ期为晚白垩世以来的挤压作用,矿区形成北东东向走滑断层,北西向逆断层活化,地层沿北东—南西方向强烈缩短
    Figure  8.  Tectonic evolution model of Jinchuan mining district since the mineralization
    (a) Phase Ⅰ showed a NW–SE compression during the Early to Middle Jurassic, and the mining district mainly formed the NW-trending strike-slip faults and NE-trending thrust faults; (b) Phase Ⅱ showed a NE–SW compression during the Late Jurassic; the NE-trending strike-slip faults were formed and the NW-trending thrust faults were activated in the mining district; (c) Phase Ⅲ showed a NE–SW extension during the Early Cretaceous, the mining district formed the NW-trending normal faults and kinematics of some early faults reversed; (d) Phase Ⅳ showed a NE–SW compression since the Late Cretaceous; the mining district formed a series of NEE-trending strike-slip faults, and the NW-trending thrust faults were activated and the strata were intensely shortened along the NE–SW direction.

    Ⅰ期(J1-2):北西—南东向挤压(图8a)。早—中侏罗世,随着欧亚板块南缘碰撞造成的挤压作用减弱,阿拉善地块内部处于区域性伸展过程(Zhang et al.,2021a)。地块内部形成一组北西或北西西向大型正断层,作为边界断层控制了北西—南东或近东西轴向断陷盆地的发育,这些盆地在中侏罗世随着断裂活动而持续接受沉积,最终形成南北成带状分布的大型断陷盆地组合(郑孟林等,2003),如雅布赖盆地和潮水盆地(吴茂炳等,2007赵宏波等,2013),此阶段矿区的古应力场恢复结果显示,其最小主应力轴倾角很小,这可能对应了北东—南西向伸展构造的形成。矿区主要形成北西向走滑断层和北东向的逆冲断层,部分早期断层在此阶段活化。

    Ⅱ期(J3):北东—南西向挤压(图8b)。晚侏罗世阿拉善地块在北东—南西向挤压作用下开始隆升,正断层控制断陷盆地的阶段结束,早期正断层部分或全部被改造为逆冲断层,断层上盘在侏罗系遭受剥蚀,造成早侏罗统与早白垩统之间形成显著的角度不整合(郑孟林等,2003赵宏波等,2013),这可能是蒙古–鄂霍茨克洋闭合、古太平洋板块西向俯冲等不同构造事件联合作用的结果(Zhang et al.,20172021a)。此阶段龙首山前缘向北东向逆冲,矿区形成一系列北西向逆断层和北西—南东向的紧闭褶皱,造成矿体沿北东方向缩短(俞晶星,2017)。部分早期北东向逆断层被改造为走滑断层,导致北西向断层被错断,含矿地质体遭受破坏。

    Ⅲ期(K1):北东—南西向伸展(图8c)。早白垩世阿拉善地块处于伸展环境中,伸展方向与整个欧亚大陆东部相同,早期北东向断层可能再次活化成为正断层并控制沉积盆地的发育,其他断层则转换为走滑断层并控制拉分盆地的发育(Zhang et al.,2021a)。阿拉善地块自北山至河西走廊一带形成了一系列北东向展布的断陷盆地,叠加在早中侏罗世断陷盆地之上,沉积中心位于控盆断层一侧,盆地剖面形态普遍呈楔状(Meng,2003Meng et al.,2003),表明阿拉善地块整体处于北东—南西向伸展环境中,这可能与华北克拉通及周缘同期的区域性拉张过程相关(Zhang et al.,2021a)。此阶段矿区内部早期北西向正断层发生活化,而北西向逆断层转换为正断层性质,少数走滑断层持续发育。

    Ⅳ期(K2):北东—南西向挤压(图8d)。阿拉善地块南缘在晚白垩世(~130Ma)开始经历重要的剥露事件,主要受控于其南侧的两阶段强烈挤压过程(Zhang et al.,2017),导致阿拉善地块内缺失了晚白垩世地层。中新生代以来,随着青藏高原向北东方向的持续扩展,弧形构造带北缘处于北东—南西向的强烈挤压环境中(Shi et al.,2015董晓朋等,2023)。晚新生代青藏高原向北东方向扩展的边界已到达河西走廊北缘,其周缘山体快速隆升,并形成以走滑性质为主的活动断层(Zhang et al.,20172021b)。强烈挤压作用导致龙首山向北东方向逆冲,形成龙首山前缘断裂及反冲断裂,矿区内北西向断层普遍转换为逆冲性质,一组北东东向左旋走滑断层开始发育,最终导致含矿岩体被分割成独立的块体。矿区北侧的龙首山前缘断裂重新活动,最终导致上盘的含矿地质体及围岩向北东方向逆冲至新生代沉积物之上。

