留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新生代晚期挤压作用下活动背斜区的构造变形特征及其地震地质灾害效应

杨晓平 陈杰 李安 黄伟亮 张玲 杨海波 胡宗凯 左玉琦

杨晓平, 陈杰, 李安, 等, 2024. 新生代晚期挤压作用下活动背斜区的构造变形特征及其地震地质灾害效应. 地质力学学报, 30 (2): 225-241. DOI: 10.12090/j.issn.1006-6616.2023136
引用本文: 杨晓平, 陈杰, 李安, 等, 2024. 新生代晚期挤压作用下活动背斜区的构造变形特征及其地震地质灾害效应. 地质力学学报, 30 (2): 225-241. DOI: 10.12090/j.issn.1006-6616.2023136
YANG Xiaoping, CHEN Jie, LI An, et al., 2024. Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic. Journal of Geomechanics, 30 (2): 225-241. DOI: 10.12090/j.issn.1006-6616.2023136
Citation: YANG Xiaoping, CHEN Jie, LI An, et al., 2024. Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic. Journal of Geomechanics, 30 (2): 225-241. DOI: 10.12090/j.issn.1006-6616.2023136

新生代晚期挤压作用下活动背斜区的构造变形特征及其地震地质灾害效应

doi: 10.12090/j.issn.1006-6616.2023136
基金项目: 

国家自然科学基金面上项目 42072249

国家自然科学基金面上项目 41772221

国家自然科学基金面上项目 40572126

第二次青藏高原综合科学考察 2019QZKK0901

中国地震局地质研究所基本科研业务专项 IGGEA1704

地震行业科研专项 200808013

详细信息
    作者简介:

    杨晓平(1963—),男,博士,研究员,主要从事活动构造、构造地貌与地震地质灾害理论和应用研究。Email: yangxiaoping-1@163.com

  • 中图分类号: P542; P315

Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic

Funds: 

the National Natural Science Foundation of China 42072249

the National Natural Science Foundation of China 41772221

the National Natural Science Foundation of China 40572126

the Second Comprehensive Scientific Investigation on the Tibet Plateau 2019QZKK0901

the Special Project of Basic Scientific Research of Institute of Geology, China Earthquake Administration IGGEA1704

the Special Project on Scientific Research of Earthquake Industry 200808013

  • 摘要: 活动背斜是第四纪晚期以来在活动挤压构造区域内吸收地壳缩短变形的主要地质构造之一,其是在挤压背景下形成的一个复杂的构造系统,由多种活动构造变形组成。发生在挤压构造区的大地震可以使褶皱相关断层、褶皱陡坎、翼部地形倾斜和地质体缩短等发生同震破裂或地面倾斜,进而引发严重的地震地质灾害,从理论研究和工程抗震两方面均需重视。因此,文章立足现有的逆断层相关褶皱、褶皱侧向扩展等理论,通过典型的主逆冲断层、反冲断层、弯矩断层、弯滑断层、共轭剪切断层和褶皱陡坎等实例,探讨了与褶皱相关的同震活动构造变形对建筑物的影响和破坏作用。研究认为,在强震导致的活动背斜地壳缩短、垂向隆升和侧向扩展过程中,背斜两翼和倾伏端的地面掀斜对重大工程建筑的安全运行构成威胁;同时,区域地壳缩短引发的弯曲变形给跨越活动背斜的重大线状工程造成的潜在地震危险和诱发的地质灾害值得关注。

     

  • 图  1  弯滑断层与弯矩断层模型(Yeats,1986Burbank and Anderson, 2011)

    a—弯滑断层形成模式图;b—弯矩断层形成模式图

    Figure  1.  Models of flexural-slip fault and flexural fault (Yeats, 1986; Burbank and Anderson, 2011)

    (a) Formation pattern diagram of flexural-slip fault; (b) Formation pattern diagram of flexural fault

    图  2  膝折带迁移作用生成的活动褶皱陡坎几何学模型(Li et al., 2015a)

    H—褶皱陡坎高度;Φ—褶皱陡坎坡度;θ1θ2—断层倾角;S—断层滑动增量;abcd—轴面初始位置;a′、b′、c′、d′—轴面迁移后位置

    Figure  2.  Geometric model of active fold scarp generated by the migration of a kink band (Li et al., 2015a)

