留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柴北缘尕海南山晚志留世—晚泥盆世火山岩浆组合对早古生代造山后伸展时限的约束

高万里 王宗秀 吴林 江万 钱涛

高万里,王宗秀,吴林,等,2024. 柴北缘尕海南山晚志留世—晚泥盆世火山岩浆组合对早古生代造山后伸展时限的约束[J]. 地质力学学报,30(3):506−518 doi: 10.12090/j.issn.1006-6616.2023178
引用本文: 高万里,王宗秀,吴林,等,2024. 柴北缘尕海南山晚志留世—晚泥盆世火山岩浆组合对早古生代造山后伸展时限的约束[J]. 地质力学学报,30(3):506−518 doi: 10.12090/j.issn.1006-6616.2023178
GAO W L,WANG Z X,WU L,et al.,2024. Constraints for post-orogenic extension of the northern margin of the Qaidam Basin from the Late Silurian–Late Devonian igneous rocks in the Gahai–Nanshan area[J]. Journal of Geomechanics,30(3):506−518 doi: 10.12090/j.issn.1006-6616.2023178
Citation: GAO W L,WANG Z X,WU L,et al.,2024. Constraints for post-orogenic extension of the northern margin of the Qaidam Basin from the Late Silurian–Late Devonian igneous rocks in the Gahai–Nanshan area[J]. Journal of Geomechanics,30(3):506−518 doi: 10.12090/j.issn.1006-6616.2023178

柴北缘尕海南山晚志留世—晚泥盆世火山岩浆组合对早古生代造山后伸展时限的约束

doi: 10.12090/j.issn.1006-6616.2023178
基金项目: 国家自然科学基金项目(42372179,41702204)
详细信息
    作者简介:

    高万里(1985—),男,博士,副研究员,从事区域构造和岩石大地构造研究。Email:gwanli851202@163.com

  • 中图分类号: P574;P611

Constraints for post-orogenic extension of the northern margin of the Qaidam Basin from the Late Silurian–Late Devonian igneous rocks in the Gahai–Nanshan area

Funds: This research is financially supported by the National Natural Science Foundation of China (Grants NO. 42372179 and 41702204).
  • 摘要: 柴达木盆地北缘(柴北缘)构造带经历了早古生代的大洋俯冲到大陆俯冲,形成了广为人知的柴北缘超高压变质带。早古生代造山带何时开始垮塌一直存在争论,火山岩和侵入岩作为深地岩石探针能为约束地壳活动提供关键制约。应用锆石LA–ICP–MS U–Pb年代学和Lu–Hf同位素方法对柴北缘东段尕海南山地区出露的牦牛山组火山碎屑岩和侵入其中的花岗岩开展研究。锆石U–Pb年代学结果显示,牦牛山组火山碎屑岩的形成时代约为423 Ma,侵入其中的花岗岩的形成时代为370 Ma,表明火山岩喷发的年龄在晚志留世,后期侵入的花岗岩结晶年龄为晚泥盆世;锆石Lu–Hf同位素结果显示,晚志留世熔结凝灰岩εHf(t)值集中在–11.5~–8.3,其两阶段Hf模式年龄集中在1945~2133 Ma,显示火山岩主要源于古老地壳物质熔融;而晚泥盆世侵入的花岗岩的εHf(t)值分布在3.9~9.1,其两阶段的Hf模式年龄集中在792~1118 Ma,显示花岗岩主要源于中—新元古代地壳物质的部分熔融。结合对区域地质、岩石学等资料的综合分析认为,晚志留世—早泥盆世时期,大陆深俯冲导致的强烈造山作用造成柴北缘地壳发生明显加厚,加厚的欧龙布鲁克地壳基底发生部分熔融,形成了该时期的火山岩;晚泥盆世时期,加厚地壳的拆沉作用导致软流圈地幔上涌,引发区域地壳伸展,上涌的软流圈物质与地壳相互作用并发生部分熔融作用。因此区域牦牛山组形成时代跨度较大,不能笼统地用牦牛山组代表造山结束的时限,晚泥盆世岩浆岩的出现才预示着柴北缘地区进入显著的地壳伸展状态。

     

  • 青藏高原北部的阿尔金−祁连−柴北缘早古生代造山活动强烈,大量早古生代的蛇绿岩、弧岩浆岩、俯冲−增生杂岩等的厘定基本确定了早古生代时期原特提斯洋从扩张、俯冲到闭合的完整构造演化过程(杨经绥等,2001辛后田等,2006张建新等,2007a)。从晚古生代开始,青藏高原北缘的地体开始进入古特提斯洋构造域,其中晚泥盆世被认为是构造体制转换的关键时期,祁连、柴北缘、东昆仑等地广泛发育的晚泥盆世陆相磨拉石建造标志着早古生代造山的结束(夏文静等,2014冯乔等,2015寇贵存等,2017李建兵等,2017)。一些学者指出,用磨拉石建造来限定造山结束的时间需明确其是否属于(周缘)前陆盆地(侯泉林等,2018),事实上,青藏高原北部地体内晚古生代盆地是否属于(周缘)前陆盆地尚存在争议(李峰等,2006陈守建等,2007李瑞保等,2012夏文静等,2014孙娇鹏等,2015)。大量的锆石年代学数据揭示,原来被定义为晚泥盆世的牦牛山组磨拉石火山−沉积岩建造,其时代跨度更大(陆露等,2010张耀玲等,2010),柴达木盆地南缘东昆仑一带牦牛山组最早的火山喷发时代为晚志留世(陆露等,2010);柴达木地区牦牛山组火山岩的锆石年代学分析则显示其主要为早—中泥盆世喷发(冯乔等,2015张耀玲等,2018)。另外,有些学者对牦牛山组内沉积岩的碎屑锆石年代学分析及物源研究揭示了古生代560~360 Ma的年龄分布区间,且最年轻的碎屑锆石年龄为365 Ma,认为牦牛山组的形成时代为晚泥盆世(张春宇等,2019);而祁连地区老君山砾岩和西秦岭大草滩群也主要沉积在中、晚泥盆世(闫臻等,20022007)。牦牛山组形成时代的差异造成了对区域上早古生代造山垮塌时间认识上的分歧。一些学者认为,整个柴北缘自420 Ma起从挤压转为板内伸展,造山带在该时期已经开始垮塌(张春宇等,2019);另一部分学者则认为,中—晚泥盆世时期柴北缘才进入显著的地壳伸展状态,造山带于此时才全面垮塌(刘彬等,2013)。因此,进一步确定牦牛山组的时代及其成因背景对于理解青藏高原北部地体从原特提斯到古特提斯的构造转换过程具有重要意义。

    文章针对柴北缘东段地区牦牛山组下部火山岩和侵入其中的花岗岩开展了同位素年代学和Hf同位素研究,结合近年来牦牛山组相关的年代学、地球化学和同位素研究结果,对牦牛山组的形成时代及其所代表的构造意义进行探讨,以期能为进一步约束青藏高原北部地体从原特提斯到古特提斯的演化过程提供关键制约。

    柴达木盆地位于青藏高原北部,盆地北缘、南缘、西缘分别被祁连山、东昆仑山和阿尔金山所围限,是一个巨大的中—新生代含油气盆地。柴达木盆地北缘(柴北缘)地区处在盆山结合部位,广泛出露前寒武纪至新生代的岩石记录,一直是研究的重点(图1)。以柴北缘断裂和宗务隆断裂为界,柴北缘从北往南可以划分为柴达木地块、柴北缘早古生代蛇绿混杂带、欧龙布鲁克微地块、宗务隆构造带等多个相对独立的构造单元(Song et al.,2014高万里等,2019)。柴达木地块主体被新生代沉积所覆盖,出露在盆地南缘的金水口群指示柴达木地块形成于中元古代时期(陈宣华等,2011陈有炘等,2011);柴北缘早古生代蛇绿混杂带广泛出露蛇绿混杂岩、岛弧火山岩和超高压变质岩,代表早古生代俯冲−碰撞带(张建新等,2007bSong et al.,2014);欧龙布鲁克微地块也称全吉地块,具有新太古代—中元古代结晶基底和新元古代至古生代的盖层沉积(陈能松等,2007);宗务隆构造带属于晚古生代发育在祁连和柴达木统一基底上的裂陷槽(裂谷;彭渊等,20162018)。柴北缘前寒武系基底岩石分别记录了古元古代哥伦比亚超大陆和新元古代罗迪尼亚超大陆汇聚−裂解阶段的构造−岩浆事件(郝国杰等,2004孟繁聪等,2005),早古生代时期柴北缘地区卷入了冈瓦纳大陆北部原特提斯构造域的洋陆转换过程,形成了一条著名的超高压变质带(王惠初等,2003宋述光等,2004)。早古生代造山运动结束之后,柴北缘地区开始转入晚古生代相对的构造稳定时期(刘永江等,2012陈世悦等,2016),以牦牛山组为代表的火山−沉积建造普遍以角度不整合覆盖在前泥盆系地层之上(李荣社等,2007张雪亭等,2007),祁连和东昆仑地区亦可见到相应的地层沉积特征(夏文静等,2014)。随后,经历了古特提斯洋的扩张、俯冲过程,随着早中生代古特提斯洋的闭合,柴北缘地区进入晚中生代陆内盆地演化阶段,至新生代沉积了巨厚的陆缘碎屑,形成了现今所见的中—新生代盆地。

    图  1  柴达木盆地北缘大地构造简图(据Zhang et al.,2017a修改)
    Figure  1.  Simplified tectonic map of the northern margin of the Qaidam Basin (modified after Zhang et al., 2017a)

    旺尕秀地区位于柴达木盆地北缘东段,其构造位置介于欧龙布鲁克微地块和早古生代超高压变质带之间,该地区出露少量的元古代达肯达坂群片麻岩、斜长角闪岩、大理岩等,缺失震旦系及下古生界,主要出露上古生界泥盆系牦牛山组火山−碎屑岩,石炭系克鲁克组至扎布扎尕秀组海相−海陆交互相碳酸盐岩以及少量的侏罗纪—白垩纪的陆缘碎屑岩。牦牛山组向东与乌兰县牦牛山地区的牦牛山组相连,其岩石组合特征与牦牛山地区基本一致(张耀玲等,2018)。下部为一套陆相的粗碎屑岩组合,上部为一套中酸性火山岩组合,该套地层创立于1958年,最初指分布在柴北缘东段牦牛山、西段赛什腾山地区的火山−沉积建造(青海省地质矿产局,1991)。随后,青海省地质矿产局(1997)将埃姆尼克山一带牦牛山组定义为一套海陆交互相沉积岩夹基性—中酸性火山岩组合。在柴达木盆地南缘,牦牛山组沉积建造与牦牛山地区相似,沉积厚度略有差异。目前仅依据柴达木盆地周缘一带的植物化石资料,将牦牛山组的时代暂定为晚泥盆世(张耀玲等,2018)。