    (1)金川矿区在成矿期后形成了4组重要的断层组合:北东向逆冲断层和北西向走滑断层、北东向走滑断层和北西向逆冲断层、北西向正断层以及北东东向走滑断层。早期断层在晚期变形过程中经历活化和构造反转过程。

    (2)应力场反演结果显示,金川矿区在成矿期后经历了4期古构造应力场作用,表现为多阶段不同方向的挤压或伸展过程,分别响应了区域中生代以来的一系列构造热事件。4期古构造应力场依次为:Ⅰ期早—中侏罗世的北西—南东向挤压应力场,Ⅱ期晚侏罗世的北东—南西向挤压应力场,Ⅲ期早白垩世的北东—南西向伸展应力场,Ⅳ期晚白垩世以来的北东—南西挤压应力场。

    致谢:野外工作期间得到金川集团股份有限公司领导及工作人员的大力支持,中国地质科学院地质力学研究所崔建军副研究员协助完成了野外考察工作、金咏洁硕士协助完成资料整理工作。谨向上述单位和人员表示诚挚的感谢!

  • 图  1  研究区大地构造位置和地质简图

    a—研究区大地构造位置图(据Wan et al.,2009修改);b—研究区地层和构造格架简图(据汤中立和李文渊,1995修改)

    Figure  1.  Geological map and tectonic setting of the study area

    (a) Map of the tectonic setting in the study area (modified after Wan et al., 2009);(b) Geological map of the study area (modified after Tang and Li, 1995)

    图  2  不同构造点的古构造应力特征

    σ1σ2σ3分别为最大、中间和最小主应力轴,数字代表应力轴倾向和倾角(°);P代表擦痕;L代表断层面;N为统计数量,(下图同);红色箭头代表挤压方向;橙色箭头代表伸展方向

    Figure  2.  Features of paleo-tectonic stress at different points

    σ1, σ2 and σ3 represent the maximum, intermediate and minimum principal stress axes respectively, the number represents inclination and dip angle of the stress axis; P represents striation, L represents fault plane, N represents statistical quantity; The red arrows represent the direction of compression, and the orange arrows represent the direction of extension.

    图  3  断层交切关系和叠加擦痕特征

    长箭头代表擦痕和对盘运动方向,数字①、②和③分别代表对应照片中的断层或擦痕期次;赤平投影图中红色箭头代表挤压方向,橙色箭头代表伸展方向a—LS10大理岩中倾向北西的断层面,早期擦痕显示为左旋斜滑运动,晚期擦痕显示为左旋走滑运动;b—LS12大理岩中发育3组断层,第1期为近东西向右旋走滑断层,第2期为北西向右旋走滑断层,第3期为北东向正断层;c—LS13大理岩中向南西陡倾的断层面,早期陡倾擦痕显示为上盘向南西的下滑,晚期缓倾擦痕显示为右旋走滑运动;d—LS21云母石英片岩中发育2组断层及牵引褶皱,早期为倾向南东的逆冲断层,晚期为倾向北东东的正断层;e—LS28大理岩中向南西陡倾的断层面发育3组擦痕,新生矿物为方解石,第1期擦痕指示右旋走滑运动,第2期擦痕指示左旋走滑运动,第3期擦痕指示向北东的逆冲;f—LS46云母石英片岩中倾向北东的断层面,早期擦痕指示上盘向北东下滑,晚期擦痕指示上盘向南的逆冲