    H-Height of fold scarp; Φ-Slope of fold scarp; θ1, θ2-Fault dip angles; S-Fault slip increment; a, b, c, d-Initial positions of axial planes; a′, b′, c′, d′-Positions after migration

    图  3  活动背斜的隆升和侧向扩展示意图(据Ramsey et al., 2008修改)

    Figure  3.  Uplift and lateral propagation of active anticlines (modified after Ramsey et al., 2008)

    图  4  塔里木盆地及周边地区活动褶皱分布图

    DF—博罗可努-阿其克库都可断裂;TFF—塔拉斯-费尔干纳断裂;AFT—阿尔金断裂;KLF—昆仑断裂;RRF—红河断裂;MFT—喜马拉雅主前缘断裂;Tianshan—天山;Qilian—祁连山;Tarrim—塔里木盆地;Tibet—青藏高原;Himalaya—喜马拉雅山;India—印度高原

    Figure  4.  Sketch map of active folds in and around the Tarim Basin

    DF-Bolokenu-Aqikekuduk fault; TFF-Talas-Fergana fault; AFT-Altyn fault; KLF-Kunlun fault; RRF-Honghe fault; MFT-Himalaya main frontal fault

    图  5  哈尔莫敦背斜区的活动断裂分布特征

    a—和静活动背斜中段影像图(引自谷歌地球2010年11月10日影像;黑色线段及字母表示实测地形剖面图 6位置及编号);b—建设在反冲活动断层带上的光伏电站(引自谷歌地球2016年10月15日影像);c—和静背斜区的断层分布图(Huang et al., 2014黄伟亮,2015);d—横跨和静背斜实测地质剖面图(Huang et al., 2014)

    Figure  5.  Distribution map of active faults in the Halmoton Anticline area

    (a) Image of the middle section of the Hejing active anticline (taken from Google Earth imagery on November 10, 2010; black lines and letters indicate the location and numbering of measured topographic profile 6); (b) Photovoltaic power station constructed on the reverse fault zone (taken from Google Earth imagery on October 15, 2016); (c) Fault distribution map of the Hejing anticline area (Huang et al., 2014; Huang, 2015); (d) Measured geological cross-section across the Hejing anticline (Huang et al., 2014)

    图  6  哈尔莫敦背斜区的断层陡坎实测地形剖面(剖面位置见图 5a李安,2010)

    Figure  6.  Measured topographic profile of fault scarps in the Halmodon anticline area (profile location is shown in Fig. 5a; Li, 2010)

    图  7  明尧勒背斜南翼河流阶地与褶皱陡坎分布特征(39°30′41.9″N,75°19′33.6″E;李涛等,2014)

    a、b—Google Earth影像及其地质地貌图;c、d—T3b阶地上褶皱陡坎照片;e—T3b阶地上弯滑断层陡坎照片;f—T3b阶地上弯滑断层陡坎实测地形剖面(度数为阶地面坡度);g—T2阶地上褶皱陡坎实测地形地质剖面;h—T3b阶地上褶皱陡坎实测地形地质剖面(度数为褶皱陡坎坡度,紫线带圆点代表测量地层产状的位置,线条的倾斜程度为地层倾角大小,黄色和白色条带表示地层)

    Figure  7.  Distribution characteristics of river terraces and fold scarps on the southern flank of the Mingyaole anticline (39°30′41.9″N, 75°19′33.6″E; Li et al., 2014)

    (a, b) Google Earth images and geological geomorphological maps; (c, d) Photos of the flexural-slip fault on the T3b terrace; (e) Measured topographic profile of the flexural-slip on the T3b terrace (degree represents the slope of the terrace surface); (f) Photo of the fold scarp on the T3b terrace; (g) Measured geological profile of the fold scarp on the T2 terrace; (h) Measured geological profile of the fold scarp on the T3b terrace (degree represents the slope of the fold scarp, purple dotted lines represent the measurement positions of bedding attitudes, the slope of the lines indicates the dip angle of the beds, yellow and white bands represent bedding)

    图  8  活动背斜区的共轭剪切断层

    a—麻扎塔格褶皱带中的左旋走滑断层和右旋走滑断层(38°33′41.4″N,80°41′13.5″E);b—明尧勒背斜区的左旋走滑断层(39°31′57.9″N,75°26′13.8″E);c—基岩山脊的左旋错动;d、e—喀浪勾勒河阶地上的断层陡坎和微地貌左旋错动;f—背斜内部共轭剪切断层模型(S、D和C分别表示志留纪、泥盆纪和石炭纪地层,σ1—最大主应力)