    文章采集样品位于柴北缘尕海南山一带,大地构造位置处在欧龙布鲁克微地块之上。该地区牦牛山组下部为紫红色—灰紫色砾岩、砂砾岩夹粉砂岩,砾石磨圆、分选较差,砾径大小不一;上部为灰绿—灰紫色流纹岩、英安岩、流纹质凝灰岩和少量基性火山岩。其中样品采集地位于火山岩段的下部(图2),样品NQC021-1的岩性为流纹质熔结凝灰岩,样品NQC022-1采集在火山岩附近,岩性为中细粒二长花岗岩,野外可见花岗岩侵入火山碎屑岩中(图3a);流纹质熔结凝灰岩主要由火山角砾和凝灰物组成。火山角砾为棱角状流纹岩和斜长石晶屑,凝灰物为晶屑、塑性玻屑和岩屑,晶屑以棱角状斜长石、钾长石为主,岩屑为棱角状流纹岩(图3b);二长花岗岩中钾长石和斜长石含量各占约35%,石英含量25%,其余为锆石、磷灰石、榍石等副矿物(图3c)。

    图  2  旺尕秀南牦牛山组火山岩及花岗岩地质略图
    Figure  2.  Geological sketch map of the volcanic rocks and granites of the Maoniushan Formation in southern Wanggaxiu
    图  3  旺尕秀南火山岩及侵入岩野外及镜下照片
    Pl—斜长石;Qtz—石英;Kfs—钾长石a—野外宏观接触关系;b—火山岩显微镜下特征;c—花岗岩显微镜下特征
    Figure  3.  Field and microscopic photos of volcanic rocks and intrusive rocks in southern Wanggaxiunan
    (a) Field macroscopic contact relationships of volcanic rocks and granites; (b) Microscopic characteristics of volcanic rocks; (c) Microscopic characteristics of granites Pl–plagioclase; Qtz–quartz; Kfs–K-feldspar

    将2个样品的锆石颗粒按照常规方法分选,在双目镜下挑纯并粘在载玻片上制作成样品靶,对靶上的样品进行透、反射光照相以及阴极发光照相(CL;图4)。完成照相的样品在武汉上谱分析科技有限责任公司开展锆石U、Th和Pb同位素测量及定年。采用的仪器为激光剥蚀电感耦合等离子质谱仪(LA–ICP–MS),ICP–MS型号为Agilent 7700e,激光剥蚀系统为德国Lamda Physik公司的GeolasPro激光剥蚀仪,激光剥蚀过程中采用氦气(He)作载气、氩气(Ar)为补偿气,激光剥蚀系统配置有信号平滑装置(Hu et al.,2015),分析中采用的激光束斑和频率分别为30 µm和5 Hz,具体的仪器参数和详细的分析流程见Zong et al.(2017)。U–Pb同位素定年处理中采用锆石标样91500和玻璃标样NIST610作外标进行同位素分馏校正。每个时间分辨分析数据包括大约20~30 s空白信号和50 s样品信号。采用软件ICPMSDataCal对分析数据进行离线处理(Liu et al.,2008),锆石年龄计算采用Isoplot/Ex_ver3(Ludwig,2001)完成。

    图  4  火山岩和花岗岩的锆石阴极发光图(CL)
    黄色圈为锆石U–Pb测点,红色圈为锆石Hf测点a—火山岩NQC021-1锆石CL图像;b—花岗岩NQC022-1锆石CL图像
    Figure  4.  Zircon cathodoluminescence (CL) images of volcanic rocks and granites
    (a) Zircon CL image of volcanic rock sample NQC021-1; (b) Zircon CL image of granite sample NQC022-1 The yellow circles represent zircon U–Pb sites, and the red circles represent zircon Hf sites.

    对已经完成U–Pb年龄分析的锆石进行Hf同位素分析,测试分析在自然资源部成矿作用与资源评价重点实验室完成。分析使用的仪器为Neptune多接受等离子质谱仪和Newwave UP213紫外激光剥蚀系统(LA–MC–ICP–MS)。详细的仪器及分析流程见侯可军等(2007)。实验过程中采用He作为剥蚀物质载气,剥蚀直径55 μm,测定时采用锆石标样CJ1作为参考物质。分析过程中锆石标样CJ1的176Hf/177Hf加权平均值为0.282015±28(2σn=10),与文献报道值在误差范围内完全一致。

    熔结凝灰岩样品(NQC021-1)中的锆石多为短柱状晶体,长宽比为1∶1至1.5∶1,颗粒大小集中在80~100 μm,Th/U分布在0.53~2.40,锆石的CL图像显示典型的振荡环带结构,表明其为岩浆成因的锆石(图4)。选取样品中CL图像清晰的30颗锆石开展U–Pb同位素分析,详细的测试结果见表1。在年龄谐和曲线上(图5),28个测点全部落在协和曲线或者临近谐和曲线,其206Pb/238U表面年龄分布在404~464 Ma,206Pb/238U的加权平均年龄为423±5 Ma(MSWD=1.3),代表了火山岩形成的年龄。

    表  1  样品锆石U–Pb年代学学分析结果
    Table  1.  U–Pb chronological analysis results of zircon samples
    样品点 Th/×10-6 U/×10-6 Th/U 同位素比值 年龄/Ma
    207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    样品 NQC021-1
    NQC021-1.1 117 104 1.12 0.0555 0.0039 0.5105 0.0355 0.0667 0.0018 434 149 419 24 416 11
    NQC021-1.2 71 82 0.86 0.0560 0.0044 0.5251 0.0403 0.0680 0.0019 452 164 429 27 424 11
    NQC021-1.3 136 166 0.82 0.0555 0.0031 0.5121 0.0289 0.0670 0.0017 431 122 420 19 418 10
    NQC021-1.4 119 147 0.81 0.0561 0.0029 0.5528 0.0280 0.0715 0.0017 455 109 447 18 445 10
    NQC021-1.5 66 77 0.85 0.0557 0.0046 0.4997 0.0406 0.0651 0.0018 439 174 412 27 407 11
    NQC021-1.6 117 124 0.94 0.0561 0.0030 0.5282 0.0283 0.0682 0.0017 458 116 431 19 425 10
    NQC021-1.7 111 145 0.77 0.0551 0.0041 0.4972 0.0367 0.0654 0.0018 416 159 410 25 409 11
    NQC021-1.8 158 158 1.00 0.0562 0.0023 0.5374 0.0220 0.0694 0.0016 459 88 437 15 432 10
    NQC021-1.9 208 146 1.42 0.0557 0.0034 0.5094 0.0313 0.0664 0.0017 439 132 418 21 414 10
    NQC021-1.10 150 140 1.07 0.0557 0.0028 0.5173 0.0261 0.0674 0.0016 440 109 423 17 420 10
    NQC021-1.11 70 89 0.78 0.0573 0.0048 0.5887 0.0489 0.0745 0.0022 502 176 470 31 464 13
    NQC021-1.12 86 117 0.74 0.0561 0.0028 0.5288 0.0266 0.0684 0.0017 455 108 431 18 427 10
    NQC021-1.13 107 133 0.80 0.0556 0.0031 0.4969 0.0273 0.0649 0.0016 435 119 410 19 405 10
    NQC021-1.14 90 110 0.81 0.0559 0.0037 0.5564 0.0369 0.0722 0.0019 448 143 449 24 449 11
    NQC021-1.15 204 232 0.88 0.0563 0.0026 0.5373 0.0249 0.0692 0.0017 464 100 437 16 431 10
    NQC021-1.16 672 279 2.40 0.0556 0.0019 0.5329 0.0182 0.0696 0.0016 434 72 434 12 434 10
    NQC021-1.17 109 140 0.78 0.0556 0.0026 0.5408 0.0256 0.0705 0.0017 437 101 439 17 439 10
    NQC021-1.18 92 130 0.71 0.0560 0.0028 0.5413 0.0268 0.0701 0.0017 453 106 439 18 437 10
    NQC021-1.19 117 112 1.05 0.0556 0.0025 0.5315 0.0240 0.0693 0.0017 437 97 433 16 432 10
    NQC021-1.20 69 77 0.90 0.0548 0.0041 0.4891 0.0360 0.0647 0.0018 405 158 404 25 404 11
    NQC021-1.21 50 95 0.53 0.0550 0.0033 0.5038 0.0304 0.0665 0.0017 411 129 414 21 415 10
    NQC021-1.22 162 184 0.88 0.0555 0.0020 0.5297 0.0190 0.0692 0.0016 432 76 432 13 431 10
    NQC021-1.23 107 119 0.90 0.0562 0.0031 0.5364 0.0291 0.0692 0.0017 459 117 436 19 432 10
    NQC021-1.24 134 176 0.76 0.0559 0.0020 0.5214 0.0192 0.0677 0.0016 448 78 426 13 422 9
    NQC021-1.25 89 122 0.73 0.0560 0.0025 0.5212 0.0237 0.0675 0.0016 454 98 426 16 421 10
    NQC021-1.26 82 115 0.72 0.0555 0.0024 0.5212 0.0225 0.0682 0.0016 431 93 426 15 425 10
    NQC021-1.27 81 113 0.71 0.0558 0.0034 0.5110 0.0310 0.0664 0.0017 444 130 419 21 415 10
    NQC021-1.28 155 132 1.18 0.0656 0.0029 0.5989 0.0265 0.0663 0.0016 792 90 477 17 414 10
    NQC021-1.29 89 93 0.96 0.0553 0.0023 0.5032 0.0210 0.0660 0.0016 423 89 414 14 412 9
    NQC021-1.30 96 126 0.76 0.0551 0.0021 0.5033 0.0196 0.0663 0.0016 417 83 414 13 414 9
    样品 NQC022-1
    NQC022-1.1 600 824 0.73 0.0551 0.0012 0.4523 0.0056 0.0595 0.0007 416 45 379 4 373 4
    NQC022-1.2 600 548 1.09 0.0554 0.0012 0.4717 0.0063 0.0617 0.0007 430 47 392 4 386 4
    NQC022-1.3 683 971 0.70 0.0539 0.0011 0.4404 0.0054 0.0592 0.0007 368 46 371 4 371 4
    NQC022-1.4 420 622 0.67 0.0549 0.0012 0.4659 0.0062 0.0616 0.0007 407 47 388 4 385 4
    NQC022-1.5 538 751 0.72 0.0552 0.0012 0.4565 0.0058 0.0600 0.0007 418 46 382 4 376 4
    NQC022-1.6 372 579 0.64 0.0554 0.0012 0.4810 0.0060 0.0630 0.0007 427 46 399 4 394 4
    NQC022-1.7 329 550 0.60 0.0540 0.0012 0.4667 0.0060 0.0627 0.0007 370 47 389 4 392 4
    NQC022-1.8 744 927 0.80 0.0548 0.0011 0.4459 0.0054 0.0590 0.0007 406 46 374 4 369 4
    NQC022-1.9 709 986 0.72 0.0547 0.0011 0.4482 0.0055 0.0595 0.0007 398 46 376 4 372 4
    NQC022-1.10 790 805 0.98 0.0549 0.0013 0.4010 0.0061 0.0530 0.0006 408 50 342 4 333 4
    NQC022-1.11 286 442 0.65 0.0591 0.0013 0.4821 0.0070 0.0592 0.0007 570 48 400 5 371 4
    NQC022-1.12 883 1035 0.85 0.0547 0.0011 0.4506 0.0055 0.0598 0.0007 398 46 378 4 374 4
    NQC022-1.13 863 983 0.88 0.0543 0.0011 0.4473 0.0054 0.0597 0.0007 383 46 375 4 374 4
    NQC022-1.14 1039 1051 0.99 0.0556 0.0012 0.4262 0.0055 0.0556 0.0006 436 46 361 4 349 4
    NQC022-1.15 1071 1221 0.88 0.0542 0.0011 0.4487 0.0054 0.0601 0.0007 378 46 376 4 376 4
    NQC022-1.16 943 1015 0.93 0.0546 0.0011 0.4369 0.0053 0.0580 0.0007 396 46 368 4 364 4
    NQC022-1.17 753 1015 0.74 0.0540 0.0011 0.4308 0.0052 0.0579 0.0007 370 46 364 4 363 4
    NQC022-1.18 618 736 0.84 0.0542 0.0012 0.4381 0.0057 0.0586 0.0007 378 47 369 4 367 4
    NQC022-1.19 710 894 0.79 0.0557 0.0012 0.4522 0.0055 0.0589 0.0007 439 45 379 4 369 4
    NQC022-1.20 715 993 0.72 0.0556 0.0012 0.4438 0.0059 0.0579 0.0007 437 47 373 4 363 4
    NQC022-1.21 755 992 0.76 0.0561 0.0012 0.4558 0.0055 0.0589 0.0007 455 45 381 4 369 4
    NQC022-1.22 649 737 0.88 0.0548 0.0012 0.4449 0.0060 0.0589 0.0007 403 47 374 4 369 4
    NQC022-1.23 171 150 1.14 0.0589 0.0016 0.4825 0.0097 0.0594 0.0007 562 56 400 7 372 4
    NQC022-1.24 893 870 1.03 0.0540 0.0011 0.4378 0.0054 0.0588 0.0007 373 46 369 4 368 4
    下载: 导出CSV 
    | 显示表格
    图  5  锆石U–Pb谐和曲线
    a—NQC021-1熔结凝灰岩样品锆石U–Pb谐和曲线;b—NQC022-1二长花岗岩锆石U–Pb谐和曲线
    Figure  5.  Concordia plots of zircon U–Pb analysis
    (a) Concordia plot of zircon U–Pb analysis for the NQC021-1 welded tuff sample; (b) Concordia plot of zircon U–Pb analysis for the NQC022-1 granite sample

