Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断裂影响带及其无人机识别技术

陈泽邦 云龙 王驹 田霄

陈泽邦,云龙,王驹,等,2025. 断裂影响带及其无人机识别技术[J]. 地质力学学报,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089
引用本文: 陈泽邦,云龙,王驹,等,2025. 断裂影响带及其无人机识别技术[J]. 地质力学学报,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089
CHEN Z B,YUN L,WANG J,et al.,2025. Fault damage zone and its unmanned aerial vehicle identification technology[J]. Journal of Geomechanics,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089
Citation: CHEN Z B,YUN L,WANG J,et al.,2025. Fault damage zone and its unmanned aerial vehicle identification technology[J]. Journal of Geomechanics,31(3):427−443 doi: 10.12090/j.issn.1006-6616.2024089

断裂影响带及其无人机识别技术

doi: 10.12090/j.issn.1006-6616.2024089
基金项目: 国防科工局放废处置项目(FZ2101-6);国家自然科学基金项目(U2344215,4171101029,41761144071)
详细信息
    作者简介:

    陈泽邦(2000—),男,在读硕士,主要从事无人机航测及在构造单元特征识别方面的研究。Email:chen_zebang@163.com

    通讯作者:

    云龙(1985—),男,博士,正高级工程师,主要从事活动构造、高放废物地质处置库选址。Email:yunlneotectonic@126.com

  • 中图分类号: P542;P231

Fault damage zone and its unmanned aerial vehicle identification technology

Funds: This research is financially supported by the Radioactive Waste Disposal Project of the State Administration of Science, Technology and Industry for National Defense (Grant No. FZ2101-6) and the National Natural Science Foundation of China (Grant Nos. U2344215, 4171101029, and 41761144071)
  • 摘要: 断裂及其影响带作为构造地质学中基本的构造单元之一,在揭示区域构造演化规律、探究断裂构造演化特征、指示地下流体运移路径、评价重大工程岩体稳定性等方面具有重要的研究和工程意义。然而,传统研究方法多依赖人工编录获取断裂及周边的节理构造信息,存在着效率低下、易受复杂地形限制等问题。近年新兴起的无人机航测技术很好地弥补了传统方法中的不足,该方法集数据采集、地形测绘和动态监测为一体,其生成的高分辨率数字模型和影像能更有效地减少野外工作量、更直观地展现地貌特征、更方便地提取构造信息。为了更好地将该方法推广至构造地质和地质工程等领域,尤其是断裂及影响带这一研究方向,在大量文献调研的基础上,针对不同的应用场景对现有研究进行了分类和比较。详细论述了无人机航测技术的基本原理、断裂影响带的定义及伴生构造,列举了目前应用较多的关于断裂影响带范围、构造特征的识别方法,归纳整理了部分无人机航测技术在断裂影响带研究中的应用场景。总的来说,目前无人机航测技术在断裂及其影响带的研究中已经有了广泛的应用,且能够满足不同的研究需求,但其在前端(构造信息拾取)和后端(构造信息解译)中还存在尚未解决的问题,在未来仍然拥有广阔的应用和发展空间。

     

  • 无人机的普及推动了无人机航测技术的快速发展,在农业、通信、物流等各个领域均有广泛地应用(刘顺华和王延申,2023邬雪江,2023郝锐等,2024金宝辉等,2024曾勇等,2024)。在地质领域,其凭借着机动灵活的特点摆脱了传统测量方法中地形的限制,搭载的测量系统能够快捷地获取高分辨率影像信息,具有更加广泛的应用场景,如地质灾害中的预测、评估和救援(Dell’Acqua and Gamba,2012侯恩科等,2017黄皓中等,2017李金香等,2017Yamazaki et al.,2017胡才源等,2019);地质测绘中的高清影像数据采集(Fernández-Lozano et al.,2018刘静,2018袁曼飞和谢忠俍,2018Zanutta et al.,2020周坚,2023);构造识别中的三维构造体解译等(Cunningham et al.,2006Frankel and Dolan,2007Thackray et al.,2013高帅坡,2017艾明等,2018)。近年来,随着隧道、硐室类地下工程建设力度加大,遇到的工程地质问题多与断裂、节理构造相关,因其构成了地下水的主要蓄集场所,强度偏低,是地下空间施工过程中的重大安全隐患(李晓昭等,2003杨会军等,2004李生杰等,2013马剑飞等,2022)。在这些构造中,需要重点关注的是断裂影响带,因为其内部节理发育更加密集和复杂,更容易引发安全事故。

    此外,断裂影响带也被视为各类地质领域研究中的关键因素,如在断裂的生长演化中,数个小型断裂产生的尖端影响带互相连结合并为大型断裂的过程、主断裂影响带由于断裂的运动不断扩大生长时遗留的密集节理带发育痕迹等(Walsh et al.,1991McGrath and Davison,1995Kim et al.,2004);在断裂运动引发的地震活动中,受断裂影响带的限制导致地表破裂不规则传播和地震波的波速降低等(Li et al.,1997Choi et al.,2012);在地下资源开采和利用的研究中,利用水力压裂方法增加裂隙压力梯度,从而对油气资源进行开采和存储等(Aydin,2000Brogi,2011)。

    以往对断裂影响带的研究中,最基础且重要的工作是断裂露头数据的测量(McGrath and Davison,1995张仲培和王清晨,2004雷光伟等,2016张培兴等,2021)。传统方法的问题在于,若是现场人工测量则工作量大、费时费力、测量范围易受地形限制,同时在一些地势险要的区域还常伴有安全风险(Marques et al.,2021邹俊杰等,2023);若使用卫片解译方法,由于受到卫星遥感影像精度的限制,复杂研究区域的卫片则无法满足精细研究的需求(李红强,2023茅远哲等,2023杨勇忠,2023)。而无人机航测技术及平台搭载测量设备可以较好地解决以上问题,其通过对特定研究区域进行低空、小范围航测,不仅可以实现断裂露头的无接触参数获取,更加高效安全,同时其生成的高精度数字模型和大比例尺影像相比于卫片解译精度更高、所获取的地质信息更为丰富(Ouédraogo et al.,2014Tomaštík et al.,2019Zeybek,2021),很大程度上弥补了传统测量方法的诸多不足。为了明确无人机航测技术在断裂影响带中的应用现状及发展前景,文章系统阐述了无人机航测技术的基本原理、断裂影响带及其伴生构造的定义,列举了传统断裂影响带的识别方法和无人机航测技术在断裂影响带识别中的典型应用场景。

    断裂影响带(Fault damage zone)指的是在断裂形成过程中,距离主断裂核部两侧一定范围内派生或伴生的次级构造,即断裂两侧的节理发育带。某些情况下,断裂核部与影响带的界限并不明显,二者会在边界处交替穿插形成过渡带,该区域与断裂影响带具有相同的形变特征(图1Choi et al.,2016)。断裂影响带的发育规律和形成机制与主断裂密切相关,在物理力学性质上与正常围岩具有显著差异(雷光伟等,2016),被视为各类地质领域的关键因素,如断裂相关的变形过程、区域应变分布和历史、地震破裂传播和相关的地震危害、地壳中的渗流等(Choi et al.,2016),同时影响带内的结构也提供了断层传播和生长的信息(McGrath and Davison,1995)。

    图  1  断裂影响带位置示意图(据Choi et al.,2016修改)
    Figure  1.  The spacial relation between fault damage zones and the fault core (mofified after Choi et al., 2016)

    根据断裂两侧节理带的位置,可以将影响带分为端部影响带(Tip damage zone)、断裂阶区(Linking damage zone)和主断裂影响带(Wall damage zone)(图2Kim et al.,20032004)。

    图  2  断裂影响带分类示意图(据Kim et al.,2004修改)
    Figure  2.  Schematic diagram of the fault damage zone classification (modified after Kim et al., 2004)

    在端部影响带(Tip damage zone),由于应力集中,此区域的岩体往往更加破碎,裂隙更为密集(Chinnery,1966Vermilye and Scholz,1999)。此处的次级断裂按形态可分为4类:翼型断裂(wing craks)、马尾状断裂(horsetail fractures)、同向分支断裂(synthetic branch faults)和反向断裂(antithetic faults)。其中,翼型断裂一般在断层尖端处滑移量较小的位置形成,其成因可能与尖端部位滑移过程中所产生的应力差或围压有关(Petit and Barquins,1988)。马尾状断裂与翼型断裂类似,但在形态上断裂宽度更小,且间距更密集(Petit and Barquins,1988Engelder,1989)。同向分支断裂在断裂末端呈“帚”状分布,与主断裂具有相同的运动学特征,并有可能与其他相邻的断裂相连(Chinnery,1966Kim et al.,2004)。反向断裂一般呈张性,且与主断裂的运动学特征相反,往往成组规律排列(图3McGrath and Davison,1995Kim et al.,2003)。

    图  3  端部影响带伴生构造(据Kim et al.,2004修改)
    a—翼型断裂;b—马尾状断裂;c—同向分支断裂;d—反向断裂
    Figure  3.  Structures associated with tip damage zones (modified after Kim et al., 2004)
    (a) wing cracks; (b) horsetail fractures; (c) synthetic branch faults; (d) antithetic faults

    断裂阶区(Linking damage zone)一般是由2个相邻断裂的端部影响带演化而来的,所以此处的影响带更为复杂和破碎(Kim et al.,2003)。根据相邻断裂两盘的相对运动方向,可以将连接区影响带分为张性阶区(Release stepovers)和压性阶区(Restrsin stepovers)。这2种影响带中都会出现孤立透镜体(Isolated lenses)结构,而张性阶区中会发育拉分构造(Pull-apart),形成如拉分盆地等构造地貌;压性阶区中会发育多条近平行的挤压断裂(compressional fault)等配套构造,形成压剪型隆升山脊(图4Martel and Boger,1998Kim et al.,2001)。