    Figure  3.  The characteristics of fault intersection and superimposed striation

    (a) LS10 shows the fault dip to the NW developed in metamorphosed ultramafic rocks; the early striation indicates sinistral strike-slip motion associated with normal faulting, and the late striation indicated sinistral strike-slip motion; (b) LS12 shows three groups of faults developed in marble; the first group of faults with near E–W orientation shows dextral strike-slip motion, the second group of faults with NW orientation indicated dextral strike-slip motion, and the third stage is normal faults on NE orientation; (c) LS13 shows the fault dip to the SW developed in marble; the early striation indicated the top-to-the-SW downslide of the hanging wall, and the late striation show the dextral strike-slip motion; (d) LS21 shows two groups of faults with traction folds developed in mica-quartz schist; the early fault indicated the top-to-the NW thrust of the hanging wall, while the late fault indicated the top-to-the NEE downslide of the hanging wall; (e) LS28 shows three groups of striation developed on the fault dip to the SW with mineral represented by calcite in marble; The striation of the first stage indicated dextral strike-slip motion, the striation of the second stage indicated sinistral strike-slip motion, and the striation of the third stage indicated the top-to-the-NE thrust; (f) LS46 shows the NE trending fault developed in mica-quartz schist, early striation indicated the top-to-the NE downslide of the hanging wall, late striation indicate the top-to-the S thrust of the hanging wall. The long arrow represents the direction of striation and the motion of fault wall; Number ①, ② and ③ represent the stages of faults or striation in corresponding photo; In the stereographic projection, the red arrow represents the direction of compression while the orange arrow represents the direction of extension.

    图  4  北西—南东向挤压应力场形成的变形特征

    长箭头代表擦痕方向,①和①’代表共轭断层的两组断层面;赤平投影图中的红色箭头代表挤压方向,橙色箭头代表伸展方向a—LS17片麻状花岗岩中发育北西向右旋走滑断层,可见断层镜面和近水平擦痕构造;b—LS18片麻状花岗岩中近南北向左旋走滑断层和近东西向右旋走滑断层组成共轭断层;c—LS20大理岩中北西向右旋走滑断层和近东西向左旋走滑断层组成共轭断层;d—LS25大理岩中的不对称透镜体构造,指示上盘向南东方向逆冲

    Figure  4.  Typical deformation features under the NW–SE compression

    (a) LS17 shows the NW-trending dextral strike-slip fault developed in granitic gneiss with fault polish and low-angle striation; (b) LS18 shows the conjugated fault consists of the NS-trending sinistral strike-slip fault and the EW-trending dextral strike-slip fault developed in granitic gneiss; (c) LS20 shows the conjugated fault consists of the NW-trending dextral strike-slip fault and the EW-trending sinistral strike-slip fault developed in marble; (d) LS25 shows the asymmetric lens developed in marble indicated the top-to-the SE thrust of the hanging wall. The long arrow represents the direction of striation and the motion of fault wall; Number ① and ①’ represent the striation of the conjugated fault; In the stereographic projection, the red arrow represents the direction of compression while the orange arrow represents the direction of extension.

    图  5  北东—南西向挤压应力场(早期)形成的变形特征

    长箭头代表擦痕及对盘运动方向;赤平投影图中红色短箭头代表挤压方向,橙色箭头代表伸展方向a—LS16-2片麻状花岗岩中左旋走滑断层,断面上可见缓倾擦痕及正阶步构造;b—LS27大理岩中北东向左旋走滑断层带内的多米诺构造,断面发育缓倾擦痕;c—LS22大理岩中北西向逆冲断层组成破碎带和断层泥; d—LS11片麻岩夹大理岩地层中形成轴向南东的褶皱。

    Figure  5.  Typical deformation features under the NE–SW compression (early stage)

    (a) LS16-2 shows the sinistral strike-slip fault developed in granitic gneiss with fault step and low-angle striation on the fault plane; (b) LS27 shows the NE-trending sinistral strike-slip fault developed in marble with domino structures and low-angle striation; (c) LS22 shows the NW-trending thrust fault developed in marble with fracture zone and fault gouge; (d) LS11 shows the fold with axis dip to SE developed in gneiss with marble.The long arrow represents the direction of striation and the motion of fault wall; In the stereographic projection, the red arrow represents the direction of compression while the orange arrow represents the direction of extension.