    Figure  8.  Conjugate shear faults in the active anticline area

    (a) Left-lateral strike-slip fault and right-lateral strike-slip fault in the Mazatag fold zone (38°33′41.4″N, 80°41′13.5″E); (b) Left-lateral strike-slip fault in the Menyaole anticline area (39°31′57.9″N, 75°26′13.8″E); (c) Left-lateral faulting on the bedrock ridge; (d, e) Fault scarps and microtopographic left-lateral faulting on the Kalanggoule river terrace; (f) Model of conjugate shear faults within the anticline (S, D, and C represent Silurian, Devonian, and Carboniferous strata, respectively, σ1 is the maximum principal stress)

    图  9  活动背斜生长演化与地震地质灾害效应示意图

    A—H—建筑物;DF—滑脱断层;RF—逆断层:RFS—逆断层陡坎;CF—剪切断层;BRF—反冲逆断层;FMF—弯矩断层;FSF—弯滑断层;FOS—褶皱陡坎;△S1、△S2—地震事件中滑脱断层上的位移量;粉色区表示褶皱陡坎;紫色区表示断层陡坎;灰色、白色条带表示地层;
    黑色点线表示初始轴面;绿色点线表示迁移后的轴面
    此图仅用来说明挤压背景下活动背斜同震生长变形过程中形成的地质灾害,并不代表活动背斜区褶皱相关断层、褶皱陡坎的类型和形成顺序,同样也不代表主逆断层(RF)断错至地表的顺序

    Figure  9.  Schematic illustration of the growth and evolution of active anticlines and their seismic geological disaster effects

    A-H-buildings; DF-detachment fault; RF-reverse fault; RFS-reverse fault scarp; CF-shear fault; BRF-back reverse fault; FMF-flexural fault; FSF-Flexural-slip fault; FOS-fold scarp; △S1, △S2-displacement on detachment faults during seismic events; Pink area represents fold-related scarps, purple area represents fault scarps, gray and white bands represent strata, black dotted lines represent initial axial planes, and green dotted lines represent migrated axial planes.
    This figure is intended solely to illustrate the geological disasters formed during the co-seismic growth deformation process of active anticlines under compression, and does not represent the types and formation sequence of fold-related faults and fold-related scarps in the active anticline area, nor does it represent the sequence of the main reverse faults (RF) faulting to the surface.