    图  4  断裂阶区伴生构造的示意图(据Kim et al.,2003修改)
    a—张性阶区中的透镜体;b—压性阶区中的透镜体;c—张性阶区中的拉分构造;d—压性阶区中的挤压断裂构造
    Figure  4.  Structures associated with linking damage zones (modified after Kim et al., 2003)
    (a) Lenticular body in a releasing stepover; (b) Lenticular body in a restraining stepover; (c) Pull-apart structure in a releasing stepover;(d) Compressional fault in a restraining stepover

    主断裂影响带(Wall damage zone)在断裂的各个部位都有分布,主要可分为对称性影响带和非对称性影响带(图5)。一般对称性断裂影响带会发育有与主断裂运动学性质相反的反向共轭断裂(Antithetic faults)和与主断裂运动学性质相同的同向共轭断裂(Synthetic faults)(Naylor et al.,1986Kim et al.,2000),此类结构由Cloos和Riedel在黏土蛋糕实验中发现(Riedel,1929Katz et al.,2004),并于后来被Skempton(1966)命名为里德尔剪切(Riedel Shear)。当主断裂为右行时,同向共轭断裂中与主断裂构成左阶排布的断裂被定义为“R剪断裂”,与主断裂构成右阶排布的断裂被定义为“P剪断裂”,而反向共轭断裂中与主断裂构成左阶排布的断裂被定义为“R′剪断裂”;当主断裂为左行时,同向共轭断裂中与主断裂构成右阶排布的断裂被定义为“R剪断裂”,与主断裂构成左阶排布的断裂被定义为“P剪断裂”,而反向共轭断裂中与主断裂构成右阶排布的断裂被定义为“R′剪断裂”。“R剪断裂”和“P剪断裂”的运动方式与主断裂相同,在运动过程中与主断裂相辅相成,更容易形成优势断裂,而“R剪断裂”的运动方式与主断裂相反,发育往往受到限制。除此之外,在“R剪断裂”和“R′剪断裂”之间还会形成 “T断裂”和与之共轭的“C断裂”,其中“T断裂”呈张性,“C断裂”呈压性(Rajlich,1993许顺山等,2017陈书平等,2024)。

    图  5  主断裂影响带伴生构造(据许顺山等,2017修改)
    a—反向共轭断裂;b—同向共轭断裂;c—里德尔剪切
    Figure  5.  Structures associated with wall damage zones (modified after Xu et al., 2017)
    (a) Antithetic faults; (b) Synthetic faults; (c) Riedel Shear

    对断裂影响带的识别主要指的是对其构造信息的识别,包括断裂影响带的范围和影响带内节理的构造特征。其中识别断裂影响带的范围是最基础也是最重要的一步,因为只有确定了影响带的范围,才可进一步识别影响带内节理的构造特征。目前在断裂影响带范围的识别中应用较多的主要有节理测窗统计法、节理交切形态观察法、节理线密度累计频率统计法,而识别影响带内节理的构造特征则大多采用罗盘、卷尺、数码相机和三维激光扫描仪等设备进行实地测量。

    1.2.1   影响带范围识别

    (1) 节理测窗统计法

    节理测窗统计法主要通过垂直于断裂核部划定数个测窗,测量并统计测窗内节理中点面密度和平均迹长的变化规律,以此确定断裂影响带的范围。由于节理的中点面密度和平均迹长能够直观地反应岩体完整性,所以一般情况下,断裂核部最为破碎,往往不具备完整的岩体和较为连续的结构面,这也导致了此区域节理的中点面密度最大,平均迹长最小。而随着观测点与断裂核部距离的增长,节理的中点面密度会逐渐减小、平均迹长会逐渐增大(雷光伟等,2016)。当脱离了断裂影响带的范围时,节理的中点面密度和平均迹长会在一定区间内保持恒定,可据此对断裂影响带范围进行识别(图6)。具体实施方法为:平行或垂直于断裂走向,设置多个区段,每个区段选取2~3个露头,通过布置圆形测窗的方法对节理参数进行计算和统计,研究不同区段之间节理中点面密度和平均迹长的分布规律。

    图  6  圆形测窗示意图(况杰等,2018
    Figure  6.  Schematic diagram of the circular measuring window (Kuang et al., 2018)

    迹长平均值计算公式(Zhang and Einstein,1998杨春和等,2006)如下:

    v=π(N+N0N1)2(NN0+N2)c
    (1)

    式中,v—平均迹长,m;c—测窗半径,m;N2—包含在测窗内的结构面数量;N1—只有一端在测窗外的迹线数量;N0—两端都在测窗外的迹线数量;N—所有类型的迹线数量之和。

    中点面密度计算公式(杨春和等,20062007)如下:

    λ=NN0+N22πc2

    式中,λ—中点面密度,个/m2;其余变量含义同上。

    该方法在断裂影响带的研究中已经有了广泛的应用,如雷光伟等(2016)通过分析北山新场数个断裂的中点面密度、平均迹长与断裂核部距离的关系,划定了多条断裂影响带的范围,并得出断裂影响带宽度会呈现出上盘宽、下盘窄的不对称分布特征;许文涛等(2022)建立了甘肃北山F31断裂数字露头模型,并通过划定圆形数字测窗计算节理中点面密度的方法将F31断裂影响带的宽度划定为150 m。

    (2) 节理交切形态观察法

    节理交切形态观察法主要通过观察节理形态特征的变化来划定断裂影响带的范围。断裂附近节理的交切模式可大致分为3类(图7):①孤立不连通型(Isolated)、②单点交切型(Singly connected)、③多点交切型(Multiply connected)。在断裂影响带内,节理的交切模式为顺断裂走向的节理与大角度交于断裂走向的节理密集交叉,迹长较为短小,岩体整体破碎,主要表现为以多点交切型为主;而随着远离断裂影响带,单条节理迹长逐渐变长,交切关系也逐渐转变为以点交切型为主;而当完全脱离断裂影响带时,交切关系逐渐转变为以孤立不连通型为主(张培兴等,2017)。通过对区域内节理不同交切关系出现的概率进行统计分析,便可区分受断裂影响的围岩与正常围岩,以此确定断裂影响带的规模。

    图  7  节理不同交切模式与断裂位置关系
    Figure  7.  The relationship between intersection modes of joints and fracture areas

    但由于节理的交切关系无法进行准确的量化统计,所以往往需要结合其他参数进行综合分析。如张培兴等(2021)在甘肃北山西北边界断裂的研究中,将节理形态特征和线密度相结合,在节理交切关系由单点交切型转变为孤立不连通型的空间范围内,发现节理线密度从4~10条/m逐渐转变为1~4条/m,并据此认为该条断裂影响带的宽度不超过100 m。

    (3)节理损伤结构累计频率统计算法

    该方法主要通过对断裂核部两侧不同区段的损伤结构频率(节理面密度、线密度、平均迹长等)进行线性拟合,得到不同区段拟合直线的交点即为断裂影响带的边界。以节理线密度为例,一般情况下,随着远离断裂核部,断裂影响带中的节理线密度会逐渐递减并最终与正常围岩趋于一致,而在拟合直线中则会表现出两段斜率不同的直线,斜率较大的区域为断裂影响带范围,较小的区域为正常围岩范围,二者的交点即为断裂影响带的边界(图8)。Choi et al.(2016)在韩国东南部阳山断裂的研究中使用该方法统计了断裂两侧的节理线密度,并据此在断裂的不同位置分别划分出了不同的断裂影响带宽度,表明该方法相比于单一统计损伤结构频率更容易确定影响带边界;Berg and Skar (2005)在犹他州东部Moba断裂的研究中通过该方法分别确定了上盘和下盘的断裂影响带宽度,发现Moba断裂的上盘影响带比下盘宽3倍,并认为该结果是由构造应力场的不同导致的。

    图  8  根据节理线密度累计频率计算影响带范围(据Choi et al.,2016修改)
    a—莫阿布断裂带北端地质背景;b—根据线密度累计频率确定影响带范围示意图;c—巴特利特沃什北部研究区域实景
    Figure  8.  Calculation of cumulative frequency of linear density and influence band range (modified after Choi et al., 2016)
    (a) Geological background of the study area; (b) Schematic diagram of determining the range of damage zone based on the cumulative frequency of line density; (c) Actual view of the research area
    1.2.2   影响带内节理构造特征识别

    在划定了断裂影响带的范围后,便可进一步对影响带内节理的构造特征进行识别,即节理产状的测量。目前传统识别节理构造特征的方法可分为手动测量和无接触测量2种:手动测量方法较为简单,具体为在现场寻找明显的节理面,并使用地质罗盘、皮尺等工具进行数据采集;无接触测量则多采用摄影测量、三维激光扫描等方法对小范围内的岩体进行三维建模,并在模型中数字化测量节理产状(荆洪迪等,2015王凤艳等,2008朱合华等,2023)。待收集一定的数据后,再进行整合处理,包括构建节理玫瑰花图、产状极点密度图、散点图等对不同区域的节理信息进行综合分析,以此来确定影响带内节理的构造特征。

    综上,断裂影响带识别的基础是对野外大量节理产状的统计,传统方法需要人工前往实地测量,其取得的数据结果可信度较高,但十分费时耗力、效率低下。而诸如摄影测量和三维激光扫描等的无接触测量方法虽然能够提高工作效率,但由于设备使用易受地形限制,单次数据采集范围也相对较小,在较大规模断裂影响带的研究中显得较为吃力。

    无人机航测技术(Unmanned Aerial Surveying,简称“UAS”)是空载设备和测量设备的组合。空载设备种类繁多,分类方法也多种多样,目前主流的分类是以动力产生和支撑方式为依据,分为旋翼与固定翼2类。旋翼无人机动作灵活、可控性强,但飞行高度以及稳定性较低;固定翼无人机速度快、航距长、飞行姿态稳定,但灵活性差,续航时间短(李光,2021)。