    图  6  北东—南西向伸展应力场形成的变形特征

    长箭头代表擦痕及对盘运动方向;赤平投影图中橙色箭头代表伸展方向a—LS24大理岩中北西向的正断层局部组成断层镜面;b—LS13大理岩中北西向正断层,出现石棉和方解石等新生矿物;c—LS30大理岩中北西西向正断层发育方解石为主的新生矿物,正阶步指示上盘向北东方向下滑;d—LS35大理岩中北西西向正断层及擦痕,具新生的石棉、绢云母和方解石等矿物

    Figure  6.  Typical deformation features under the NE-SW extension

    (a) LS24 shows the NW-trending normal fault developed in marble with fault polish; (b) LS13 shows the NW-trending normal fault developed in marble with new-born minerals of calcite and asbestos; (c) LS30 shows the NWN-trending normal fault developed in marble with new-born mineral of calcite, the positive fault step indicated the top-to-the NE downslide of the hanging wall; (d) LS35 shows the NWW-trending normal fault developed in marble with new-born minerals of asbestos, sericite and calcite. The long arrow represents the direction of striation and the motion of fault wall; The orange arrow represents the direction of extension in the stereographic projection.

    图  7  北东—南西向挤压应力场(晚期)形成的变形特征

    长箭头代表擦痕及对盘运动方向,数字①和②代表擦痕期次;赤平投影图中红色短箭头代表挤压方向,橙色箭头代表伸展方向a—LS16-1 片麻状花岗岩逆冲到大理岩之上,主断层面倾向南西;b—LS24花岗岩中北西向左旋走滑断层面及斜向擦痕构造;c—LS37大理岩中北西西向左旋走滑断层面和缓倾的擦痕构造,新生矿物为方解石,局部形成灰黑色炭质;d—LS29大理岩中北西西向断层面上叠加了两组不同方向的擦痕,早期指示左旋走滑而晚期指示上盘向北东的逆冲作用,显示存在两期北东—南西向挤压应力

    Figure  7.  Typical deformation features under the NE–SW compression (late stage)

    (a) LS16-1 shows the thrust of the granitic gneiss as the hanging wall to the marbles as the footwall, the main fault plane dips to the SW; (b) LS24 shows the NW-trending sinistral strike-slip fault developed in granite with oblique striation; (c) LS37 shows the WNW-trending sinistral strike-slip fault and gentle striation developed in marble with new-born calcite and carbon; (d) LS29 shows the superimposition of two groups of striation on the NWW-trending fault plane, the early striation indicated the sinistral strike-slip faulting and the later one indicated the top-to-the NE thrust which showed the existence of two stages of NE–SW compression. The long arrow represents the direction of striation and the motion of fault wall; In the stereographic projection, the red arrow represents the direction of compression while the orange arrow represents the direction of extension.

    图  8  金川矿区成矿期后的构造演化模式图

    a—Ⅰ期为早—中侏罗世挤压作用,矿区形成北西向走滑断层和北东向逆冲断层;b—Ⅱ期为晚侏罗世的—挤压作用,矿区形成北东向走滑断层,北西向逆冲断层活化;c—Ⅲ期为早白垩世的伸展作用,矿区形成北西向正断层,部分早期断层性质发生反转;d—Ⅳ期为晚白垩世以来的挤压作用,矿区形成北东东向走滑断层,北西向逆断层活化,地层沿北东—南西方向强烈缩短

    Figure  8.  Tectonic evolution model of Jinchuan mining district since the mineralization

    (a) Phase Ⅰ showed a NW–SE compression during the Early to Middle Jurassic, and the mining district mainly formed the NW-trending strike-slip faults and NE-trending thrust faults; (b) Phase Ⅱ showed a NE–SW compression during the Late Jurassic; the NE-trending strike-slip faults were formed and the NW-trending thrust faults were activated in the mining district; (c) Phase Ⅲ showed a NE–SW extension during the Early Cretaceous, the mining district formed the NW-trending normal faults and kinematics of some early faults reversed; (d) Phase Ⅳ showed a NE–SW compression since the Late Cretaceous; the mining district formed a series of NEE-trending strike-slip faults, and the NW-trending thrust faults were activated and the strata were intensely shortened along the NE–SW direction.