    二长花岗岩样品(NQC022-1)中的锆石也主要为短柱状晶体,长宽比为1∶1至1.2∶1,颗粒大小约为80~120 μm,锆石的Th/U介于0.60~1.14,属于典型的岩浆成因锆石(图4)。对该岩石样品的24颗锆石边部进行了U–Pb同位素分析,测试结果见表1图5。锆石的206Pb/238U表面年龄分布在333~394 Ma,其中落在谐和曲线上18个测点206Pb/238U的加权平均年龄为370±2 Ma(MSWD=1.03),代表岩体的结晶年龄。

    对已进行锆石U–Pb测年的火山岩样品(NQC021-1)的24颗锆石和花岗岩样品(NQC022-1)的23颗锆石进行了Lu–Hf同位素分析,分析结果见表2图6

    表  2  样品锆石Lu–Hf同位素分析结果
    Table  2.  Lu–Hf isotopic analysis results of zircon samples
    样品 176Yb/177Hf(corr) 2σ 176Lu/177Hf(corr) 2σ 176Hf/177Hf(corr) 2σ 年龄/Ma (176Hf/177Hf)i εHf(t) TDM/Ma $T_{\mathrm{DM}}^{\mathrm{C}} $/Ma fs
    样品 NQC021-1
    NQC021-1-01 0.034248 0.000594 0.001129 0.000019 0.282194 0.000009 423 0.282185 −11.5 1497 2133 −0.97
    NQC021-1-02 0.033994 0.000152 0.001091 0.000004 0.282277 0.000010 423 0.282268 −8.5 1379 1947 −0.97
    NQC021-1-03 0.047536 0.000710 0.001466 0.000019 0.282236 0.000010 423 0.282224 −10.1 1451 2045 −0.96
    NQC021-1-04 0.027696 0.000124 0.000907 0.000002 0.282247 0.000012 423 0.282240 −9.5 1414 2011 −0.97
    NQC021-1-05 0.035441 0.000076 0.001206 0.000005 0.282207 0.000010 423 0.282198 −11.0 1481 2104 −0.96
    NQC021-1-06 0.044461 0.000392 0.001440 0.000012 0.282260 0.000010 423 0.282249 −9.2 1415 1991 −0.96
    NQC021-1-07 0.029350 0.000523 0.000956 0.000015 0.282277 0.000009 423 0.282270 −8.5 1374 1945 −0.97
    NQC021-1-08 0.035990 0.000026 0.001163 0.000002 0.282267 0.000011 423 0.282258 −8.9 1396 1971 −0.96
    NQC021-1-09 0.041318 0.000346 0.001328 0.000009 0.282243 0.000010 423 0.282232 −9.8 1436 2028 −0.96
    NQC021-1-10 0.050256 0.000847 0.001622 0.000028 0.282247 0.000010 423 0.282234 −9.7 1441 2023 −0.95
    NQC021-1-11 0.031623 0.000296 0.001050 0.000008 0.282267 0.000010 423 0.282258 −8.9 1392 1970 −0.97
    NQC021-1-12 0.027814 0.000151 0.000923 0.000004 0.282255 0.000010 423 0.282248 −9.2 1403 1993 −0.97
    NQC021-1-13 0.041611 0.000395 0.001372 0.000011 0.282266 0.000011 423 0.282255 −9.0 1404 1976 −0.96
    NQC021-1-14 0.038453 0.000236 0.001275 0.000009 0.282276 0.000011 423 0.282266 −8.6 1388 1953 −0.96
    NQC021-1-15 0.039464 0.000177 0.001343 0.000009 0.282255 0.000011 423 0.282244 −9.4 1420 2001 −0.96
    NQC021-1-16 0.062720 0.001202 0.002001 0.000039 0.282275 0.000010 423 0.282259 −8.8 1415 1967 −0.94
    NQC021-1-17 0.031225 0.000069 0.001036 0.000005 0.282248 0.000009 423 0.282240 −9.5 1417 2010 −0.97
    NQC021-1-18 0.029106 0.000137 0.000965 0.000003 0.282243 0.000009 423 0.282235 −9.7 1422 2022 −0.97
    NQC021-1-19 0.031030 0.000302 0.001068 0.000011 0.282283 0.000009 423 0.282275 −8.3 1369 1933 −0.97
    NQC021-1-20 0.036392 0.000577 0.001196 0.000016 0.282233 0.000009 423 0.282223 −10.1 1445 2047 −0.96
    NQC021-1-21 0.041738 0.000511 0.001393 0.000015 0.282247 0.000009 423 0.282236 −9.6 1432 2018 −0.96
    NQC021-1-22 0.038010 0.000197 0.001233 0.000004 0.282226 0.000010 423 0.282216 −10.3 1455 2063 −0.96
    NQC021-1-23 0.029763 0.000130 0.000993 0.000006 0.282260 0.000009 423 0.282252 −9.1 1399 1984 −0.97
    NQC021-1-24 0.038654 0.000512 0.001306 0.000012 0.282232 0.000009 423 0.282222 −10.2 1450 2051 −0.96
    样品 NQC022-1
    NQC022-1-01 0.103309 0.000606 0.003111 0.000014 0.282782 0.000013 370 0.28276 7.7 706 877 −0.91
    NQC022-1-02 0.083531 0.000728 0.002551 0.000020 0.282785 0.000013 370 0.28277 8.0 691 861 −0.92
    NQC022-1-03 0.115297 0.000260 0.003376 0.000008 0.282756 0.000013 370 0.28273 6.8 750 938 −0.90
    NQC022-1-04 0.077607 0.000398 0.002522 0.000009 0.282722 0.000018 370 0.28270 5.7 783 1003 −0.92
    NQC022-1-05 0.090154 0.000649 0.002648 0.000010 0.282749 0.000012 370 0.28273 6.7 746 945 −0.92
    NQC022-1-06 0.073166 0.000918 0.002312 0.000042 0.282717 0.000016 370 0.28270 5.6 786 1012 −0.93
    NQC022-1-07 0.054888 0.000462 0.001788 0.000012 0.282720 0.000013 370 0.28271 5.9 770 996 −0.95
    NQC022-1-08 0.129764 0.000560 0.003796 0.000018 0.282767 0.000012 370 0.28274 7.1 742 920 −0.89
    NQC022-1-09 0.116006 0.001672 0.003686 0.000060 0.282747 0.000018 370 0.28272 6.3 771 965 −0.89
    NQC022-1-10 0.098911 0.000872 0.002868 0.000021 0.282767 0.000012 370 0.28275 7.3 723 906 −0.91
    NQC022-1-11 0.090238 0.000438 0.002785 0.000015 0.282766 0.000016 370 0.28275 7.2 723 907 −0.92
    NQC022-1-12 0.119983 0.000770 0.003562 0.000028 0.282790 0.000015 370 0.28277 7.9 702 864 −0.89
    NQC022-1-13 0.113965 0.000512 0.003316 0.000006 0.282766 0.000013 370 0.28274 7.1 733 915 −0.90
    NQC022-1-14 0.084701 0.001645 0.002555 0.000032 0.282731 0.000011 370 0.28271 6.1 770 983 −0.92
    NQC022-1-15 0.108632 0.000480 0.003333 0.000021 0.282676 0.000021 370 0.28265 3.9 869 1118 −0.90
    NQC022-1-16 0.104501 0.000712 0.003021 0.000029 0.282741 0.000012 370 0.28272 6.3 765 968 −0.91
    NQC022-1-17 0.107449 0.001432 0.003214 0.000024 0.282760 0.000014 370 0.28274 6.9 740 927 −0.90
    NQC022-1-18 0.087261 0.000626 0.002681 0.000011 0.282729 0.000016 370 0.28271 6.0 775 989 −0.92
    NQC022-1-19 0.073360 0.001430 0.002150 0.000023 0.282740 0.000013 370 0.28272 6.5 749 957 −0.94
    NQC022-1-20 0.088215 0.000424 0.002697 0.000012 0.282725 0.000017 370 0.282706 5.8 782 999 −0.92
    NQC022-1-21 0.122924 0.001106 0.003478 0.000041 0.282822 0.000018 370 0.282798 9.1 653 792 −0.90
    NQC022-1-22 0.068908 0.000702 0.002339 0.000031 0.282685 0.000023 370 0.282669 4.5 832 1082 −0.93
    NQC022-1-23 0.133672 0.001358 0.003873 0.000049 0.282771 0.000013 370 0.282745 7.2 737 912 −0.88
    下载: 导出CSV 
    | 显示表格
    图  6  锆石Hf同位素结果
    a—NQC021-1熔结凝灰岩锆石εHf(t)频度图;b—NQC021-1熔结凝灰岩锆石Hf两阶段模式年龄;c—NQC022-1二长花岗岩锆石εHf(t)频度图;d—NQC022-1二长花岗岩锆石Hf两阶段模式年龄
    Figure  6.  Zircon Hf isotopic composition of the samples
    (a) εHf(t) frequency distribution plot of zircons from the NQC021-1 welded tuff sample; (b) Two-stage Hf model ages of zircons from the NQC021-1 welded tuff sample; (c) εHf(t) frequency distribution plot of zircons from the NQC022-1 granodiorite sample; (d) Two-stage Hf model ages of zircons from the NQC022-1 granodiorite sample