    测量系统可以分为搭载激光扫描仪的遥感解译系统和搭载相机的航空摄影系统。其中,遥感解译是获取高分辨率地形数据的有效技术之一,其基于“Light Detection And Ranging”(光学雷达,简称LiDAR),利用高速旋转的高频测距激光头发射光学脉冲(Pajares,2015),在飞行途中记录不同方向的激光返回数据,从而得出以扫描中心为基准的坐标信息(邵延秀等,2017),以此生成数字化三维地形(图9a)。且由于光学脉冲具有穿透性,可以穿透植被抵达地表,在这个过程中会返回植被反射数据和地表反射数据,后期可用“虚拟伐木”算法(Virtual Deformation,简称VDF)去除植被反射数据,只留下地表反射数据,这样即便在植被茂盛的区域也可以消除植被覆盖的影响,测得真实的地貌信息。但其成本高昂、数据处理复杂,难以大众化应用(魏占玉等,2015)。

    图  9  2种无人机航测原理示意图
    a—遥感解译原理;b—航空摄影原理
    Figure  9.  Schematic diagrams of two UAV aerial survey principles
    (a) Schematic diagram of LiDAR; (b) Schematic diagram of SfM

    航空摄影是基于“Structure from Motion”(运动结构恢复,简称SfM)技术的新型数字摄影测量技术,该技术利用小型相机作为机载航拍设备,获取被测区域的高清影像,对影像重叠区域的特征进行提取和匹配,通过对图像的堆叠、偏转来解析出真实的空间三维结构(图9b艾明等,2018张培兴等,2017)。SfM与立体摄影测量技术的基本原理相同,均为基于图像的三维模型生成技术,但不同的点在于SfM可通过图像自动反演相机的姿态和方位,更加方便快捷(Westoby et al.,2012)。

    相较LiDAR,SfM的优点在于成本低,数据处理简单,生成点云更密集(Kovanič et al.,2023),且由于SfM是基于彩色影像数据进行解算的,这使得其生成的三维模型具有真彩性(魏占玉等,2015),能更好表现地表纹理特征。而缺点在于,SfM本质上是根据图像生成点云模型,所以搭载某些缺乏自校准系统的消费级相机获取地面数据时,可能会由于镜头畸变而导致模型变形(James and Robson,2014),且由于拍摄的图像缺乏坐标信息,SfM还需要布设相应的地面控制点来确定生成三维地形的真实空间方位以及提高数据精度(Tomaštík et al.,2019Kovanič et al.,2023)。除此之外,SfM也无法消除植被覆盖的影响,在植被茂盛的区域其精度不如LiDAR(魏占玉等,2015)。

    无人机航测技术可在空中进行数据采集,摆脱了地形限制,同时其空载设备的高机动性也极大提高了观测范围,一定程度上能够改善传统方法中的诸多问题。首先,其构建的大尺度三维模型使得在室内一次性对较大范围内的结构面进行数字化测量成为可能。其次,无人机航测技术还可提供独特的宏观视角,使得研究人员在断裂影响带的研究中能够结合多种尺度的构造信息进行解译。

    广义的断裂影响带类别在上文2.2节中已经进行了简单的介绍,但其中断裂阶区、马尾状断裂往往规模较大,有些长度可达上百千米(Petit and Barquins,1988刘一鸣等,2021),目前对于此类影响带的研究大部分依然会采用卫星影像解译的方法,因为小型无人机由于自身续航时间、长距离飞行稳定性等的限制,很难完成大面积(上百平方千米)数据采集任务。

    而在一些规模较小的断裂影响带识别和研究中,无人机航测技术已经有了广泛应用。如其在走滑断层的研究中主要被用来提取地表构造信息,包括地质体水平位错、震后地表破裂和弥散变形等。2021年青海玛多MS 7.4地震后,李东臣等(2022)通过无人机拍摄数字影像的方法完成了对玛多−甘德断层周边地表破裂的半自动提取;邵延秀等(2022)则将无人机航摄和卫星影像结合,测量了震区车辙在震前和震后的形变位移量,以此来确定弥散变形的影响范围;Daryono et al.(2021)在印尼西爪哇岛西部通过无人机航测生成的数字地表模型(DSM)识别出了巴里比斯断层运动导致的溪谷左旋偏移。在逆冲和正断层的研究中,无人机航测技术主要被用来提取断裂的垂面运动信息,包括断层陡坎、逆冲褶皱等。如马金保等(2019)通过无人机航测构建了青藏高原北缘北祁连断裂系中皇城−双塔断裂附近张流沟两侧阶地的数字高程模型,以此为基础计算出了多处断层陡坎高度;刘富财(2021)通过无人机航空摄影测量了华山山前断裂河流阶地的垂直位错量,并结合U系测年法计算出了该断裂第四纪晚期以来的平均滑动速率;Bi et al.(2022)通过无人机搭载LiDar采集的高分辨率地形数据计算出了乌拉山山前断层的平均垂直位移量。由此可以看出,无人机航测技术在不同类别断层的构造地貌识别和提取中发挥着越来越加重要的作用,已经逐渐成为一种常规手段,其应用场景主要包括以下3个方面。

    2.2.1   断裂影响带宽度的确定

    无人机航测可通过LiDar激光扫描或SfM间接生成的方法获取测区的点云数据信息,从而进一步生成高精度三维数字地形模型(DEM)。获得的模型不仅能反映地形起伏特征,还具有真实的细节纹理,甚至是微小的节理面也都囊括其中。研究人员可直接在该模型中垂直或平行于断裂走向,通过划定数字测窗或测线的方法对节理变化规律进行统计分析,从而确定断裂影响带的宽度(图10),如张培兴等(2017)在甘肃北山新场某7 km长断裂的研究中,利用航空摄影生成了断裂附近岩体节理的三维迹线,并通过划定数字测窗统计节理面密度的方法将该断裂影响带的宽度定义为60 m;Wang et al.(2021) 在西藏东南部雅鲁藏布江断裂的研究中,通过无人机航测在距断裂0.5 km、3.0 km、3.4 km、8.5 km和13.5 km的区域分别构建了5个数字点云模型,并使用Coltop和ESRI ArcMap统计节理间距结合场地岩石崩落情况,计算出该条断裂影响带宽度(5.3~6.5 km)。总之,基于无人机航测技术构建的高分辨率模型能快速、高效地获取断裂周边大范围地形地貌特征和节理分布情况,使得研究人员在室内即可结合多种构造特征完成对断裂影响带的分析评测,极大地提高了工作效率。

    图  10  根据节理线密度分析断裂影响带宽度(据雷光伟等,2016;张培兴等,2021修改)
    Figure  10.  Judging the width of the fracture zone based on the linear joint density (modified after Lei et al., 2016; Zhang et al., 2021)
    2.2.2   提取断裂运动参数、分析断裂活动历史

    活动断裂的研究一般需通过观测特殊地貌标志来确定活动年代、量化活动强度(Zhang et al.,2015)。使用传统测量方法例如皮尺、全站仪等不仅测量效率低,也难以获取沿整条断裂的大范围地貌数据。此外,地貌体的单次位移量往往较小,使得传统遥感影像难以识别。而无人机航测技术不仅能在短时间内获取大范围的三维地形数据,也可生成厘米级精度的DEM数字高程模型(魏占玉等,2015高帅坡,2017江晨轶等,2024)。在地貌体测量方面无人机航测已有广泛应用,如熊保颂和李雪(2020)通过无人机航测结合LaDiCaoz(一种可视化活动构造测量软件),根据阿尔金断裂中部的冲沟位错测得其总体走滑位移量为6.9±1.8 m(图11);Johnson et al. (2014) 利用SfM技术生成了圣安德烈断裂的数字高程模型,并通过绘制断裂轮廓结合断错河道与沙洲的位移距离,给出了断裂陡坎高度(0.8 m)和水平位移量(3 m);Weismüller et al. (2019) 使用无人机航摄技术创建了冰岛内大型张性断裂的正摄影像图,基于此分析了不同位置断裂的张开量和垂直位错,并认为垂直位错主要受到断裂的垂直运动控制,而张开量则主要受到后期的侵蚀作用影响。

    图  11  识别冲沟水平位错(据熊保颂和李雪,2020修改)
    a—阿尔金断裂中段影像图; b—戈壁岭研究区域部分冲沟模型; c—冲沟位错解译
    Figure  11.  Identifying horizontal dislocations in hydrographic nets (modified after Xiong and Li, 2020)
    (a) Imagery of the central segment of the Altyn Tagh Fault; (b) Regional gully model in the Gebiling area; (c) Gully dislocation interpretation

    从以上研究可以看出,基于无人机航测技术建立的三维点云模型,其优点在于更加准确、高效地识别断错地貌(如断层陡坎、断错水系、山脊等),获得水平向和垂直向的断错位移量。而为了进一步获得断裂的运动参数,需结合年轻地质体的测年方法,如宇宙成因核素(Be10/Al26)地质测年、光释光(OSL)测年、碳十四(C14)测年和电子自旋共振(ESR)测年等,获得断错地貌体的废弃年龄或埋藏年龄,最后给出断裂的主要运动参数(Wagner and Van Den Haute,1992张克旗等,2015)。目前对于断裂的活动历史,主要依赖沿断层开挖探槽并进行古地震解译,来获取断裂的活动信息和离逝时间。对于基岩断裂,还可以利用三维激光扫描技术,分析断裂面的粗糙度,并结合断层面的测年结果来分析断裂的活动历史。对于断裂的新生代甚至更老的活动历史,无人机测年方法主要起到辅助作用,更多地需要结合现场野外调查结果与热年代学方法,如磷灰石/锆石裂变径迹(FT)、U-Pb和U/Th-He的同位素测年方法(刘德民等,2005Makhubela and Kramers,2022Tamas et al.,2023)。