    表  1  金川矿区叠加变形构造点的断层性质及应力特征

    Table  1.   Geometry, kinematics and stress features of faults on structural points with superimposition deformation in the Jinchuan mining district

    构造点断层倾向断层倾角擦痕侧伏向擦痕侧伏角断层性质新生矿物应力方向
    LS10 313° 81° 253° 64° 左旋斜滑 方解石 北东—南西挤压
    40° 15° 左旋走滑 方解石 北东—南西挤压
    LS12 87° 93° 10° 右旋走滑 石棉  北西—南东挤压
    73° 76° 283° 25° 右旋走滑 石棉  北东—南西挤压
    147° 65° 176° 60° 正断层  无   北东—南西伸展
    LS13 223° 70° 183° 63° 正断层  石棉  北东—南西伸展
    312° 32° 右旋走滑 石棉  北东—南西挤压
    LS21 132° 27° 112° 23° 逆冲   无   北西—南东挤压
    80° 37° 70° 33° 正断层  无   北东—南西伸展
    LS28 196° 83° 264° 12° 右旋走滑 方解石 北西—南东挤压
    123° 30° 左旋斜滑 方解石 北东—南西挤压
    212° 75° 逆冲   方解石 北东—南西挤压
    LS46 26° 64° 60° 52° 正断层  无   北东—南西伸展
    334° 55° 逆冲   云母  北东—南西挤压
    下载: 导出CSV
  • [1] ANGELIER J, 1984. Tectonic analysis of fault slip data sets[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5835-5848. doi: 10.1029/JB089iB07p05835
    [2] DONG X P, LI Z H, JING X H, et al. , 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics, 29(4): 465-484. (in Chinese with English abstract)
    [3] FAURE M, LIN W, CHEN Y, 2012. Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China block?[J]. Terra Nova, 24(6): 456-466. doi: 10.1111/ter.12002
    [4] GAO Y L, TANG Z L, SONG X Y, et al. , 2009. Study on genesis of the concealed Cu-rich ore body in the Jinchuan Cu-Ni deposit and its prospecting in depth[J]. Acta Petrologica Sinica, 25(12): 3379-3395. (in Chinese with English abstract)
    [5] GONG J H, ZHANG J X, YU S Y, 2011. The origin of Longshoushan Group and associated rocks in the southern part of the Alxa block: constraint from LA-ICP-MS U-Pb zircon dating[J]. Acta Petrologica Et Mineralogica, 30(5): 795-818. (in Chinese with English abstract)
    [6] GONG J H, 2013. Compositions, characteristics, chronological framework and origin of early-Precambrian metamorphic basement in western Alxa block[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    [7] HE Q J, LAI J Q, MAO X C, et al. , 2019. Tectonic stress field and tectonic evolution in Jinchuan mining district, Gansu province[J]. Contributions to Geology and Mineral Resources Research, 34(2): 265-273. (in Chinese with English abstract)
    [8] LI C S, XU Z H, DE WAAL S A, et al. , 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis[J]. Mineralium Deposita, 39(2): 159-172. doi: 10.1007/s00126-003-0389-5
    [9] LI W Y, TANG Z L, GUO Z P, et al. , 2004. Petrogenetic epoch and geochemical characteristics of mafic-ultramafic rocks on the southern margin of Alxa massif in northern China[J]. Acta Petrologica et Mineralogica, 23(2): 117-126. (in Chinese with English abstract)
    [10] LI X H, SU L, SONG B, et al. , 2004. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin, 49(4): 420-422. doi: 10.1007/BF02900329
    [11] LI Z, 2009. Analysis on the ore-controlling tectonic in Jinchuan copper-nickel Sulphide deposit, Gansu Province[D]. Changsha: Central South University. (in Chinese with English abstract)
    [12] LI Z Y, DING L, LIPPERT P C, et al. , 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia[J]. Geology, 44(9): 727-730. doi: 10.1130/G38030.1
    [13] LIAO W J, 2016. Tectonic lithofacies mapping, stress field analysis and the deep metallogenetic prognosis in Jinchuan copper and nickel orefield[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    [14] MENG Q R, 2003. What drove late Mesozoic extension of the northern China–Mongolia tract?[J]. Tectonophysics, 369(3-4): 155-174. doi: 10.1016/S0040-1951(03)00195-1