    熔结凝灰岩样品(NQC021-1)Lu–Hf同位素分析结果显示,锆石εHf(t)值集中在−11.5~−8.3,平均值为−9.5,其两阶段Hf模式年龄值($T_{\mathrm{DM}}^{\mathrm{C}} $集中在1945~2133 Ma,显示火山岩样品主要源于古老地壳物质的部分熔融。

    二长花岗岩样品(NQC022-1)Lu–Hf同位素分析结果显示,锆石εHf(t)值集中在3.9~9.1,平均值为6.7,其两阶段Hf模式年龄值($T{}_{\mathrm{DM}}^{\mathrm{C}} $)集中在792~1118 Ma,显示二长花岗岩主要源于中—新元古代地壳物质。

    牦牛山组长期以来被视为柴北缘早古生代造山结束的标志,在柴达木−东昆仑−祁连及西秦岭一带均有相似的沉积组合,其下段的粗碎屑沉积具有磨拉石沉积特征,早期主要根据地层接触关系和一些零星的化石资料将其划为上泥盆统(青海省地质矿产局,1991)。随后,对该层位下部碎屑岩段和上部火山岩段开展了大量的年代学分析工作,牦牛山组下部磨拉石建造中的砂岩碎屑锆石峰值分布在429~442 Ma,表明锆石主要来自晚奥陶世—中志留世的物源,其中最年轻锆石年龄为407.9 Ma(岩浆成因锆石),限定牦牛山组下部碎屑岩的沉积下限时代应不早于早泥盆世末期(冯乔等,2015);钱涛等(2023)对牦牛山组底部碎屑岩夹层中的凝灰岩的分析获得了396 Ma的年龄,显示牦牛山组下段沉积在早泥盆世,而碎屑锆石年龄谱也揭示牦牛山组主要源于南部的早古生代造山带。寇贵存(2017)对埃姆尼克山地区牦牛山组火山岩的年代学分析表明,埃姆尼克山地区牦牛山组形成于374~392 Ma,属中—晚泥盆世;李建兵等(2017)也在埃姆尼克山地区获得了相似的结果;张耀玲等(2018)对牦牛山组上部流纹质熔结凝灰岩的锆石U–Pb年龄分析获得了393~395 Ma的年龄,认为牦牛山组上段形成于早泥盆世;张春宇等(2019)等对牦牛山一带碎屑岩的锆石分析获得了最年轻锆石的年龄为365 Ma,显示牦牛山组的时代可能为晚泥盆世。另外,据陆露等(2010)对东昆仑大干沟一带牦牛山组流纹岩夹层的锆石U–Pb年代学研究,获得了399~423 Ma的定年数据,限定了东昆仑地区牦牛山组地层形成时间为晚志留世—早泥盆世;张耀玲等(2010)对格尔木南牦牛山组上部火山岩中的英安岩进行了锆石SHRIMP U–Pb定年获得了406 Ma 的定年数据,认为该区牦牛山组形成时代应为晚志留世—早泥盆世此次研究在尕海南山地区首次获得了牦牛山组下部火山岩段晚志留世(423 Ma)的年龄,结合上述牦牛山组的年代学结果,进一步证实了原定晚泥盆世的牦牛山组具有穿时性,可能跨越了从晚志留世(423 Ma)到晚泥盆世(365 Ma)的较长时间,因此柴达木盆地周缘牦牛山组火山喷发可能从晚志留世已经开始活动,并持续至晚泥盆世。其中火山岩及碎屑岩的物源来源比较复杂,不能笼统地使用牦牛山组来限定该时期的构造背景。

    早古生代时期,柴北缘地区经历了从大洋俯冲到大陆深俯冲的连续演化,并形成了广为人知的超高压变质带,一般认为从晚志留世开始柴北缘地区已经进入了大陆深俯冲阶段,与大陆深俯冲伴随的超高压变质岩快速发生折返至上地壳,早—中泥盆世处在造山隆升阶段(Song et al.,2014Wu et al.,2019),区域上早、中泥盆世普遍缺失沉积记录,晚泥盆世地层与前泥盆纪地层呈角度不整合关系接触。一般认为,牦牛山组下部的粗碎屑沉积具有山前快速堆积的磨拉石特征(孙娇鹏,2015),指示造山活动的结束,牦牛山上部的火山岩段具有典型的双峰式火山特征,是典型的裂谷早期阶段的火山−沉积组合,这标志着造山带开始伸展垮塌。据上文所述,区域上牦牛山组的形成时代跨度较大,特别是牦牛山组内晚志留世—早泥盆世大量火山岩年龄的报道,能否代表这一时期区域已经进入伸展状态值得怀疑(Chen et al.,2020)。此次研究获得的牦牛山组上部火山岩层段的锆石U–Pb年龄显示其形成于晚志留世(423 Ma),这与陆露等(2010)在东昆仑牦牛山组下部碎屑岩夹层中的火山岩年龄相同,火山岩锆石的Hf同位素分析结果显示其源于古老陆壳物质,主体应该源于欧龙布鲁克陆壳基底物质的部分熔融。这表明,晚志留世—早泥盆世时期,柴北缘地区仍处在由大陆俯冲诱发的火山活动阶段,尚未发生岩石圈根全面垮塌;另外,侵入牦牛山组的花岗岩锆石U–Pb年龄为370 Ma,显示其形成时间为晚泥盆世,这与柴达木盆地西部的牛鼻子梁地区侵位闪长岩及镁铁质岩(钱兵等,2015韩建军等,2020)、柴北缘中段一系列晚泥盆世中酸性岩浆岩(吴才来等,2007)、以及柴北缘东段都兰地区晚泥盆花岗岩侵位时代一致,均具有造山后岩浆岩的显著特征(Wang et al.,2014),这些火成岩均显示高硅、富铝,具高钾钙碱性岩浆岩的特征,微量元素及同位素特征显示其岩石源区明显有亏损地幔物质的参与,结合此次研究的花岗岩锆石εHf(t)值集中在3.9~9.1,两阶段Hf模式年龄集中在中—新元古代等特点,进一步说明,晚泥盆世时期,伴随岩石圈拆沉作用,造山带岩石圈根已全面垮塌,上涌的软流圈物质诱发并参与了地壳物质的部分熔融过程,形成了该阶段广泛而强烈的岩浆活动。因此,晚泥盆世时期区域才进入普遍的后造山伸展阶段。随着地壳的持续伸展,在东昆仑、柴达木一带形成了初始裂谷阶段的火山−沉积建造(牦牛山组上部),在欧龙布鲁克基底中出现了源于软流圈地幔的早石炭世辉长岩脉(庄玉军等,2019),这与整个区域上古特提斯洋初始扩张是同步的。进入石炭纪,地壳持续拉张使该区发生明显的海侵作用,整个柴达木及周缘处于滨浅海或海陆交互环境,形成了以陆缘碎屑沉积为主的城墙沟组和浅海相沉积的怀头他拉组及海陆交互相的克鲁克组(孙娇鹏等,2016)。因此,晚泥盆世,柴达木地区才进入早古生代造山带的垮塌和地壳的显著拉张阶段。

    柴北缘构造带东段尕海南山地区原定为泥盆纪的火山岩和侵入其中的花岗岩的LA–ICP–MS 锆石U–Pb年代学研究结果表明,原定牦牛山组熔结凝灰岩的锆石U–Pb年龄为423 Ma,而侵入其中的花岗岩锆石U–Pb年龄为370 Ma,显示火山岩喷发的年龄在晚志留世,后期侵入的花岗岩结晶年龄在晚泥盆世;锆石Lu–Hf同位素结果表明,晚志留世熔结凝灰岩εHf(t)值集中在−11.5至−8.3,其两阶段Hf模式年龄集中在1945~2133 Ma之间,表明熔结凝灰岩主要源于古老地壳物质熔融;而后期侵入的花岗岩的εHf(t)值分布在3.9~9.1之间,两阶段的Hf模式年龄分布在792~1118 Ma之间,显示花岗岩主要源于亏损地幔物质与地壳的混合。结合对区域地质、岩石学等资料的综合分析认为,晚志留—早泥盆时期,柴北缘仍处于大陆深俯冲导致的强烈造山作用阶段,柴北缘地壳发生明显加厚,晚志留世火山岩可能与加厚的欧龙布鲁克地壳的熔融有关;晚泥盆世时期,加厚地壳发生拆沉作用,软流圈物质上涌,上涌的地幔物质与地壳物质相互作用并发生部分熔融,因此牦牛山组火山岩成岩时代差异较大,其中晚泥盆世火山−岩浆作用才预示柴北缘地区进入显著的地壳伸展状态。