    2.2.3   强震地表破裂的识别与范围的确定

    震后快速确定引发大震破裂的主断裂位置、表破裂几何展布、同震地质灾害的分布范围,是震后应急抢险工作的主要依据之一,同时对于重要设施的避让带设置、重大工程的项目选址等工作也具有重大意义(Youngs et al.,2003刘帅等,2024)。传统研究地震地表破裂的方法多为使用全站仪、手持GPS、卷尺等工具进行实地人工测量(Yuan et al.,2011),受限于人工作业,其效率往往较为低下,且易受到研究人员的主观判断从而影响测量结果(陈桂华等,2006刘静等,2013)。而使用无人机航摄可自动化重建千米级尺度的高分辨率三维地形影像,在影像中可直观地观察到大范围内地表破裂的几何展布,极大地提升了相关研究的便利性。如在2021年青海玛多MS 7.4地震中,研究人员将无人机航摄获取的高分辨率数字正摄影像图与实地调查相结合,完成了对震中长约30 km段落的地表破裂解译与分类,分析了地震破裂的几何结构与走向特点(图12张志文等,2021韩龙飞等,2022刘小利等,2022王文鑫等,2022)。2016年新疆阿克陶MW 6.6地震中,付博等(2018)使用无人机生成高精度地表数字表面模型和正摄影像模型,对具有垂直位错量的地貌进行了识别,并测得其位错量在4.4~10.4 cm之间。2022年门源MS 6.9地震中,袁道阳等(2023)使用无人机航测技术航拍影像识别出此次地震导致的2条主要地表破裂带分别位于冷龙岭断裂西段和托勒山断裂东段,并结合现场铁丝围栏的位错距离计算了2条主要破裂带的地表破裂最大水平位错分别为2.6±0.3 m和1.0±0.1 m;Li(2022)则是通过无人机航测沿地表破裂带构建了约30 km长、1 km宽的数字高程模型和正射影像图,对长约26 km的同震地表破裂和裂隙进行了详细的解译,测量了31个破裂的同震左旋位移量,并统计出与冷龙岭断裂相关的破裂带最大位移量为3.4 m,与托勒山断裂相关的破裂带最大位移量为0.95 m。2022年泸定MS 6.8地震中,李路伟等(2022)综合无人机航测、遥感影像等多种方法,在确定了地震类型主要表现为左旋走滑的基础上,识别出主断裂影响带范围内地表裂隙的主要展布方向。综上,通过无人机航测技术可在短时间内获取地表破裂信息,最大程度保留地表破裂的原始面貌,满足了震后快速获取同震地表破裂特征及后续防震减灾的需要。

    图  12  地表破裂及冲沟水平位错识别(据张志文等,2021;李东臣等,2022修改)
    a—2021年玛多MS7.4地震区域地震构造图;b—地表破裂实景; c—无人机影像识别冲沟位错和地表破裂
    Figure  12.  Identifying surface fractures and horizontal dislocations in gullies (modified after Zhang et al., 2021; Li et al., 2022)
    (a) Seismotectonic map of the 2021 MS 7.4 Madoi earthquake region; (b) Field photograph of a surface rupture; (c) UAV image recognition of gully dislocations and surface fractures

    从断裂影响带的识别来看,由于走滑断层、逆冲断层和正断层的生长发育过程存在区别,而且尺度效应也影响了断层发育过程。目前主断裂、过渡带和影响带界限的划分方法,以及同一断裂不同位置的影响带的几何学和发育模式等尚存在争议。因此,对于断裂影响带的定义和范围,一方面需要从传统构造地质领域给出明确的定义,并进一步探究其生长机制及延伸范围;另一方面,就目前构造节理的提取方法来看,仅使用测窗和测线对节理的发育规律进行统计虽有一定优势,但也存在统计参数过于单一、无法满足对断裂影响带内复杂节理分布特征的描述和分析等问题。因此,利用日益成熟的无人机航测技术可为解决以上问题提供一种思路。

    就无人机航测技术来看,虽然其高效、便捷的优点突出,但在硬件技术和软件方法两方面也需进一步完善,以实现更加高效、准确的自动化构造信息拾取和分析。从硬件技术角度来看,一方面需要进一步升级测量传感器性能,包括引入针对航测的分辨率更高、快门速度更快的相机和扫描角度更大、回报率更高的激光雷达,以提供更为精准高效的数据采集需求,避免构造信息识别错误和缺失;另一方面,作为搭载传感器的飞行平台,无人机本身的机体也应进一步提升飞行稳定性、抗风强度和续航时间,来应对复杂环境下的数据采集任务,以适应未来高精度、大范围的构造信息提取的需求。从软件方法角度来看,无人机所获取的大量数据需要进行高效、准确的处理和分析,自动化和智能化是未来数据处理的趋势。因此,可通过引入人工智能和机器学习算法,实现数据解译的全过程自动化,并自动对模型中的错误信息进行判别,以提高效率和准确率。

    (1)断裂影响带可分为3个部分:端部影响带、断裂阶区和主断裂影响带。从断裂生长和伴生构造发育的角度看,端部影响带的节理发育往往更为密集和破碎;断裂阶区由于受到不同应力状态的影响,其构造特征更为复杂;主断裂影响带内的节理分布符合里德尔剪切的分布规律。

    (2)目前识别断裂影响带的方法主要围绕分析统计构造节理的发育规律展开,通过不同的测量手段和统计方法以获得断裂影响带内节理的分布特征。无人机航测技术在断裂影响带的识别中承担的主要任务是数据采集和大比例尺模型构建。高精度的数字模型能够对断裂影响带内及周边的节理面进行数字化统计,使确定影响带的范围更为快捷,同时也能够提取复杂的构造信息,识别断错地貌和地表破裂带。

    (3)相比于传统野外实地调查,无人机航测技术能够更大程度地减少野外工作量,提高工作效率;相比于卫星影像,其构建的数字化模型精度更高,能够更直观地展现地貌特征,提取复杂构造信息。而缺点则是利用无人机航测技术提取构造信息的方法还不成熟,对部分提取的错误信息还需要进行手动甄别和修正,甚至现场核验。

    致谢:本文在撰写过程中与巫宇帆和孙健博士进行了有益的讨论,田震和汪家伟硕士参与了部分野外工作,在此一并表示衷心的感谢!

  • 图  1  断裂影响带位置示意图(据Choi et al.,2016修改)

    Figure  1.  The spacial relation between fault damage zones and the fault core (mofified after Choi et al., 2016)

    图  2  断裂影响带分类示意图(据Kim et al.,2004修改)

    Figure  2.  Schematic diagram of the fault damage zone classification (modified after Kim et al., 2004)

    图  3  端部影响带伴生构造(据Kim et al.,2004修改)

    a—翼型断裂;b—马尾状断裂;c—同向分支断裂;d—反向断裂

    Figure  3.  Structures associated with tip damage zones (modified after Kim et al., 2004)

    (a) wing cracks; (b) horsetail fractures; (c) synthetic branch faults; (d) antithetic faults

    图  4  断裂阶区伴生构造的示意图(据Kim et al.,2003修改)

    a—张性阶区中的透镜体;b—压性阶区中的透镜体;c—张性阶区中的拉分构造;d—压性阶区中的挤压断裂构造

    Figure  4.  Structures associated with linking damage zones (modified after Kim et al., 2003)

    (a) Lenticular body in a releasing stepover; (b) Lenticular body in a restraining stepover; (c) Pull-apart structure in a releasing stepover;(d) Compressional fault in a restraining stepover

    图  5  主断裂影响带伴生构造(据许顺山等,2017修改)

    a—反向共轭断裂;b—同向共轭断裂;c—里德尔剪切

    Figure  5.  Structures associated with wall damage zones (modified after Xu et al., 2017)

    (a) Antithetic faults; (b) Synthetic faults; (c) Riedel Shear

    图  6  圆形测窗示意图(况杰等,2018

    Figure  6.  Schematic diagram of the circular measuring window (Kuang et al., 2018)

    图  7  节理不同交切模式与断裂位置关系

    Figure  7.  The relationship between intersection modes of joints and fracture areas

    图  8  根据节理线密度累计频率计算影响带范围(据Choi et al.,2016修改)

    a—莫阿布断裂带北端地质背景;b—根据线密度累计频率确定影响带范围示意图;c—巴特利特沃什北部研究区域实景

    Figure  8.  Calculation of cumulative frequency of linear density and influence band range (modified after Choi et al., 2016)

    (a) Geological background of the study area; (b) Schematic diagram of determining the range of damage zone based on the cumulative frequency of line density; (c) Actual view of the research area

    图  9  2种无人机航测原理示意图

    a—遥感解译原理;b—航空摄影原理

    Figure  9.  Schematic diagrams of two UAV aerial survey principles

    (a) Schematic diagram of LiDAR; (b) Schematic diagram of SfM

    图  10  根据节理线密度分析断裂影响带宽度(据雷光伟等,2016;张培兴等,2021修改)

    Figure  10.  Judging the width of the fracture zone based on the linear joint density (modified after Lei et al., 2016; Zhang et al., 2021)

    图  11  识别冲沟水平位错(据熊保颂和李雪,2020修改)

    a—阿尔金断裂中段影像图; b—戈壁岭研究区域部分冲沟模型; c—冲沟位错解译

    Figure  11.  Identifying horizontal dislocations in hydrographic nets (modified after Xiong and Li, 2020)

    (a) Imagery of the central segment of the Altyn Tagh Fault; (b) Regional gully model in the Gebiling area; (c) Gully dislocation interpretation

    图  12  地表破裂及冲沟水平位错识别(据张志文等,2021;李东臣等,2022修改)

    a—2021年玛多MS7.4地震区域地震构造图;b—地表破裂实景; c—无人机影像识别冲沟位错和地表破裂

    Figure  12.  Identifying surface fractures and horizontal dislocations in gullies (modified after Zhang et al., 2021; Li et al., 2022)