    [15] MENG Q R, HU J M, JIN J Q, et al. , 2003. Tectonics of the late Mesozoic wide extensional basin system in the China-Mongolia border region[J]. Basin Research, 15(3): 397-415. doi: 10.1046/j.1365-2117.2003.00209.x
    [16] MERCIER J L, CAREY-GAILHARDIS E, SÉBRIER M, 1991. Palaeostress determinations from fault kinematics: Application to the neotectonics of the Himalayas-Tibet and the Central Andes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 337(1645): 41-52.
    [17] MI W M, LUO X R, ZHANG L L, et al. , 2011. Research on geophysical and geochemical exploration for prospecting copper-nickel Sulphide deposits in South Jinchuan, Gansu Province[J]. Guangxi Sciences, 18(3): 249-252. (in Chinese with English abstract)
    [18] MI W M, WANG J C, ZHANG Y L, et al. , 2018. Geological characteristics and its influence of F1 fault in Jinchuan Cu-Ni mining area in Gansu province[J]. Modern Mining, 34(3): 107-110, 114. (in Chinese with English abstract)
    [19] RATSCHBACHER L, HACKER B R, CALVERT A, et al. , 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 366(1-2): 1-53. doi: 10.1016/S0040-1951(03)00053-2
    [20] RITZ J F, TABOADA A, 1993. Revolution stress ellipsoids in brittle tectonics resulting from an uncritical use of inverse methods[J]. Bulletin de la Société Géologique de France, 164(4): 519-531.
    [21] SHI W, HU J M, CHEN H, et al. , 2015. Cenozoic tectonic evolution of the arcuate structures in the Northeast Tibetan Plateau[J]. Acta Geologica Sinica-English Edition, 89(2): 676-677. doi: 10.1111/1755-6724.12457
    [22] SHI W, CHEN L, CHEN X Q, et al. , 2019. The Cenozoic tectonic evolution of the faulted basins in the northern margin of the Eastern Qinling Mountains, Central China: Constraints from fault kinematic analysis[J]. Journal of Asian Earth Sciences, 173: 204-224. doi: 10.1016/j.jseaes.2019.01.018
    [23] SHI W, DONG S W, HU J M, 2020. Neotectonics around the Ordos Block, North China: A review and new insights [J]. Earth-Science Reviews, 200: 102969. doi: 10.1016/j.earscirev.2019.102969
    [24] SONG X Y, KANG J, LONG T M, et al. , 2023. Bifurcate magma conduit of Jinchuan super-large Ni-Cu-PGE sulfide deposit in Gansu, China and its implications for deep ore prospecting[J]. Journal of Earth Sciences and Environment, 45(5): 1049-1062. (in Chinese with English abstract)
    [25] SU Z, MAO X C, LI L J, et al. , 2023. Quantitative analysis of the structural ore-controlling laws in Jinchuan Ni-Cu-(PGE) deposit[J]. Mineral Exploration, 14(5): 679-690. (in Chinese with English abstract)
    [26] TANG Z L, 1990. Minerogenetic model of the Jinchuan copper and nickel sulfide deposit[J]. Geoscience, 4(4): 55-64. (in Chinese with English abstract)
    [27] TANG Z L, LI W Y, 1995. Mineralization model and geology of the Jinchuan PGE-bearing deposit[M]. Beijing: Geology Press. (in Chinese)
    [28] TANG Z L, BAI Y L, 1999. Geotectonic framework and metallogenic system in the southwest margin of North China paleocontinent[J]. Earth Science Frontiers, 6(2): 271-283. (in Chinese with English abstract)
    [29] TANG Z L, BAI Y L, 2000. The geotectonic setting of the large and superlarge mineral deposits in the southwest margin of North China Paleoplate[J]. Acta Geology Gansu, 9(1): 1-15. (in Chinese with English abstract)