    致谢:感谢审稿专家提出的中肯意见,中国地质科学院矿产资源研究所侯可军研究员帮助进行了锆石Hf同位素分析,在此一并致谢。

  • 图  1  柴达木盆地北缘大地构造简图(据Zhang et al.,2017a修改)

    Figure  1.  Simplified tectonic map of the northern margin of the Qaidam Basin (modified after Zhang et al., 2017a)

    图  2  旺尕秀南牦牛山组火山岩及花岗岩地质略图

    Figure  2.  Geological sketch map of the volcanic rocks and granites of the Maoniushan Formation in southern Wanggaxiu

    图  3  旺尕秀南火山岩及侵入岩野外及镜下照片

    Pl—斜长石;Qtz—石英;Kfs—钾长石a—野外宏观接触关系;b—火山岩显微镜下特征;c—花岗岩显微镜下特征

    Figure  3.  Field and microscopic photos of volcanic rocks and intrusive rocks in southern Wanggaxiunan

    (a) Field macroscopic contact relationships of volcanic rocks and granites; (b) Microscopic characteristics of volcanic rocks; (c) Microscopic characteristics of granites Pl–plagioclase; Qtz–quartz; Kfs–K-feldspar

    图  4  火山岩和花岗岩的锆石阴极发光图(CL)

    黄色圈为锆石U–Pb测点,红色圈为锆石Hf测点a—火山岩NQC021-1锆石CL图像;b—花岗岩NQC022-1锆石CL图像

    Figure  4.  Zircon cathodoluminescence (CL) images of volcanic rocks and granites

    (a) Zircon CL image of volcanic rock sample NQC021-1; (b) Zircon CL image of granite sample NQC022-1 The yellow circles represent zircon U–Pb sites, and the red circles represent zircon Hf sites.

    图  5  锆石U–Pb谐和曲线

    a—NQC021-1熔结凝灰岩样品锆石U–Pb谐和曲线;b—NQC022-1二长花岗岩锆石U–Pb谐和曲线

    Figure  5.  Concordia plots of zircon U–Pb analysis

    (a) Concordia plot of zircon U–Pb analysis for the NQC021-1 welded tuff sample; (b) Concordia plot of zircon U–Pb analysis for the NQC022-1 granite sample

    图  6  锆石Hf同位素结果

    a—NQC021-1熔结凝灰岩锆石εHf(t)频度图;b—NQC021-1熔结凝灰岩锆石Hf两阶段模式年龄;c—NQC022-1二长花岗岩锆石εHf(t)频度图;d—NQC022-1二长花岗岩锆石Hf两阶段模式年龄

    Figure  6.  Zircon Hf isotopic composition of the samples

    (a) εHf(t) frequency distribution plot of zircons from the NQC021-1 welded tuff sample; (b) Two-stage Hf model ages of zircons from the NQC021-1 welded tuff sample; (c) εHf(t) frequency distribution plot of zircons from the NQC022-1 granodiorite sample; (d) Two-stage Hf model ages of zircons from the NQC022-1 granodiorite sample

    表  1  样品锆石U–Pb年代学学分析结果

    Table  1.   U–Pb chronological analysis results of zircon samples

    样品点 Th/×10-6 U/×10-6 Th/U 同位素比值 年龄/Ma
    207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    样品 NQC021-1
    NQC021-1.1 117 104 1.12 0.0555 0.0039 0.5105 0.0355 0.0667 0.0018 434 149 419 24 416 11
    NQC021-1.2 71 82 0.86 0.0560 0.0044 0.5251 0.0403 0.0680 0.0019 452 164 429 27 424 11
    NQC021-1.3 136 166 0.82 0.0555 0.0031 0.5121 0.0289 0.0670 0.0017 431 122 420 19 418 10
    NQC021-1.4 119 147 0.81 0.0561 0.0029 0.5528 0.0280 0.0715 0.0017 455 109 447 18 445 10
    NQC021-1.5 66 77 0.85 0.0557 0.0046 0.4997 0.0406 0.0651 0.0018 439 174 412 27 407 11
    NQC021-1.6 117 124 0.94 0.0561 0.0030 0.5282 0.0283 0.0682 0.0017 458 116 431 19 425 10
    NQC021-1.7 111 145 0.77 0.0551 0.0041 0.4972 0.0367 0.0654 0.0018 416 159 410 25 409 11
    NQC021-1.8 158 158 1.00 0.0562 0.0023 0.5374 0.0220 0.0694 0.0016 459 88 437 15 432 10
    NQC021-1.9 208 146 1.42 0.0557 0.0034 0.5094 0.0313 0.0664 0.0017 439 132 418 21 414 10
    NQC021-1.10 150 140 1.07 0.0557 0.0028 0.5173 0.0261 0.0674 0.0016 440 109 423 17 420 10
    NQC021-1.11 70 89 0.78 0.0573 0.0048 0.5887 0.0489 0.0745 0.0022 502 176 470 31 464 13
    NQC021-1.12 86 117 0.74 0.0561 0.0028 0.5288 0.0266 0.0684 0.0017 455 108 431 18 427 10
    NQC021-1.13 107 133 0.80 0.0556 0.0031 0.4969 0.0273 0.0649 0.0016 435 119 410 19 405 10
    NQC021-1.14 90 110 0.81 0.0559 0.0037 0.5564 0.0369 0.0722 0.0019 448 143 449 24 449 11
    NQC021-1.15 204 232 0.88 0.0563 0.0026 0.5373 0.0249 0.0692 0.0017 464 100 437 16 431 10
    NQC021-1.16 672 279 2.40 0.0556 0.0019 0.5329 0.0182 0.0696 0.0016 434 72 434 12 434 10
    NQC021-1.17 109 140 0.78 0.0556 0.0026 0.5408 0.0256 0.0705 0.0017 437 101 439 17 439 10
    NQC021-1.18 92 130 0.71 0.0560 0.0028 0.5413 0.0268 0.0701 0.0017 453 106 439 18 437 10
    NQC021-1.19 117 112 1.05 0.0556 0.0025 0.5315 0.0240 0.0693 0.0017 437 97 433 16 432 10
    NQC021-1.20 69 77 0.90 0.0548 0.0041 0.4891 0.0360 0.0647 0.0018 405 158 404 25 404 11
    NQC021-1.21 50 95 0.53 0.0550 0.0033 0.5038 0.0304 0.0665 0.0017 411 129 414 21 415 10
    NQC021-1.22 162 184 0.88 0.0555 0.0020 0.5297 0.0190 0.0692 0.0016 432 76 432 13 431 10
    NQC021-1.23 107 119 0.90 0.0562 0.0031 0.5364 0.0291 0.0692 0.0017 459 117 436 19 432 10
    NQC021-1.24 134 176 0.76 0.0559 0.0020 0.5214 0.0192 0.0677 0.0016 448 78 426 13 422 9
    NQC021-1.25 89 122 0.73 0.0560 0.0025 0.5212 0.0237 0.0675 0.0016 454 98 426 16 421 10
    NQC021-1.26 82 115 0.72 0.0555 0.0024 0.5212 0.0225 0.0682 0.0016 431 93 426 15 425 10
    NQC021-1.27 81 113 0.71 0.0558 0.0034 0.5110 0.0310 0.0664 0.0017 444 130 419 21 415 10
    NQC021-1.28 155 132 1.18 0.0656 0.0029 0.5989 0.0265 0.0663 0.0016 792 90 477 17 414 10
    NQC021-1.29 89 93 0.96 0.0553 0.0023 0.5032 0.0210 0.0660 0.0016 423 89 414 14 412 9
    NQC021-1.30 96 126 0.76 0.0551 0.0021 0.5033 0.0196 0.0663 0.0016 417 83 414 13 414 9
    样品 NQC022-1
    NQC022-1.1 600 824 0.73 0.0551 0.0012 0.4523 0.0056 0.0595 0.0007 416 45 379 4 373 4
    NQC022-1.2 600 548 1.09 0.0554 0.0012 0.4717 0.0063 0.0617 0.0007 430 47 392 4 386 4
    NQC022-1.3 683 971 0.70 0.0539 0.0011 0.4404 0.0054 0.0592 0.0007 368 46 371 4 371 4
    NQC022-1.4 420 622 0.67 0.0549 0.0012 0.4659 0.0062 0.0616 0.0007 407 47 388 4 385 4
    NQC022-1.5 538 751 0.72 0.0552 0.0012 0.4565 0.0058 0.0600 0.0007 418 46 382 4 376 4
    NQC022-1.6 372 579 0.64 0.0554 0.0012 0.4810 0.0060 0.0630 0.0007 427 46 399 4 394 4
    NQC022-1.7 329 550 0.60 0.0540 0.0012 0.4667 0.0060 0.0627 0.0007 370 47 389 4 392 4
    NQC022-1.8 744 927 0.80 0.0548 0.0011 0.4459 0.0054 0.0590 0.0007 406 46 374 4 369 4
    NQC022-1.9 709 986 0.72 0.0547 0.0011 0.4482 0.0055 0.0595 0.0007 398 46 376 4 372 4
    NQC022-1.10 790 805 0.98 0.0549 0.0013 0.4010 0.0061 0.0530 0.0006 408 50 342 4 333 4
    NQC022-1.11 286 442 0.65 0.0591 0.0013 0.4821 0.0070 0.0592 0.0007 570 48 400 5 371 4
    NQC022-1.12 883 1035 0.85 0.0547 0.0011 0.4506 0.0055 0.0598 0.0007 398 46 378 4 374 4
    NQC022-1.13 863 983 0.88 0.0543 0.0011 0.4473 0.0054 0.0597 0.0007 383 46 375 4 374 4
    NQC022-1.14 1039 1051 0.99 0.0556 0.0012 0.4262 0.0055 0.0556 0.0006 436 46 361 4 349 4
    NQC022-1.15 1071 1221 0.88 0.0542 0.0011 0.4487 0.0054 0.0601 0.0007 378 46 376 4 376 4
    NQC022-1.16 943 1015 0.93 0.0546 0.0011 0.4369 0.0053 0.0580 0.0007 396 46 368 4 364 4
    NQC022-1.17 753 1015 0.74 0.0540 0.0011 0.4308 0.0052 0.0579 0.0007 370 46 364 4 363 4
    NQC022-1.18 618 736 0.84 0.0542 0.0012 0.4381 0.0057 0.0586 0.0007 378 47 369 4 367 4
    NQC022-1.19 710 894 0.79 0.0557 0.0012 0.4522 0.0055 0.0589 0.0007 439 45 379 4 369 4
    NQC022-1.20 715 993 0.72 0.0556 0.0012 0.4438 0.0059 0.0579 0.0007 437 47 373 4 363 4
    NQC022-1.21 755 992 0.76 0.0561 0.0012 0.4558 0.0055 0.0589 0.0007 455 45 381 4 369 4
    NQC022-1.22 649 737 0.88 0.0548 0.0012 0.4449 0.0060 0.0589 0.0007 403 47 374 4 369 4
    NQC022-1.23 171 150 1.14 0.0589 0.0016 0.4825 0.0097 0.0594 0.0007 562 56 400 7 372 4
    NQC022-1.24 893 870 1.03 0.0540 0.0011 0.4378 0.0054 0.0588 0.0007 373 46 369 4 368 4
    下载: 导出CSV