    (a) Seismotectonic map of the 2021 MS 7.4 Madoi earthquake region; (b) Field photograph of a surface rupture; (c) UAV image recognition of gully dislocations and surface fractures

  • [1] AI M, BI H Y, ZHENG W J, et al., 2018. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameters of active tectonics[J]. Seismology and Geology, 40(6): 1276-1293. (in Chinese with English abstract
    [2] AYDIN A, 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 17(7): 797-814. doi: 10.1016/S0264-8172(00)00020-9
    [3] BERG S S, SKAR T, 2005. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah[J]. Journal of Structural Geology, 27(10): 1803-1822. doi: 10.1016/j.jsg.2005.04.012
    [4] BI H Y, SHI L, ZHANG D L, et al., 2022. Constraining paleoseismicity of the Wulashan piedmont fault on the northern margin of the ordos block from fault scarp morphology[J]. Frontiers in Earth Science, 10: 911173. doi: 10.3389/feart.2022.911173
    [5] BROGI A, 2011. Bowl-shaped basin related to low-angle detachment during continental extension: the case of the controversial Neogene Siena Basin (central Italy, northern Apennines)[J]. Tectonophysics, 499(1-4): 54-76. doi: 10.1016/j.tecto.2010.12.005
    [6] CHEN G H, XU X W, WEN X Z, et al., 2006. Application of digital aerophotogrammetry in active tectonics[J]. Earth Science: Journal of China University of Geosciences, 31(3): 405-410. (in Chinese with English abstract
    [7] CHEN S P, TIAN Z J, XU S D, et al., 2024. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China, 43(1): 13-19. (in Chinese with English abstract
    [8] CHINNERY M A, 1966. Secondary faulting: I. Theoretical aspects[J]. Canadian Journal of Earth Sciences, 3(2): 163-174. doi: 10.1139/e66-013
    [9] CHOI J H, JIN K, ENKHBAYAR D, et al., 2012. Rupture propagation inferred from damage patterns, slip distribution, and segmentation of the 1957 MW8.1 Gobi‐Altay earthquake rupture along the Bogd fault, Mongolia[J]. Journal of Geophysical Research: Solid Earth, 117(B12): B12401.
    [10] CHOI J H, EDWARDS P, KO K, et al., 2016. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006
    [11] CUNNINGHAM D, GREBBY S, TANSEY K, et al., 2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20): L20308.
    [12] DARYONO M R, NATAWIDJAJA D H, PUJI A R, et al. , 2021. Fault rupture in Baribis Fault possibly related to the 1847 major earthquake event in the Cirebon area[C]//Proceedings of the 3rd Southeast Asian conference on geophysics. Bandung, Indonesia: IOP Publishing: 012052.
    [13] DELL’ACQUA F, GAMBA P, 2012. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives[J]. Proceedings of the IEEE, 100(10): 2876-2890. doi: 10.1109/JPROC.2012.2196404
    [14] ENGELDER T, 1989. Analysis of pinnate joints in the Mount Desert Island granite: Implications for postintrusion kinematics in the coastal volcanic belt, Maine[J]. Geology, 17(6): 564-567. doi: 10.1130/0091-7613(1989)017<0564:AOPJIT>2.3.CO;2
    [15] FERNÁNDEZ-LOZANO J, GONZÁLEZ-DÍEZ A, GUTIÉRREZ-ALONSO G, et al., 2018. New perspectives for UAV-based modelling the Roman gold mining infrastructure in NW Spain[J]. Minerals, 8(11): 518. doi: 10.3390/min8110518
    [16] FRANKEL K L, DOLAN J F, 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02025.
    [17] FU B, LI Z Q, CHEN J, et al., 2018. The application of miniature unmanned aerial vehicle in 25 November 2016 Arketao MW6.6 earthquake[J]. Seismology and Geology, 40(3): 672-684. (in Chinese with English abstract
    [18] GAO S P, 2017. A quantitative parameters extraction study of active tectonics based on UAV photogrammetry technology[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract
    [19] GAO S P, RAN Y K, WU F Y, et al., 2017. Using UAV photogrammetry technology to extract information of tectonic activity of complex alluvial fan: a case study of an alluvial fan in the southern margin of Barkol basin[J]. Seismology and Geology, 39(4): 793-804. (in Chinese with English abstract
    [20] HAN L F, LIU J, YAO W Q, et al., 2022. Detailed mapping of the surface rupture near the epicenter segment of the 2021 Madoi MW7.4 earthquake and discussion on distributed rupture in the step-over[J]. Seismology and Geology, 44(2): 484-505. (in Chinese with English abstract
    [21] HAO R, WANG J P, CHEN D Y, et al., 2024. Routing optimization of ultra violet light communication unmanned aerial vehicle formation based on JAYA algorithm[J]. Journal of Electronics & Information Technology, 46(3): 848-857. (in Chinese with English abstract
    [22] HOU E K, SHOU Z G, XU Y N, et al., 2017. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence[J]. Coal Geology & Exploration, 45(6): 102-110. (in Chinese with English abstract
    [23] HU C Y, ZHANG G C, LI X L, 2019. Application of UAV remote sensing in high altitude collapsed geological hazards investigation[J]. Yangtze River, 50(1): 136-140. (in Chinese with English abstract
    [24] HUANG H Z, CHEN J P, ZHENG Y W, 2017. Interpretation of mine geological hazards based on UAV remote sensing technology[J]. Journal of Geology, 41(3): 499-503. (in Chinese with English abstract
    [25] JAMES M R, ROBSON S, 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks[J]. Earth Surface Processes and Landforms, 39(10): 1413-1420. doi: 10.1002/esp.3609
    [26] JIANG C Y, PAN J W, ZHANG L J, et al., 2024. Application of UAV SfM technology in active tectonic research: a case study of the Longmu Co Fault, Northwestern Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 30(2): 332-347. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2023192
    [27] JIN B H, LIAO Z Q, LIU A X, 2024. Research overview of unmanned aerial vehicle logistics and its visual analysis based on CiteSpace[J]. Journal of Chengdu Technological University, 27(1): 69-74, 81. (in Chinese with English abstract
    [28] JING H D, LI Y H, ZHANG Z H, et al., 2015. Extraction of joint information of rock masses based on 3D laser scanning technology[J]. Journal of Northeastern University (Natural Science), 36(2): 280-283. (in Chinese with English abstract
    [29] JOHNSON K, NISSEN E, SARIPALLI S, et al., 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986. doi: 10.1130/GES01017.1
    [30] KATZ Y, WEINBERGER R, AYDIN A, 2004. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah[J]. Journal of Structural Geology, 26(3): 491-501. doi: 10.1016/j.jsg.2003.08.003
    [31] KIM Y S, ANDREWS J R, SANDERSON D J, 2000. Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England[J]. Geosciences Journal, 4(2): 53-72. doi: 10.1007/BF02910127
    [32] KIM Y S, ANDREWS J R, SANDERSON D J, 2001. Reactivated strike–slip faults: examples from north Cornwall, UK[J]. Tectonophysics, 340(3-4): 173-194. doi: 10.1016/S0040-1951(01)00146-9
    [33] KIM Y S, PEACOCK D C P, SANDERSON D J, 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta[J]. Journal of Structural Geology, 25(5): 793-812 doi: 10.1016/S0191-8141(02)00200-6
    [34] KIM Y S, PEACOCK D C P, SANDERSON D J, 2004. Fault damage zones[J]. Journal of structural geology, 26(3): 503-517. doi: 10.1016/j.jsg.2003.08.002
    [35] KOVANIČ Ľ, TOPITZER B, PEŤOVSKÝ P, et al., 2023. Review of photogrammetric and lidar applications of UAV[J]. Applied Sciences, 13(11): 6732. doi: 10.3390/app13116732
    [36] KUANG J, ZHANG Y S, 2017. Automatic detection of rock mass discontinuity trace based on digital image processing[J]. Geotechnical Engineering Technique, 31(1): 5-8, 13. (in Chinese with English abstract
    [37] KUANG J, 2018. Research on automatic detection of structural surface traces and rock mass quality evaluation method based on image processing[D]. Nanjing: Nanjing University of Science & Technology. (in Chinese with English abstract