    [30] TANG Z L, QIAN Z Z, JIANG C Y, et al. , 2006. Magmatic Ni-Cu-PGE sulphide deposits and metallogenic prognosis in China[M]. Beijing: Geology Press. (in Chinese)
    [31] TAO N, DUAN J, DANIŠÍK M, et al. , 2023. Paleozoic tectonothermal evolution of the Jinchuan Ni-Cu sulfide deposit, NW China: New constraints from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 250: 105622. doi: 10.1016/j.jseaes.2023.105622
    [32] TIAN Y L, WU S J, MENG R, et al. , 2007. LA-ICPMS Zircon U-Pb age of the Jinchuan ultramafic intrusion[J]. Acta Mineralogica Sinica, 27(2): 211-217. (in Chinese with English abstract)
    [33] TONG H M, YIN A, 2011. Reactivation tendency analysis: A theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 503(3-4): 195-200. doi: 10.1016/j.tecto.2011.02.012
    [34] WAN Y S, LIU D Y, DONG C Y, et al. , 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era[J]. Geological Society, London, Special Publications, 323(1): 73-97. doi: 10.1144/SP323.4
    [35] WU M B, LIU C Y, ZHENG M L, et al. , 2007. Jurassic depositional-tectonic evolution in the Yabulai basin, western Inner Mongolia, China and direction of petroleum exploration[J]. Geological Bulletin of China, 26(7): 857-863. (in Chinese with English abstract)
    [36] YAN H Q, LIU Q F, TANG Z L, et al. , 2015. Structural properties of the Longshoushan block: Constraint from LA-ICP-MS U-Pb zircon dating[J]. Engineering Sciences, 17(2): 59-72. (in Chinese with English abstract)
    [37] YANG Y T, GUO Z X, SONG C C, et al. , 2015. A short-lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic–earliest Cretaceous[J]. Gondwana Research, 28(3): 1096-1116. doi: 10.1016/j.gr.2014.09.010
    [38] YU J X, 2017. Active tectonics in the southern Gobi-Alashan Block and its response to the interactions of the adjacent crustal blocks[J]. Recent Developments in World Seismology(12): 40-41. (in Chinese)
    [39] ZENG N S, WANG J C, LUO X R, et al. , 2013. Structural sequence and its relationship with Cu-Ni sulfide ore deposit in the Jinchuan Area, Gansu, China[J]. Earth Science Frontiers, 20(6): 210-218. (in Chinese with English abstract)
    [40] ZENG R Y, LAI J Q, MAO X C, et al. , 2013. Evolution of fault system and its controlling on Jinchuan Cu-Ni (PGE) sulfide deposit[J]. The Chinese Journal of Nonferrous Metals, 23(9): 2574-2583. (in Chinese with English abstract)
    [41] ZHANG B H, ZHANG J, WANG Y N, et al. , 2017. Late Mesozoic-Cenozoic exhumation of the northern Hexi Corridor: constrained by apatite fission track ages of the Longshoushan[J]. Acta Geologica Sinica-English Edition, 91(5): 1624-1643. doi: 10.1111/1755-6724.13402
    [42] ZHANG J, WANG Y N, QU J F, et al. , 2021a. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: a review[J]. International Geology Review, 63(12): 1490-1520. doi: 10.1080/00206814.2020.1783583
    [43] ZHANG J, CUNNINGHAM D, YUN L, et al. , 2021b. Kinematic variability of late Cenozoic fault systems and contrasting mountain building processes in the Alxa block, western China[J]. Journal of Asian Earth Sciences, 205: 104597. doi: 10.1016/j.jseaes.2020.104597
    [44] ZHAO H B, HE X R, WANG X Y, et al. , 2013. Structural characteristics of Chaoshui Basin[J]. Lithologic Reservoirs, 25(2): 36-40, 48. (in Chinese with English abstract)