    表  2  样品锆石Lu–Hf同位素分析结果

    Table  2.   Lu–Hf isotopic analysis results of zircon samples

    样品 176Yb/177Hf(corr) 2σ 176Lu/177Hf(corr) 2σ 176Hf/177Hf(corr) 2σ 年龄/Ma (176Hf/177Hf)i εHf(t) TDM/Ma $T_{\mathrm{DM}}^{\mathrm{C}} $/Ma fs
    样品 NQC021-1
    NQC021-1-01 0.034248 0.000594 0.001129 0.000019 0.282194 0.000009 423 0.282185 −11.5 1497 2133 −0.97
    NQC021-1-02 0.033994 0.000152 0.001091 0.000004 0.282277 0.000010 423 0.282268 −8.5 1379 1947 −0.97
    NQC021-1-03 0.047536 0.000710 0.001466 0.000019 0.282236 0.000010 423 0.282224 −10.1 1451 2045 −0.96
    NQC021-1-04 0.027696 0.000124 0.000907 0.000002 0.282247 0.000012 423 0.282240 −9.5 1414 2011 −0.97
    NQC021-1-05 0.035441 0.000076 0.001206 0.000005 0.282207 0.000010 423 0.282198 −11.0 1481 2104 −0.96
    NQC021-1-06 0.044461 0.000392 0.001440 0.000012 0.282260 0.000010 423 0.282249 −9.2 1415 1991 −0.96
    NQC021-1-07 0.029350 0.000523 0.000956 0.000015 0.282277 0.000009 423 0.282270 −8.5 1374 1945 −0.97
    NQC021-1-08 0.035990 0.000026 0.001163 0.000002 0.282267 0.000011 423 0.282258 −8.9 1396 1971 −0.96
    NQC021-1-09 0.041318 0.000346 0.001328 0.000009 0.282243 0.000010 423 0.282232 −9.8 1436 2028 −0.96
    NQC021-1-10 0.050256 0.000847 0.001622 0.000028 0.282247 0.000010 423 0.282234 −9.7 1441 2023 −0.95
    NQC021-1-11 0.031623 0.000296 0.001050 0.000008 0.282267 0.000010 423 0.282258 −8.9 1392 1970 −0.97
    NQC021-1-12 0.027814 0.000151 0.000923 0.000004 0.282255 0.000010 423 0.282248 −9.2 1403 1993 −0.97
    NQC021-1-13 0.041611 0.000395 0.001372 0.000011 0.282266 0.000011 423 0.282255 −9.0 1404 1976 −0.96
    NQC021-1-14 0.038453 0.000236 0.001275 0.000009 0.282276 0.000011 423 0.282266 −8.6 1388 1953 −0.96
    NQC021-1-15 0.039464 0.000177 0.001343 0.000009 0.282255 0.000011 423 0.282244 −9.4 1420 2001 −0.96
    NQC021-1-16 0.062720 0.001202 0.002001 0.000039 0.282275 0.000010 423 0.282259 −8.8 1415 1967 −0.94
    NQC021-1-17 0.031225 0.000069 0.001036 0.000005 0.282248 0.000009 423 0.282240 −9.5 1417 2010 −0.97
    NQC021-1-18 0.029106 0.000137 0.000965 0.000003 0.282243 0.000009 423 0.282235 −9.7 1422 2022 −0.97
    NQC021-1-19 0.031030 0.000302 0.001068 0.000011 0.282283 0.000009 423 0.282275 −8.3 1369 1933 −0.97
    NQC021-1-20 0.036392 0.000577 0.001196 0.000016 0.282233 0.000009 423 0.282223 −10.1 1445 2047 −0.96
    NQC021-1-21 0.041738 0.000511 0.001393 0.000015 0.282247 0.000009 423 0.282236 −9.6 1432 2018 −0.96
    NQC021-1-22 0.038010 0.000197 0.001233 0.000004 0.282226 0.000010 423 0.282216 −10.3 1455 2063 −0.96
    NQC021-1-23 0.029763 0.000130 0.000993 0.000006 0.282260 0.000009 423 0.282252 −9.1 1399 1984 −0.97
    NQC021-1-24 0.038654 0.000512 0.001306 0.000012 0.282232 0.000009 423 0.282222 −10.2 1450 2051 −0.96
    样品 NQC022-1
    NQC022-1-01 0.103309 0.000606 0.003111 0.000014 0.282782 0.000013 370 0.28276 7.7 706 877 −0.91
    NQC022-1-02 0.083531 0.000728 0.002551 0.000020 0.282785 0.000013 370 0.28277 8.0 691 861 −0.92
    NQC022-1-03 0.115297 0.000260 0.003376 0.000008 0.282756 0.000013 370 0.28273 6.8 750 938 −0.90
    NQC022-1-04 0.077607 0.000398 0.002522 0.000009 0.282722 0.000018 370 0.28270 5.7 783 1003 −0.92
    NQC022-1-05 0.090154 0.000649 0.002648 0.000010 0.282749 0.000012 370 0.28273 6.7 746 945 −0.92
    NQC022-1-06 0.073166 0.000918 0.002312 0.000042 0.282717 0.000016 370 0.28270 5.6 786 1012 −0.93
    NQC022-1-07 0.054888 0.000462 0.001788 0.000012 0.282720 0.000013 370 0.28271 5.9 770 996 −0.95
    NQC022-1-08 0.129764 0.000560 0.003796 0.000018 0.282767 0.000012 370 0.28274 7.1 742 920 −0.89
    NQC022-1-09 0.116006 0.001672 0.003686 0.000060 0.282747 0.000018 370 0.28272 6.3 771 965 −0.89
    NQC022-1-10 0.098911 0.000872 0.002868 0.000021 0.282767 0.000012 370 0.28275 7.3 723 906 −0.91
    NQC022-1-11 0.090238 0.000438 0.002785 0.000015 0.282766 0.000016 370 0.28275 7.2 723 907 −0.92
    NQC022-1-12 0.119983 0.000770 0.003562 0.000028 0.282790 0.000015 370 0.28277 7.9 702 864 −0.89
    NQC022-1-13 0.113965 0.000512 0.003316 0.000006 0.282766 0.000013 370 0.28274 7.1 733 915 −0.90
    NQC022-1-14 0.084701 0.001645 0.002555 0.000032 0.282731 0.000011 370 0.28271 6.1 770 983 −0.92
    NQC022-1-15 0.108632 0.000480 0.003333 0.000021 0.282676 0.000021 370 0.28265 3.9 869 1118 −0.90
    NQC022-1-16 0.104501 0.000712 0.003021 0.000029 0.282741 0.000012 370 0.28272 6.3 765 968 −0.91
    NQC022-1-17 0.107449 0.001432 0.003214 0.000024 0.282760 0.000014 370 0.28274 6.9 740 927 −0.90
    NQC022-1-18 0.087261 0.000626 0.002681 0.000011 0.282729 0.000016 370 0.28271 6.0 775 989 −0.92
    NQC022-1-19 0.073360 0.001430 0.002150 0.000023 0.282740 0.000013 370 0.28272 6.5 749 957 −0.94
    NQC022-1-20 0.088215 0.000424 0.002697 0.000012 0.282725 0.000017 370 0.282706 5.8 782 999 −0.92
    NQC022-1-21 0.122924 0.001106 0.003478 0.000041 0.282822 0.000018 370 0.282798 9.1 653 792 −0.90
    NQC022-1-22 0.068908 0.000702 0.002339 0.000031 0.282685 0.000023 370 0.282669 4.5 832 1082 −0.93
    NQC022-1-23 0.133672 0.001358 0.003873 0.000049 0.282771 0.000013 370 0.282745 7.2 737 912 −0.88
    下载: 导出CSV
  • [1] Bureau of Geology and Mineral Resources of Qinghai Province, 1991. Special geological report of the Ministry of Geology and Mineral Resources of the People's Republic of China, regional geology, No, 24, regional geology of Qinghai Province[M]. Beijing: Geology Press. (in Chinese)
    [2] Bureau of Geology and Mineral Resources of Qinghai Province, 1997. Stratigraphy (lithostratic) of Qinghai province[M]. Wuhan: China University of Geosciences Press. (in Chinese).
    [3] CHEN J J, FU L B, WEI J H, et al, 2020. Proto-Tethys magmatic evolution along northern Gondwana: insights from Late Silurian–Middle Devonian A-type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China[J]. Lithos, 356-357: 105304. doi: 10.1016/j.lithos.2019.105304
    [4] CHEN N S, WANG Q Y, CHEN Q, et al, 2007. Components and metamorphism of the basements of the Qaidam and Oulongbuluke micro-continental blocks, and a tentative interpretation of paleocontinental evolution in NW-Central China[J]. Earth Science Frontiers, 14(1): 43-55. (in Chinese with English abstract
    [5] CHEN S J, LI R S, JI W H, et al, 2007. The deposition characteristics and tectono-paleogeographic environment of Kunlun Orogenic belt in late Devonian[J]. Geotectonica et Metallogenia, 31(1): 44-51. (in Chinese with English abstract
    [6] CHEN S Y, BI M W, SUN J P, et al, 2016. Mixed sedimentary characteristics and controlling factors of Upper Paleozoic Group in Northern Qaidam Basin[J]. Geological Bulletin of China, 35(2-3): 282-292. (in Chinese with English abstract
    [7] CHEN X H, YIN A, GEHRELS G, et al, 2011. Chemical geodynamics of granitic Magmatism in the basement of the eastern Qaidam Basin, Northern Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 85(2): 157-171. (in Chinese with English abstract
    [8] CHEN Y X, PEI X Z, LI R B, et al, 2011. Zircon U-Pb Age of Xiaomiao formation of proterozoic in the eastern section of the East Kunlun Orogenic belt[J]. Geoscience, 25(3): 510-521. (in Chinese with English abstract
    [9] FENG Q, QIN Y, FU S T, et al, 2015. U-Pb age of detrital zircons and its geological significance from Maoniushan Formation in the Wulan County, Northern Margin of Qaidam Basin[J]. Acta Sedimentologica Sinica, 33(3): 486-499. (in Chinese with English abstract