    [38] KUANG J, ZHANG Y S, ZHAO J B, 2018. Automatic detection of rock mass fissure based on image processing of phase congruency[J]. Computer Engineering and Applications, 54(24): 193-197. (in Chinese with English abstract
    [39] LEI G W, YANG C H, WANG G B, et al., 2016. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241. (in Chinese with English abstract
    [40] LI D C, REN J J, ZHANG Z W, et al., 2022. Research on semi-automatic extraction method of seismic surface ruptures based on high-resolution UAV image: taking the 2021 MS7.4 Maduo earthquake in Qinghai Province as an example[J]. Seismology and Geology, 44(6): 1484-1502. (in Chinese with English abstract
    [41] LI G, 2021. Status and trend of UAV development[J]. Modern Industrial Economy and Informationization, 11(3): 12-13, 16. (in Chinese with English abstract
    [42] LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841. (in Chinese with English abstract
    [43] LI J X, LI Y F, LI S, et al., 2017. Application of remote sensing technology of UAV in the acquisition of earthquake disaster in Pishan, Xinjiang[J]. Technology for Earthquake Disaster Prevention, 12(3): 690-699. (in Chinese with English abstract
    [44] LI K, TAPPONNIER P, XU X W, et al., 2023. The 2022, MS6.9 Menyuan earthquake: surface rupture, Paleozoic suture re-activation, slip-rate and seismic gap along the Haiyuan fault system, NE Tibet[J]. Earth and Planetary Science Letters, 622: 118412. doi: 10.1016/j.jpgl.2023.118412
    [45] LI L W, YU Z Y, CHEN B X, et al., 2022. Co-seismic surface deformation characteristics and seismic geological enlightenment of the Luding, Sichuan MS6.8 earthquake in 2022[J]. Journal of Institute of Disaster Prevention, 24(4): 75-87. (in Chinese with English abstract
    [46] LI S J, XIE Y L, ZHU X M, 2013. Research on countermeasure of water gushing with collapse in process of Wushaoling highway tunnel crossing F4 fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S2): 3602-3609. (in Chinese with English abstract
    [47] LI X Z, ZHANG G Y, LUO G Y, 2003. Barrier effects caused by fault on excavating-induced stress & edformation and mechanism of resulting groundwater inrush[J]. Rock and Soil Mechanics, 24(2): 220-224. (in Chinese with English abstract
    [48] LI Y G, ELLSWORTH W L, THURBER C H, et al., 1997. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California[J]. Bulletin of the Seismological Society of America, 87(1): 210-221. doi: 10.1785/BSSA0870010210
    [49] LI Y P, XU J D, YU H M, 2006. Geometrical characteristics of fractures and rock quality assessment in granite in the Beishan area, Gansu province[J]. Seismology and Geology, 28(1): 129-138. (in Chinese with English abstract
    [50] LI Z, FU B H, 2022. Quantitative analyses of geomorphologic features in response to Late Quaternary tectonic activities along the Maqin-Maqu segment, East Kunlun fault zone[J]. Seismology and Geology, 44(6): 1421-1447. (in Chinese with English abstract
    [51] LIU D M, LI D W, YANG W R, et al., 2005. Evidence from fission track ages for the tectonic uplift of the Himalayan Orogen during Late Cenozoic[J]. Earth Science: Journal of China University of Geosciences, 30(2): 147-152. (in Chinese with English abstract
    [52] LIU F C, 2021. The characteristics of quaternary activities of SN normal fault and strike sip fault, central Tibet: taking Riganpei Co fault and norma co graben as examples[D]. Beijing: China University of Geosciences (Beijing). doi: 10.27493/d.cnki.gzdzy.2021.001592. (in Chinese with English abstract
    [53] LIU J, CHEN T, ZHANG Z P, et al., 2013. Illuminating the active Haiyuan fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41-45. (in Chinese with English abstract doi: 10.1360/972012-1526
    [54] LIU J, 2018. Application of remote sensing surveying and mapping technology of UAV in engineering surveying and mapping[J]. World Nonferrous Metals(24): 156-157. (in Chinese with English abstract
    [55] LIU S, HE B, WANG T, et al., 2024. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China[J]. Journal of Geomechanics, 30(2): 314-331. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2024009
    [56] LIU S H, WANG Y S, 2023. Application of drone technology in agricultural machinery automation[J]. South Agricultural Machinery, 54(11): 167-169. (in Chinese)
    [57] LIU X L, XIA T, LIU J, et al., 2022. Distributed characteristics of the surface deformations associated with the 2021 MW7.4 Madoi earthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 461-483. (in Chinese with English abstract
    [58] LIU Y M, WU Z P, YAN S Y, et al. , 2021. New insight into the origin of horsetail-like structure in Beibu depression, Beibu Gulf Basin[J]. Journal of China University of Mining & Technology, 2021, 50(1): 163-175, doi: 10.13247/j.cnki.jcumt.001247. (in Chinese with English abstract
    [59] MA J B, ZHANG B, WANG Y, et al., 2019. A study on the scarp of reverse fault based on geomorphological observation by low-altitude remote sensing: taking the fault scarp of Zhangliugou Beach as an example[J]. Earth Science Frontiers, 26(2): 92-103. doi: 10.13745/j.esf.sf.2019.2.6
    [60] MA J F, LI X Q, ZHANG C C, et al., 2022. Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone[J]. Journal of Geomechanics, 28(6): 956-968. (in Chinese with English abstract
    [61] MAKHUBELA T V, KRAMERS J D, 2022. Testing a new combined (U, Th)–He and U/Th dating approach on Plio-Pleistocene calcite speleothems[J]. Quaternary Geochronology, 67: 101234. doi: 10.1016/j.quageo.2021.101234
    [62] MAO Y Z, ZHANG X D, LV G J, et al., 2023. Identification of faults in the southern margin of Xuanhua Basin by low altitude aerial survey[J]. Plateau Earthquake Research, 35(2): 56-62. (in Chinese with English abstract
    [63] MARQUES A, RACOLTE G, DE SOUZA E M, et al. , 2021. Deep learning application for fracture segmentation over outcrop images from UAV-based digital photogrammetry[C]//Proceedings of 2021 IEEE international geoscience and remote sensing symposium IGARSS. Brussels, Belgium: IEEE: 4692-4695.
    [64] MARTEL S J, BOGER W A, 1998. Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock[J]. Journal of Geophysical Research: Solid Earth, 103(B9): 21299-21314. doi: 10.1029/98JB01393
    [65] MCGRATH A G, DAVISON I, 1995. Damage zone geometry around fault tips[J]. Journal of Structural Geology, 17(7): 1011-1024. doi: 10.1016/0191-8141(94)00116-H
    [66] NAYLOR M A, MANDL G, SUPESTEIJN C H K, 1986. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 8(7): 737-752. doi: 10.1016/0191-8141(86)90022-2
    [67] OUÉDRAOGO M M, DEGRÉ A, DEBOUCHE C, et al., 2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds[J]. Geomorphology, 214: 339-355. doi: 10.1016/j.geomorph.2014.02.016
    [68] PAJARES G, 2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)[J]. Photogrammetric Engineering & Remote Sensing, 81(4): 281-330.
    [69] PETIT J P, BARQUINS M, 1988. Can natural faults propagate under mode II conditions?[J]. Tectonics, 7(6): 1243-1256. doi: 10.1029/TC007i006p01243
    [70] RAJLICH P, 1993. Riedel shear: a mechanism for crenulation cleavage[J]. Earth-Science Reviews, 34(3): 167-195. doi: 10.1016/0012-8252(93)90033-4
    [71] RIEDEL W, 1929. Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie[J]. Geologie und Palä ontologie, 8: 354-368.
    [72] SHAO Y X, ZHANG B, ZOU X B, et al., 2017. Application of Uavls to Rapid Geological Surveys[J]. Seismology and Geology, 39(6): 1185-1197. (in Chinese with English abstract
    [73] SHAO Y X, LIU J, GAO Y P, et al., 2022. Coseismic displacement measurement and distributed deformation characterization: a case of 2021 Mw7.4 Madoi earthquake[J]. Seismology and Geology, 44(2): 506-523. (in Chinese with English abstract
    [74] SKEMPTON A W, 1966. Some observations on tectonic shear zones[C]//Paper presented at the 1st ISRM congress. Lisbon, Portugal: ISRM.