    [45] ZHENG M L, LI M J, CAO C C, et al. , 2003. Superposed characteristics of Cretaceous and Jurassic basins in Beishan-Alaxa area[J]. Geotectonica et Metallogenia, 27(4): 384-389. (in Chinese with English abstract)
    [46] ZHENG Y D, ZHANG J J, ZHANG B, 2022. Two pillar theories of structural geology in the new century: The MEM criterion and the deformation partitioning[J]. Journal of Geomechanics, 28(3): 319-337. (in Chinese with English abstract)
    [47] ZHU R X, ZHANG H F, ZHU G, et al. , 2017. Craton destruction and related resources[J]. International Journal of Earth Sciences, 106(7): 2233-2257. doi: 10.1007/s00531-016-1441-x
    [48] 董晓朋, 李振宏, 井向辉, 等, 2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报, 29(4): 465-484.
    [49] 高亚林, 汤中立, 宋谢炎, 等, 2009. 金川铜镍矿床隐伏富铜矿体成因研究及其深部找矿意义[J]. 岩石学报, 25(12): 3379-3395.
    [50] 宫江华, 张建新, 于胜尧, 2011. 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属: 来自LA-ICP-MS锆石U-Pb年龄的制约[J]. 岩石矿物学杂志, 30(5): 795-818.
    [51] 宫江华, 2013. 西阿拉善地块早前寒武纪变质基底组成、性质、年代格架及归属[D]. 北京: 中国地质科学院.
    [52] 和秋姣, 赖健清, 毛先成, 等, 2019. 甘肃金川矿区构造应力场与构造演化研究[J]. 地质找矿论丛, 34(2): 265-273. doi: 10.6053/j.issn.1001-1412.2019.02.014
    [53] 李文渊, 汤中立, 郭周平, 等, 2004. 阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征[J]. 岩石矿物学杂志, 23(2): 117-126.
    [54] 李献华, 苏犁, 宋彪, 等, 2004. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 49(4): 401-402.
    [55] 李佐, 2009. 甘肃金川铜镍硫化物矿床控矿构造研究[D]. 长沙: 中南大学.
    [56] 廖文建, 2016. 金川铜镍矿区构造岩相填图、应力场分析和深部成矿预测[D]. 中国地质大学(北京).
    [57] 米文满, 罗先熔, 张琳琳, 等, 2011. 甘肃金川南延铜镍硫化物矿床物化探综合找矿研究[J]. 广西科学, 18(3): 249-252.
    [58] 米文满, 王俊超, 张永龙, 等, 2018. 甘肃金川铜镍矿区F1断层地质特征及其影响[J]. 现代矿业, 34(3): 107-110, 114.
    [59] 宋谢炎, 康健, 隆廷茂, 等, 2023. 甘肃金川超大型Ni-Cu-PGE硫化物矿床岩浆通道分枝构造及其深部找矿意义[J]. 地球科学与环境学报, 45(5): 1049-1062. doi: 10.19814/j.jese.2023.05063
    [60] 苏哲, 毛先成, 黎隆交, 等, 2023. 金川铜镍硫化物矿床构造控矿定量分析[J]. 矿产勘查, 14(5): 679-690.
    [61] 汤中立, 1990. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 4(4): 55-64.
    [62] 汤中立, 李文渊, 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社.
    [63] 汤中立, 白云来, 1999. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 6(2): 271-283.
    [64] 汤中立, 白云来, 2000. 华北板块西南边缘大型、超大型矿床的地质构造背景[J]. 甘肃地质学报, 9(1): 1-15.
    [65] 汤中立, 钱壮志, 姜常义, 等, 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测[M]. 北京: 地质出版社.
    [66] 田毓龙, 武栓军, 孟蓉, 等, 2007. 金川超镁铁质岩体LA-ICPMS锆石U-Pb年龄[J]. 矿物学报, 27(2): 211-217. doi: 10.3321/j.issn:1000-4734.2007.02.017
    [67] 吴茂炳, 刘春燕, 郑孟林, 等, 2007. 内蒙古西部雅布赖盆地侏罗纪沉积-构造演化及油气勘探方向[J]. 地质通报, 26(7): 857-863.
    [68] 闫海卿, 刘巧峰, 汤中立, 等, 2015. 龙首山地块的构造属性: 来自U-Pb锆石年龄的约束[J]. 中国工程科学, 17(2): 59-72.
    [69] 俞晶星, 2017. 阿拉善地块南部构造活动及其对周边地块相互作用的响应[J]. 国际地震动态(12): 40-41.
    [70] 曾南石, 汪劲草, 罗先熔, 等, 2013. 金川地区构造序列及与铜镍硫化物矿床的关系[J]. 地学前缘, 20(6): 210-218.
    [71] 曾认宇, 赖健清, 毛先成, 等, 2013. 金川铜镍矿床中断裂系统的形成演化及对矿体的控制[J]. 中国有色金属学报, 23(9): 2574-2583.
    [72] 赵宏波, 何昕睿, 王筱烨, 等, 2013. 潮水盆地构造特征[J]. 岩性油气藏, 25(2): 36-40, 48.
    [73] 郑孟林, 李明杰, 曹春潮, 等, 2003. 北山—阿拉善地区白垩纪、侏罗纪盆地叠合特征[J]. 大地构造与成矿学, 27(4): 384-389.
    [74] 郑亚东, 张进江, 张波, 2022. 新世纪构造地质学两大支柱理论: 最大有效力矩准则与变位形分解[J]. 地质力学学报, 28(3): 319-337.
  • 期刊类型引用(1)

    1. 焦建刚,谭福,李林娜,刘健,杨兴科,高栋. 甘肃金川铜镍硫化物矿床成岩成矿构造观测及解析. 现代地质. 2024(04): 1026-1042 . 百度学术

    其他类型引用(0)

  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  961
  • HTML全文浏览量:  224
  • PDF下载量:  132
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-11-09
  • 录用日期:  2023-10-31

目录

/

返回文章
返回