    [10] GAO W L, WANG Z X, LI L L, et al, 2019. Discovery of the permian granite in Saishiteng Mountain of the northern Qaidam Basin and its tectonic significance[J]. Acta Geologica Sinica, 93(4): 816-829. (in Chinese with English abstract
    [11] HAN J J, SONG C Z, HE J, et al, 2020. Zircon U-Pb age, geochemical and geological characteristics of the dioritic-granitic intrusive rocks in the Niubiziliang area, northern Qaidam Basin[J]. Geotectonica et Metallogenia, 44(1): 157-170. (in Chinese with English abstract
    [12] HAO G J, LU S N, WANG H C, et al, 2004. The Pre-Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo-block[J]. Earth Science Frontiers, 11(3): 115-122. (in Chinese with English abstract
    [13] HOU K J, LI Y H, ZOU T R, et al, 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10): 2595-2604. (in Chinese with English abstract
    [14] HOU Q L, GUO Q Q, FANG A M, 2018. Discussions on some basic problems in the research of orogenic belts concerning on flysch and molasse[J]. Acta Petrologica Sinica, 34(7): 1885-1896. (in Chinese with English abstract
    [15] HU Z C, ZHANG W, LIU Y S, et al, 2015. “wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 87(2): 1152-1157. doi: 10.1021/ac503749k
    [16] KOU G C, FENG J W, LUO B R, et al, 2017. Zircon U-Pb dating and geochemistry of the volcanic rocks from Mao-niushan Formation in Amunike area, Qinghai Province, and its geological implications[J]. Geological Bulletin of China, 36(2-3): 275-284. (in Chinese with English abstract
    [17] LI F, WU Z L, LI B Z, et al, 2006. Revision of the Tanjianshan group on the northern margin of the Qaidam Basin[J]. Northwestern Geology, 39(3): 83-90. (in Chinese with English abstract
    [18] LI J B, WAN S C, LI Z H, 2017. Geological and geochemistry characteristics of volcanics in the late paleozoic maoniushan formation in amunike area of Northern Qaidam Basin[J]. Northwestern Geology, 50(3): 47-53. (in Chinese with English abstract
    [19] LI R B, PEI X Z, LI Z C, et al, 2012. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers, 19(5): 244-254. (in Chinese with English abstract
    [20] LI R S, JI W H, ZHAO Z M, et al, 2007. Progress in the study of the Early Paleozoic Kunlun orogenic belt[J]. Geological Bulletin of China, 26(4): 373-382. (in Chinese with English abstract
    [21] LIU B, MA C Q, GUO P, et al, 2013. Discovery of the middle devonian A-type granite from the Eastern Kunlun Orogen and its tectonic implications[J]. Earth Science-Journal of China University of Geosciences, 38(5): 947-962. (in Chinese with English abstract doi: 10.3799/dqkx.2013.093
    [22] LIU Y, NEUBAUER F, LI W M, et al, 2012. Tectono-thermal events of the northern Qaidam Margin-southern Qilian Area, Western China[J]. Journal of Jilin University (Earth Science Edition), 42(5): 1317-1329. (in Chinese with English abstract
    [23] LIU Y S, HU Z C, GAO S, et al, 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    [24] LU L, WU Z H, HU D G, et al, 2010. Zircon U-Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the East Kunlun Mountains[J]. Acta Petrologica Sinica, 26(4): 1150-1158. (in Chinese with English abstract
    [25] LUDWIG K R, 2001. Users manual for Isoplot/Ex rev. 2.49. A geochronological toolkit for Microsoft excel[R]. Berkeley Geochronology Center Special Publication, 1-55.
    [26] MENG F C, ZHANG J X, YANG J S, 2005. Tectono - thermal event of post-HP/UHP metamorphism in the Xitieshan area of the North Qaidam Mountains, western China: isotopic and geochemical evidence of granite and gneiss[J]. Acta Petrologica Sinica, 21(1): 45-56. (in Chinese with English abstract
    [27] PENG Y, MA Y S, LIU C L, et al, 2016. Geological characteristics and tectonic significance of the Indosinian granodiorites from the Zongwulong tectonic belt in North Qaidam[J]. Earth Science Frontiers, 23(2): 206-221. (in Chinese with English abstract
    [28] PENG Y, ZHANG Y S, SUN J P, et al, 2018. Provenance and tectonic setting of the Zhongwunongshan group from the Zhongwunongshan structural belt and its adjacent areas in North Qaidam, China: evidence from geochemistry and detrital zircon geochronology[J]. Geotectonica et Metallogenia, 42(1): 126-149. (in Chinese with English abstract
    [29] QIAN B, ZHANG Z W, ZHANG Z B, et al, 2015. Ziron U-Pb geochronology of Niubiziliang mafic-ultramafic intrusion on the northwest margin of Qaidam Basin, Qinghai[J]. Geology in China, 42(3): 482-493. (in Chinese with English abstract
    [30] QIAN T, LI W P, GAO W L, et al, 2023. A preliminary study on post-orogenesis of the North Qaidam tectonic belt during the Early Paleozoic by provenance analysis of the Devonian sediments[J]. Acta Geologica Sinica, 97(3): 672-687. (in Chinese with English abstract
    [31] SONG S G, NIU Y L, SU L, et al, 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 129: 59-84. doi: 10.1016/j.earscirev.2013.11.010
    [32] SONG S G, ZHANG L F, NIU Y, et al, 2004. Early Paleozoic plate-tectonic evolution and deep continental subduction on the northern margin of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 23(9-10): 918-925. (in Chinese with English abstract
    [33] SUN J P, CHEN S Y, PENG Y, et al, 2015. Research on Northern Qaidam tectonic attributes during Devonian[J]. Journal of China University of Petroleum, 39(2): 23-30. (in Chinese with English abstract
    [34] SUN J P, CHEN S Y, LIU C L, et al, 2016. Tectonic setting of Northeastern Qaidam Basin and its evolution during the Late Paleozoic: evidence from geochemical characteristics of detrital rock[J]. Earth Science Frontiers, 23(5): 45-55. (in Chinese with English abstract
    [35] WANG H C, LU S N, YUAN G B, et al, 2003. Tectonic setting and age of the "Tanjianshan Group" on the northern margin of the Qaidam basin[J]. Geological Bulletin of China, 22(7): 487-493. (in Chinese with English abstract
    [36] WANG M J, SONG S G, NIU Y L, et al, 2014. Post-collisional magmatism: consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China[J]. Lithos, 210-211: 181-198. doi: 10.1016/j.lithos.2014.10.006
    [37] WU C L, GAO Y H, WU S P, et al, 2007. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam basin, NW China[J]. Acta Petrologica Sinica, 23(8): 1861-1875. (in Chinese with English abstract
    [38] WU C L, WU D, MATTINSON C, et al, 2019. Petrogenesis of granitoids in the Wulan area: magmatic activity and tectonic evolution in the North Qaidam, NW China[J]. Gondwana Research, 67: 147-171. doi: 10.1016/j.gr.2018.09.010
    [39] XIA W J, NIU M L, YAN Z, et al, 2014. Sedimentary facies of the Maoniushan Formation in Maoniushan area along the northern margin of Qaidam Terrane[J]. Acta Geologica Sinica, 88(5): 943-955. (in Chinese with English abstract
    [40] XIN H T, WANG H C, ZHOU S J, 2006. Geological events and tectonic evolution of the north margin of the Qaidam Basin[J]. Geological Survey and Research, 29(4): 311-320. (in Chinese with English abstract
    [41] YAN Z, WANG Z Q, WANG T, et al, 2002. Sedimentary environment and tectonic significance of the Dacaotan Group of the Western Qinling Mountains[J]. Geological Bulletin of China, 21(8-9): 505-515. (in Chinese with English abstract