    [75] TAMAS A, HOLDSWORTH R E, TAMAS D M, et al., 2023. Using UAV-based photogrammetry coupled with in situ fieldwork and U-Pb geochronology to decipher multi-phase deformation processes: A case study from sarclet, inner moray firth Basin, UK[J]. Remote Sensing, 15(3): 695. doi: 10.3390/rs15030695
    [76] THACKRAY G D, RODGERS D W, STREUTKER D, 2013. Holocene scarp on the Sawtooth fault, central Idaho, USA, documented through Lidar topographic analysis[J]. Geology, 41(6): 639-642. doi: 10.1130/G34095.1
    [77] TOMAŠTÍK J, MOKROŠ M, SUROVÝ P, et al., 2019. UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas?[J]. Remote Sensing, 11(6): 721. doi: 10.3390/rs11060721
    [78] VERMILYE J M, SCHOLZ C H, 1999. Fault propagation and segmentation: insight from the microstructural examination of a small fault[J]. Journal of Structural Geology, 21(11): 1623-1636. doi: 10.1016/S0191-8141(99)00093-0
    [79] WAGNER G A, VAN DEN HAUTE, 1992. Fission-track dating method[M]//WAGNER G A, VAN DEN HAUTE. Fission-track dating. Dordrecht: Springer: 59-94.
    [80] WALSH J, WATTERSON J, YIELDING G, 1991. The importance of small-scale faulting in regional extension[J]. Nature, 351(6325): 391-393. doi: 10.1038/351391a0
    [81] WANG D Q, 2013. A study on faults detection using electrical resistivity tomography method[D]. Nanjing: Nanjing University. (in Chinese with English abstract
    [82] WANG F Y, CHEN J P, FU X H, et al., 2008. Study on geometrical information of obtaining rock mass discontinuities based on VirtuoZo[J]. Chinese Journal of Rock Mechanics and Engineering, 27(1): 169-175. (in Chinese with English abstract
    [83] WANG W X, SHAO Y X, YAO W Q, et al., 2022. Rapid extraction of features and indoor reconstruction of 3D structures of Madoi MW7.4 earthquake surface ruptures based on photogrammetry method[J]. Seismology and Geology, 44(2): 524-540. (in Chinese with English abstract
    [84] WANG X L, CROSTA G B, CLAGUE J J, et al., 2021. Fault controls on spatial variation of fracture density and rock mass strength within the Yarlung Tsangpo Fault damage zone (southeastern Tibet)[J]. Engineering Geology, 291: 106238. doi: 10.1016/j.enggeo.2021.106238
    [85] WEI Z Y, RAMON A, HE H L, et al., 2015. Accuracy analysis of terrain point cloud acquired by “structure from motion" using aerial photos[J]. Seismology and Geology, 37(2): 636-648. (in Chinese with English abstract
    [86] WEISMÜLLER C, URAI J L, KETTERMANN M, et al., 2019. Structure of massively dilatant faults in Iceland: lessons learned from high-resolution unmanned aerial vehicle data[J]. Solid Earth, 10(5): 1757-1784. doi: 10.5194/se-10-1757-2019
    [87] WESTOBY M J, BRASINGTON J, GLASSER N F, et al., 2012. ‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 179: 300-314. doi: 10.1016/j.geomorph.2012.08.021
    [88] WU X J, 2023. Research on the application of small UAV aerial survey in farmland information monitoring[J]. Automation Application, 64(3): 1-3. (in Chinese with English abstract
    [89] XIONG B S, LI X, 2020. Offset measurement along active fault based on portable unmanned aerial vehicle and structure from motion: a case study of the middle section in Altyn-Tagh fault[J]. Science Technology and Engineering, 20(26): 10848-10855. (in Chinese with English abstract
    [90] XU S S, PENG H, NIETO-SAMANIEGO A F, et al., 2017. The similarity between Riedel shear patterns and strike-slip basin patterns[J]. Geological Review, 63(2): 287-301. (in Chinese with English abstract
    [91] XU W T, LI X Z, ZHANG Y S, et al., 2022. Fine identification and characterization of rock mass discontinuities and its application using a digital photogrammetry system[J]. Acta Geodaetica et Cartographica Sinica, 51(10): 2093-2106. (in Chinese with English abstract
    [92] YAMAZAKI F, KUBO K, TANABE R, et al. , 2017. Damage assessment and 3d modeling by UAV flights after the 2016 Kumamoto, Japan earthquake[C]//Proceedings of 2017 IEEE international geoscience and remote sensing symposium (IGARSS). Fort Worth, TX, USA: IEEE: 3182-3185.
    [93] YANG C H, BAO H T, WANG G B, et al., 2006. Estimation of mean trace length and trace midpoint density of rock mass joints[J]. Chinese Journal of Rock Mechanics and Engineering, 25(12): 2475-2480. (in Chinese with English abstract
    [94] YANG C H, MEI T, WANG G B, et al. , 2007. Study on Rockmass joint characteristics of Jiji quarry in Beishan, Gansu province[J]. Chinese Journal of Rock Mechanics and Engineering(S2): 3849-3854. (in Chinese with English abstract
    [95] YANG H J, HU C L, CHEN W W, et al., 2004. Information construction of the tunnel in a fault and crush zone[J]. Chinese Journal of Rock Mechanics and Engineering, 23(22): 3917-3922. (in Chinese with English abstract
    [96] YANG Y Z, REN J J, LI D C, 2023. Quantitative staging of alluvial fan geomorp hic surfaces in arid areas based on SAR imagery: A case study of the Shule River alluvial fan in the western desert region of the Hexi Corridor[J]. Journal of Geomechanics, 29(6): 842-855. (in Chinese with English abstract
    [97] YOUNGS R R, ARABASZ W J, ANDERSON R E, et al., 2003. A Methodology for Probabilistic Fault Displacement Hazard Analysis (PFDHA)[J]. Earthquake Spectra, Vol, 19(1): 191-219 doi: 10.1193/1.1542891
    [98] YUAN D Y, CHAMPAGNAC J D, GE W P, et al., 2011. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau[J]. GSA Bulletin, 123(9-10): 2016-2030. doi: 10.1130/B30315.1
    [99] YUAN D Y, XIE H, SU R H, et al., 2023. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics, 66(1): 229-244. (in Chinese with English abstract doi: 10.6038/cjg2022Q0093
    [100] YUAN M F, XIE Z L, 2018. A research on application of UAV remote sensing mapping technology in mine survey[J]. China’s Manganese Industry, 36(5): 11-13, 20. (in Chinese with English abstract
    [101] ZANUTTA A, LAMBERTINI A, VITTUARI L, 2020. UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes[J]. Journal of Marine Science and Engineering, 8(1): 52. doi: 10.3390/jmse8010052
    [102] ZENG Y, ZHOU R, TANG J, et al., 2024. Design of an emergency communications UAV system compatible for all Chinese telecom operators and its ground coverage strategy[J]. Telecommunication Engineering, 64(7): 995-1004. (in Chinese with English abstract doi: 10.20079/j.issn.1001-893x.230912003
    [103] ZEYBEK M, 2021. Accuracy assessment of direct georeferencing UAV images with onboard global navigation satellite system and comparison of CORS/RTK surveying methods[J]. Measurement Science and Technology, 32(6): 065402. doi: 10.1088/1361-6501/abf25d
    [104] ZHANG K Q, WU Z H, LÜT Y, et al., 2015. Review and progress of OSL dating[J]. Geological Bulletin of China, 34(1): 183-203. (in Chinese with English abstract
    [105] ZHANG L, EINSTEIN H H, 1998. Estimating the mean trace length of rock discontinuities[J]. Rock Mechanics and Rock Engineering, 31(4): 217-235. doi: 10.1007/s006030050022
    [106] ZHANG P X, LI X Z, ZHANG Y S, et al. , 2017. Study on influence range of pre-selected site fault based on geophysical and photogrammetry[J]. Journal of Disaster Prevention and Mitigation Engineer, 37(6): 987-993, 1000. (in Chinese with English abstract
    [107] ZHANG P X, LI X Z, ZHANG Y S, et al., 2021. Study on the evolution law and test method of the permeability characteristics of a fault-influenced zone[J]. Water Resources and Hydropower Engineering, 52(9): 135-142. (in Chinese with English abstract
    [108] ZHANG Z P, WANG Q C, 2004. The summary and comment on fault-slip analysis and palaeostress reconstruction[J]. Advances in Earth Science, 19(4): 605-613. (in Chinese with English abstract
    [109] ZHANG Z W, REN J J, ZHANG X L, 2021. Application of high-precision UAV aerial survey in the detailed study of surface rupture of Maduo MW7.4 Earthquake in 2021[J]. Technology for Earthquake Disaster Prevention, 16(3): 437-447. (in Chinese with English abstract
    [110] ZHENG J, ZHANG Y S, LI X Z, et al., 2015. Digital method for acquiring 2D density of discontinuity and its application[J]. Hydrogeology & Engineering Geology, 42(6): 80-85. (in Chinese with English abstract
    [111] ZHOU J, 2023. Application of UAV mapping technology in geological and mineral exploration [J]. China High and New Technology(10): 150-152. (in Chinese with English abstract
    [112] ZHU H H, PAN B Y, WU W, et al., 2023. Review on collection and extraction methods of rock mass discontinuity information[J]. Journal of Basic Science and Engineering, 31(6): 1339-1360. (in Chinese with English abstract
    [113] ZOU J J, HE H L, YOKOYAMA Y, et al., 2019. Paleo-earthquake study methods on bedrock fault surface: history, current situation, suggestions and prospects[J]. Seismology and Geology, 41(6): 1539-1562. (in Chinese with English abstract
    [114] ZOU J J, HE H L, ZHOU Y S, et al., 2023. Application of small unmanned aerial vehicle (SUAV) in the selection of suitable sites in paleo-seismic stury of bedrock fault surfaces[J]. Seismology and Geology, 45(4): 833-846. (in Chinese with English abstract
    [115] 艾明,毕海芸,郑文俊,等,2018. 利用无人机摄影测量技术提取活动构造定量参数[J]. 地震地质,40(6):1276-1293.
    [116] 陈桂华,徐锡伟,闻学泽,等,2006. 数字航空摄影测量学方法在活动构造中的应用[J]. 地球科学:中国地质大学学报,31(3):405-410.
    [117] 陈书平,田作基,徐世东,等,2024. 两种结构类型的走滑相关剪断裂带[J]. 地质通报,43(1):13-19. doi: 10.12097/gbc.2023.04.005
    [118] 付博,李志强,陈杰,等,2018. 微型无人机在2016年11月25日阿克陶MW6.6地震中的应用探索[J]. 地震地质,40(3):672-684. doi: 10.3969/j.issn.0253-4967.2018.03.012
    [119] 高帅坡,2017. 基于无人机摄影测量技术的活动构造定量参数提取研究[D]. 北京:中国地震局地质研究所.
    [120] 韩龙飞,刘静,姚文倩,等,2022. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论[J]. 地震地质,44(2):484-505. doi: 10.3969/j.issn.0253-4967.2022.02.013
    [121] 郝锐,王建萍,陈丹阳,等,2024. 基于JAYA算法的紫外光通信无人机编队路由优化[J]. 电子与信息学报,46(3):848-857. doi: 10.11999/JEIT230206
    [122] 侯恩科,首召贵,徐友宁,等,2017. 无人机遥感技术在采煤地面塌陷监测中的应用[J]. 煤田地质与勘探,45(6):102-110. doi: 10.3969/j.issn.1001-1986.2017.06.017
    [123] 胡才源,章广成,李小玲,2019. 无人机遥感在高位崩塌地质灾害调查中的应用[J]. 人民长江,50(1):136-140
    [124] 黄皓中,陈建平,郑彦威,2017. 基于无人机遥感的矿山地质灾害解译[J]. 地质学刊,41(3):499-503. doi: 10.3969/issn.1674-3636.2017.03.019
    [125] 江晨轶,潘家伟,张丽军,等,2024. UAV SfM技术在活动构造研究中的应用:以青藏高原西北部龙木错断裂为例[J]. 地质力学学报,30(2):332-347, doi: 10.12090/j.issn.1006-6616.2023192.
    [126] 金宝辉,廖梓淇,刘傲雪,2024. 无人机物流研究综述及CiteSpace可视化分析[J]. 成都工业学院学报,27(1):69-74,81.
    [127] 荆洪迪,李元辉,张忠辉,等,2015. 基于三维激光扫描的岩体结构面信息提取[J]. 东北大学学报(自然科学版),36(2):280-283.
    [128] 况杰,章杨松,赵佳斌,2018. 基于相位一致性图像处理的岩体裂隙自动检测[J]. 计算机工程与应用,54(24):193-197. doi: 10.3778/j.issn.1002-8331.1709-0019
    [129] 雷光伟,杨春和,王贵宾,等,2016. 断层影响带的发育规律及其力学成因[J]. 岩石力学与工程学报,35(2):231-241.
    [130] 李东臣,任俊杰,张志文,等,2022. 基于高分辨率无人机影像的地震地表破裂半自动提取方法:以2021年MS7.4青海玛多地震为例[J]. 地震地质,44(6):1484-1502. doi: 10.3969/j.issn.0253-4967.2022.06.008
    [131] 李光,2021. 无人机的发展现状与趋势[J]. 现代工业经济和信息化,11(3):12-13,16.
    [132] 李红强,袁道阳,苏琦,等,2023. 祁连山内部门源盆地地貌特征及构造意义[J]. 地质力学学报,29(6):824-841. doi: 10.12090/j.issn.1006-6616.2023123
    [133] 李金香,李亚芳,李帅,等,2017. 无人机遥感技术在新疆皮山地震灾情获取中的应用[J]. 震灾防御技术,12(3):690-699. doi: 10.11899/zzfy20170324
    [134] 李路伟,余中元,陈柏旭,等,2022. 2022年泸定MS6.8地震的同震地表变形特征及地震地质启示[J]. 防灾科技学院学报,24(4):75-87. doi: 10.3969/j.issn.1673-8047.2022.04.008
    [135] 李生杰,谢永利,朱小明,2013. 高速公路乌鞘岭隧道穿越F4断层破碎带涌水塌方工程对策研究[J]. 岩石力学与工程学报,32(S2):3602-3609.
    [136] 李晓昭,张国永,罗国煜,2003. 地下工程中由控稳到控水的断裂屏障机制[J]. 岩土力学,24(2):220-224. doi: 10.3969/j.issn.1000-7598.2003.02.014
    [137] 李昭,付碧宏,2022. 东昆仑断裂带玛沁—玛曲段晚第四纪构造活动特征的地貌响应定量研究[J]. 地震地质,44(6):1421-1447. doi: 10.3969/j.issn.0253-4967.2022.06.005
    [138] 刘德民,李德威,杨巍然,等,2005. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据[J]. 地球科学:中国地质大学学报,30(2):147-152.
    [139] 刘富财,2021. 青藏高原中部走滑断层与SN向正断层第四纪活动特征:以日干配错断裂和诺尔玛错地堑为例[D]. 北京:中国地质大学(北京),doi: 10.27493/d.cnki.gzdzy.2021.001592.
    [140] 刘静,陈涛,张培震,等,2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报,58(1):41-45.
    [141] 刘静,2018. 工程测绘中无人机遥感测绘技术的应用研究[J]. 世界有色金属(24):156-157.
    [142] 刘帅,何斌,王涛,等,2024. 甘肃积石山县MS6.2地震同震地质灾害发育特征与易发性评价[J]. 地质力学学报,30(2):314-331, doi: 10.12090/j.issn.1006-6616.2024009.
    [143] 刘顺华,王延申,2023. 无人机技术在农业机械自动化中的应用[J]. 南方农机,54(11):167-169. doi: 10.3969/j.issn.1672-3872.2023.11.045
    [144] 刘小利,夏涛,刘静,等,2022. 2021年青海玛多MW7.4地震分布式同震地表裂缝特征[J]. 地震地质,44(2):461-483. doi: 10.3969/j.issn.0253-4967.2022.02.012
    [145] 刘一鸣,吴智平,颜世永,等,2021. 北部湾盆地北部坳陷马尾状构造成因新认识[J]. 中国矿业大学学报,50(1):163-175, doi: 10.13247/j.cnki.jcumt.001247.
    [146] 马剑飞,李向全,张春潮,等,2022. 金沙江断裂带中段岩溶发育和地下水循环特征[J]. 地质力学学报,28(6):956-968. doi: 10.12090/j.issn.1006-6616.20222823
    [147] 马金保,张波,王洋,等,2019. 基于低空遥感地貌观测的逆断层陡坎研究:以张流沟滩断层陡坎为例[J]. 地学前缘,26(2):92-103, doi: 10.13745/j.esf.sf.2019.2.6.
    [148] 茅远哲,张新东,吕国军,等,2023. 应用低空航测技术识别宣化盆地南缘断裂带[J]. 高原地震,35(2):56-62. doi: 10.3969/j.issn.1005-586X.2023.02.008
    [149] 邵延秀,张波,邹小波,等,2017. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质,39(6):1185-1197. doi: 10.3969/j.issn.0253-4967.2017.06.007
    [150] 邵延秀,刘静,高云鹏,等,2022. 同震地表破裂的位移测量与弥散变形分析:以2021年青海玛多MW7.4地震为例[J]. 地震地质,44(2):506-523. doi: 10.3969/j.issn.0253-4967.2022.02.014
    [151] 王凤艳,陈剑平,付学慧,等,2008. 基于VirtuoZo的岩体结构面几何信息获取研究[J]. 岩石力学与工程学报,27(1):169-175. doi: 10.3321/j.issn:1000-6915.2008.01.024
    [152] 王文鑫,邵延秀,姚文倩,等,2022. 基于摄影测量技术对玛多MW7.4地震地表破裂特征的快速提取及三维结构的室内重建[J]. 地震地质,44(2):524-540. doi: 10.3969/j.issn.0253-4967.2022.02.015
    [153] 魏占玉,RAMON A,何宏林,等,2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质,37(2):636-648. doi: 10.3969/j.issn.0253-4967.2015.02.024
    [154] 邬雪江,2023. 小型无人机航测在农田信息监测中的应用研究[J]. 自动化应用,64(3):1-3. doi: 10.3969/j.issn.1674-778X.2023.3.zdhyy202303001
    [155] 熊保颂,李雪,2020. 基于便携式无人机SfM方法的活动构造地貌位错测量:以阿尔金断裂中段为例[J]. 科学技术与工程,20(26):10848-10855. doi: 10.3969/j.issn.1671-1815.2020.26.044
    [156] 许顺山,彭华,NIETO-SAMANIEGO A F,等,2017. 里德尔剪切的组合型式与走滑盆地组合型式的相似性[J]. 地质论评,63(2):287-301.
    [157] 许文涛,李晓昭,章杨松,等,2022. 基于摄影测量系统的岩体结构面精细识别表征及应用[J]. 测绘学报,51(10):2093-2106. doi: 10.11947/j.AGCS.2022.20220359
    [158] 杨春和,包宏涛,王贵宾,等,2006. 岩体节理平均迹长和迹线中点面密度估计[J]. 岩石力学与工程学报,25(12):2475-2480. doi: 10.3321/j.issn:1000-6915.2006.12.013
    [159] 杨春和,梅涛,王贵宾,等,2007. 甘肃北山芨芨采石场岩体节理特征研究[J]. 岩石力学与工程学报(S2):3849-3854.
    [160] 杨会军,胡春林,谌文武,等,2004. 断层及其破碎带隧道信息化施工[J]. 岩石力学与工程学报,23(22):3917-3922. doi: 10.3321/j.issn:1000-6915.2004.22.033
    [161] 杨勇忠,任俊杰,李东臣,2023. 基于SAR影像的干旱区冲/洪积扇地貌面定量分期研究:以河西走廊西部沙漠区的疏勒河洪积扇为例[J]. 地质力学学报,29(6):842-855. doi: 10.12090/j.issn.1006-6616.2023080
    [162] 袁道阳,谢虹,苏瑞欢,等,2023. 2022年1月8日青海门源MS6.9地震地表破裂带特征与发震机制[J]. 地球物理学报,66(1):229-244, doi: 10.6038/cjg2022Q0093.
    [163] 袁曼飞,谢忠俍,2018. 基于无人机遥感测绘技术在矿山测量中的应用研究[J]. 中国锰业,36(5):11-13,20
    [164] 曾勇,周睿,唐军,等,2024. 全网应急通信无人机系统设计及对地覆盖策略[J]. 电讯技术,64(7):995-1004, doi: 10.20079/j.issn.1001-893x.230912003.
    [165] 张克旗,吴中海,吕同艳,等,2015. 光释光测年法:综述及进展[J]. 地质通报,34(1):183-203. doi: 10.3969/j.issn.1671-2552.2015.01.015
    [166] 张培兴,李晓昭,章杨松,等,2017. 综合物探与摄影测量的预选场址断裂影响范围研究[J]. 防灾减灾工程学报,37(6):987-993,1000.
    [167] 张培兴,李晓昭,章杨松,等,2021. 断层影响带渗透特性演化规律与实测方法研究[J]. 水利水电技术(中英文),52(9):135-142.
    [168] 张志文,任俊杰,章小龙,2021. 高精度无人机航测在2021年玛多7. 4级地震地表破裂精细研究中的应用[J]. 震灾防御技术,16(3):437-447.
    [169] 张仲培,王清晨,2004. 断层滑动分析与古应力恢复研究综述[J]. 地球科学进展,19(4):605-613. doi: 10.3321/j.issn:1001-8166.2004.04.018
    [170] 周坚,2023. 无人机测绘技术在地质矿产勘查中的应用[J]. 中国高新科技(10):150-152.
    [171] 朱合华,潘柄屹,武威,等,2023. 岩体结构面信息采集及识别方法研究进展[J]. 应用基础与工程科学学报,31(6):1339-1360
    [172] 邹俊杰,何宏林,周永胜,等,2023. 小型无人机(SUAV)在基岩区古地震研究选点中的应用[J]. 地震地质,45(4):833-846. doi: 10.3969/j.issn.0253-4967.2023.04.002
  • 加载中
图(12)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  108
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-18
  • 修回日期:  2025-04-10
  • 录用日期:  2025-04-11
  • 预出版日期:  2025-05-16
  • 刊出日期:  2025-06-28

目录

/

返回文章
返回