    [42] YAN Z, WANG Z Q, WANG T, et al, 2007. Tectonic setting of Devonian sediments in the Qinling orogen: constraints from detrital modes and geochemistry of clastic rocks[J]. Acta Petrologica Sinica, 23(5): 1023-1042. (in Chinese with English abstract
    [43] YANG J S, SONG S G, XU Z Q, et al, 2001. Discovery of coesite in the North Qaidam early Paleozoic ultrahigh-high pressure (UHP-HP) metamorphic belt, NW China[J]. Acta Geologica Sinica, 75(2): 175-179. (in Chinese with English abstract doi: 10.1111/j.1755-6724.2001.tb00519.x
    [44] ZHANG C Y, ZHAO Y, LIU J, et al, 2019. Provenance analysis of the Maoniushan Formation in the North Qaidam basin and its tectonic significance[J]. Acta Geologica Sinica, 93(3): 712-723. (in Chinese with English abstract
    [45] ZHANG J X, MENG F C, MATTINSON G C, 2007a. Progress, controversies and challenge of studies on South Altyn Tagh-North Qaidam HP/UHP Metamorphic belt[J]. Geological Journal of China Universities, 13(3): 526-545. (in Chinese with English abstract
    [46] ZHANG J X, MENG F C, YU S Y, et al, 2007b. Metamorphic history recorded in high pressure mafic granulites in the Luliangshan Mountains to the north of Qaidam Basin, northwest China: evidence from petrology and zircon SHRIMP geochronology[J]. Earth Science Frontiers, 14(1): 85-97. (in Chinese with English abstract
    [47] ZHANG J X, YU S Y, MATTINSON C G, 2017. Early Paleozoic polyphase metamorphism in northern Tibet, China[J]. Gondwana Research, 41: 267-289. doi: 10.1016/j.gr.2015.11.009
    [48] ZHANG X T, YANG S D, YANG Z J, 2007. The regional geology of Qinghai Province: a guide to the geological map of Qinghai Province[M]. Beijing: Geological Publishing House.
    [49] ZHANG Y L, HU D G, SHI Y R, et al, 2010. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China[J]. Geological Bulletin of China, 29(11): 1614-1618. (in Chinese with English abstract
    [50] ZHANG Y L, NI J Y, SHEN Y X, et al, 2018. Zircon U-Pb ages and geological significance of volcanic rocks from Maoniushan Formation in the Northern Margin of Qaidam Basin[J]. Geoscience, 32(2): 329-334. (in Chinese with English abstract
    [51] ZHUANG Y J, GU P Y, LI P Q, et al, 2019. Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northwestern margin of Oulongbuluke micro-block on the northern margin of Qaidam Basin[J]. Geological Bulletin of China, 38(11): 1801-1812. (in Chinese with English abstract
    [52] ZONG K Q, KLEMD R, YUAN Y, et al, 2017. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010
    [53] 陈能松,王勤燕,陈强,等. 2007. 柴达木和欧龙布鲁克陆块基底的组成和变质作用及中国中西部古大陆演化关系初探[J]. 地学前缘,14(1):43-55. doi: 10.3321/j.issn:1005-2321.2007.01.004
    [54] 陈世悦,毕明威,孙娇鹏,等. 2016. 柴北缘上古生界混合沉积特征及控制因素[J]. 地质通报,35(2-3):282-292.
    [55] 陈守建,李荣社,计文化,等. 2007. 昆仑造山带晚泥盆世沉积特征及构造古地理环境[J]. 大地构造与成矿学,31(1):44-51. doi: 10.3969/j.issn.1001-1552.2007.01.006
    [56] 陈宣华,尹安,GEHRELS G,等. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学[J]. 地质学报,85(2):157-171.
    [57] 陈有炘,裴先治,李瑞保,等. 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J]. 现代地质,25(3):510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013
    [58] 冯乔,秦宇,付锁堂,等. 2015. 柴达木盆地北缘乌兰县牦牛山组碎屑锆石U-Pb定年及其地质意义[J]. 沉积学报,33(3):486-499.
    [59] 高万里,王宗秀,李磊磊,等. 2019. 柴达木盆地北缘小赛什腾山二叠纪花岗岩的发现及其构造意义[J]. 地质学报,93(4):816-829.
    [60] 韩建军,宋传中,何俊,等. 2020. 柴北缘牛鼻子梁地区闪长-花岗质岩体锆石U-Pb年龄、地球化学特征及地质意义[J]. 大地构造与成矿学,44(1):157-170.
    [61] 郝国杰,陆松年,王惠初,等. 2004. 柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化[J]. 地学前缘,11(3):115-122. doi: 10.3321/j.issn:1005-2321.2004.03.013
    [62] 侯可军,李延河,邹天人,等. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报,23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
    [63] 侯泉林,郭谦谦,方爱民. 2018. 造山带研究中有关复理石和磨拉石的几个问题[J]. 岩石学报,34(7):1885-1896.
    [64] 寇贵存,冯金炜,罗保荣,等. 2017. 青海阿木尼克山地区牦牛山组火山岩地球化学特征、锆石U-Pb年龄及其地质意义[J]. 地质通报,36(2-3):275-284.
    [65] 李峰,吴志亮,李保珠,等. 2006. 柴达木盆地北缘滩间山群新厘定[J]. 西北地质,39(3):83-90. doi: 10.3969/j.issn.1009-6248.2006.03.012
    [66] 李建兵,万世昌,李镇宏. 2017. 柴北缘阿木尼克地区晚古生代牦牛山组火山岩地质地球化学特征及其地质意义[J]. 西北地质,50(3):47-53. doi: 10.3969/j.issn.1009-6248.2017.03.006
    [67] 李荣社,计文化,赵振明,等. 2007. 昆仑早古生代造山带研究进展[J]. 地质通报,26(4):373-382. doi: 10.3969/j.issn.1671-2552.2007.04.002
    [68] 李瑞保,裴先治,李佐臣,等. 2012. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘,19(5):244-254.
    [69] 刘彬,马昌前,郭盼,等. 2013. 东昆仑中泥盆世A型花岗岩的确定及其构造意义[J]. 地球科学-中国地质大学学报,38(5):947-962.
    [70] 刘永江,NEUBAUER F,李伟民,等. 2012. 柴北缘—南祁连地区构造热事件[J]. 吉林大学学报(地球科学版),42(5):1317-1329.
    [71] 陆露,吴珍汉,胡道功,等. 2010. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J]. 岩石学报,26(4):1150-1158.
    [72] 孟繁聪,张建新,杨经绥. 2005. 柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件:花岗岩和片麻岩的同位素与岩石地球化学证据[J]. 岩石学报,21(1):45-56. doi: 10.3321/j.issn:1000-0569.2005.01.005
    [73] 彭渊,马寅生,刘成林,等. 2016. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义[J]. 地学前缘,23(2):206-221.
    [74] 彭渊,张永生,孙娇鹏,等. 2018. 柴北缘北部中吾农山构造带及邻区中吾农山群物源和构造环境:来自地球化学与锆石年代学的证据[J]. 大地构造与成矿学,42(1):126-149.
    [75] 钱兵,张照伟,张志炳,等. 2015. 柴达木盆地西北缘牛鼻子梁镁铁-超镁铁质岩体年代学及其地质意义[J]. 中国地质,42(3):482-493. doi: 10.3969/j.issn.1000-3657.2015.03.007
    [76] 钱涛,李王鹏,高万里,等. 2023. 柴达木盆地北缘构造带早古生代造山后作用初探:泥盆纪沉积物物源示踪[J]. 地质学报,97(3):672-687. doi: 10.3969/j.issn.0001-5717.2023.03.003
    [77] 青海省地质矿产局,1991. 中华人民共和国地质矿产部地质专报 一 区域地质 第24号 青海省区域地质志[M]. 北京:地质出版社.
    [78] 青海省地质矿产局,1997. 青海省岩石地层[M]. 武汉:中国地质大学出版社.
    [79] 宋述光,张立飞,NIU Y,等. 2004. 青藏高原北缘早古生代板块构造演化和大陆深俯冲[J]. 地质通报,23(9-10):918-925.
    [80] 孙娇鹏,陈世悦,彭渊,等. 2015. 柴北缘构造带泥盆纪构造属性研究[J]. 中国石油大学学报(自然科学版),39(2):23-30. doi: 10.3969/j.issn.1673-5005.2015.02.004
    [81] 孙娇鹏,陈世悦,刘成林,等. 2016. 柴达木盆地东北部晚古生代盆地构造环境:来自碎屑岩地球化学的证据[J]. 地学前缘,23(5):45-55.
    [82] 王惠初,陆松年,袁桂邦,等. 2003. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报,22(7):487-493. doi: 10.3969/j.issn.1671-2552.2003.07.005
    [83] 吴才来,郜源红,吴锁平,等. 2007. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报,23(8):1861-1875. doi: 10.3969/j.issn.1000-0569.2007.08.008
    [84] 夏文静,牛漫兰,闫臻,等. 2014. 柴北缘牦牛山地区牦牛山组沉积相组合特征[J]. 地质学报,88(5):943-955.
    [85] 辛后田,王惠初,周世军. 2006. 柴北缘的大地构造演化及其地质事件群[J]. 地质调查与研究,29(4):311-320. doi: 10.3969/j.issn.1672-4135.2006.04.010
    [86] 闫臻,王宗起,王涛,等. 2002. 西秦岭大草滩群的沉积环境及构造意义[J]. 地质通报,21(8-9):505-515.
    [87] 闫臻,王宗起,王涛,等. 2007. 秦岭造山带泥盆系形成构造环境:来自碎屑岩组成和地球化学方面的约束[J]. 岩石学报,23(5):1023-1042. doi: 10.3321/j.issn:1000-0569.2007.05.016
    [88] 杨经绥,宋述光,许志琴,等. 2001. 柴达木盆地北缘早古生代高压一超高压变质带中发现典型超高压矿物:柯石英[J]. 地质学报,75(2):175-179. doi: 10.3321/j.issn:0001-5717.2001.02.005
    [89] 张春宇,赵越,刘金,等. 2019. 柴达木盆地北缘牦牛山组物源分析及其构造意义[J]. 地质学报,93(3):712-723.
    [90] 张建新,孟繁聪,MATTINSON C G. 2007a. 南阿尔金-柴北缘高压-超高压变质带研究进展、问题及挑战[J]. 高校地质学报,13(3):526-545.
    [91] 张建新,孟繁聪,于胜尧,等. 2007b. 柴北缘绿梁山高压基性麻粒岩的变质演化历史:岩石学及锆石SHRIMP年代学证据[J]. 地学前缘,14(1):85-97.
    [92] 张雪亭,杨生德,杨站君,2007. 青海省区域地质概论[M]. 北京:地质出版社.
    [93] 张耀玲,胡道功,石玉若,等. 2010. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报,29(11):1614-1618. doi: 10.3969/j.issn.1671-2552.2010.11.003
    [94] 张耀玲,倪晋宇,沈燕绪,等. 2018. 柴北缘牦牛山组火山岩锆石U-Pb年龄及其地质意义[J]. 现代地质,32(2):329-334.
    [95] 庄玉军,辜平阳,李培庆,等. 2019. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学、年代学及Hf同位素特征[J]. 地质通报,38(11):1801-1812. doi: 10.12097/j.issn.1671-2552.2019.11.004
  • 期刊类型引用(1)

    1. 马立成,江万,施辉,胡俊杰,张浩,陈程,董敏,彭博,方欣欣. 柴达木盆地东部尕海南山地区新生代叠加褶皱与油气运移. 现代地质. 2024(05): 1209-1220 . 百度学术

    其他类型引用(0)

  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  121
  • PDF下载量:  57
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2024-02-19
  • 录用日期:  2024-03-11
  • 预出版日期:  2024-03-28
  • 刊出日期:  2024-06-28

目录

/

返回文章
返回