  • BENSON P M, VINCIGUERRA S, MEREDITH P G, et al., 2008. Laboratory simulation of volcano seismicity[J]. Science, 322(5899): 249-252. doi: 10.1126/science.1161927
    BURBANK D W, ANDERSON R S, 2011. Tectonic geomorphology[M]. 2nd ed. Blackwell Science: 105-107.
    CHEN J, SCHARER K M, BURBANK D W, et al., 2005a. Kinematic models of fluvial terraces over active fault-related folds: constraints on the growth mechanism and kinematics[J]. Seismology and Geology, 27(4): 513-529. (in Chinese with English abstract)
    CHEN J, SCHARER K M, BURBANK D W, et al., 2005b. Quaternary detachment folding of the Mingyaole anticline, southwestern Tian Shan[J]. Seismology and Geology, 27(4): 530-547. (in Chinese with English abstract)
    CHEN Q Y, FU B H, SHI P L, et al., 2022. Surface deformation associated with the 22 august 1902 Mw 7.7 atushi earthquake in the southwestern Tian Shan, revealed from multiple remote sensing data[J]. Remote Sensing, 14(7): 1663. doi: 10.3390/rs14071663
    CHEN W S, LEE K J, LEE L S, et al., 2007. Paleoseismic evidence for coseismic growth-fold in the 1999 Chichi earthquake and earlier earthquakes, central Taiwan [J]. Journal of Asian Earth Sciences, 31(3): 204-213. doi: 10.1016/j.jseaes.2006.07.027
    CLARK D, MCPHERSON A, ALLEN T, et al., 2014. Coseismic surface deformation caused by the 23 March 2012 Mw 5.4 Ernabella (Pukatja) earthquake, central Australia: implications for fault scaling relations in cratonic settings[J]. Bulletin of the Seismological Society of America, 104(1): 24-39. doi: 10.1785/0120120361
    DENG H L, ZHANG C H, LI H L, et al., 2009. Fold-accommodation faults and their geological significance [J]. Progress in Natural Science, 19(3): 285-296. (in Chinese) doi: 10.1016/j.pnsc.2008.07.009
    DENG Q D, ZHENG P Z, XU X W, et al., 1996. Paleoseismology of the northern piedmont of Tianshan Mountains, Northwestern China [J]. Journal of Geophysical Research: Solid Earth, 101(B3): 5895-5920. doi: 10.1029/95JB02739
    DENG Q D, FENG X Y, ZHANG P Z, et al., 2000. Active tectonics in Tianshan region[M]. Beijing: Seismological Press: 1-415. (in Chinese)
    DI N, LI C L, LI T, et al., 2023. The 2021 Mw 5.2 Baicheng earthquake: implications for the hazards of extremely shallow earthquakes [J]. Seismological Research Letters, 94(4): 1775-1790.
    FENG X Y, 1997. The paleoearthquakes in Xinjiang region, China[M]. Urumqi: Xinjiang Science and Technology Health Publishing House: 217-222. (in Chinese)
    GUO C B, ZHANG Y S, WANG T, et al., 2017. Discussion on geological hazards and major engineering geological problems in the middle part of the North-south active tectonic zone, China[J]. Journal of Geomechanics, 23(5): 707-722. (in Chinese with English abstract)
    GUO S M, TAPPONNIER P, CHEN Z T, et al., 1990. Characteristics of surface rupture of EL ASNAM (ALGERIA) earthquake and the study of paleoseismic events[J]. Acta Seismologica Sinica, 12(4): 389-398. (in Chinese with English abstract)
    HILL M L, 1984. Earthquakes and folding, Coalinga, California[J]. Geology, 12(12): 711-712. doi: 10.1130/0091-7613(1984)12<711:EAFCC>2.0.CO;2
    HUANG W L, 2015. Crustal shortening rate across the Yanqi basin, Tianshan during Mid-late Quaternary[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    HUANG W L, YANG X P, LI A, et al., 2014. Climatically controlled formation of river terraces in a tectonically active region along the southern piedmont of the Tian Shan, NW China[J]. Geomorphology, 220: 15-29. doi: 10.1016/j.geomorph.2014.05.024
    HUBERT-FERRARI A, SUPPE J, GONZALEZ-MIERES R, et al., 2007. Mechanisms of active folding of the landscape (southern Tian Shan, China)[J]. Journal of Geophysical Research: Solid Earth, 112(B3): B03S09.
    JIA L Y, MA X M, JING J J, et al., 2023. Dynamic variation characteristics of in-situ stress in the 1605 Qiongshan M 7½ earthquake area and its implications to the Dongzhaigang subsidence, northeastern Hainan Island, China[J]. Journal of Geomechanics, 29(3): 339-354(in Chinese with English abstract)
    KELLER E A, GURROLA L, TIERNEY T E, 1999. Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding[J]. Geology, 27(6): 515-518. doi: 10.1130/0091-7613(1999)027<0515:GCTDDO>2.3.CO;2
    KING G C P, STEIN R, 1983. Surface folding, river terrace deformation rate and earthquake repeat time in a reverse faulting environment: the Coalinga, California, earthquake of May 1983[M]//BENNETT J H, SHERBURNE R W. The 1983 Coalinga, California, earthquakes. Sacramento: California Division of Mines and Geology Special Publication: 165-176.
    LI A, 2010. Tectonic movement and paleoearthquakes on the Hejing reverse fault-fold zone in the northern margin of the Yanqi basin during the Late Quaternary [D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    LI A, YANG X P, HUANG W L, et al., 2011. Active faults of the Haermodun anticline and their formation mechanism in the north margin of the Yanqi basin [J]. Seismology and Geology, 33(4): 789-803. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2011.04.005
    LI S Q, ZHANG L, YANG X P, et al., 2016. Active faults and their formation mechanism in the east segment of Qiulitage anticline belt, Kuqa depression [J]. Seismology and Geology, 38(2): 223-239. (in Chinese with English abstract)
    LI T, CHEN J, XIAO W P, et al., 2011. Using deformation terraces to confine the shortening, uplift and lateral propagation of the Mushi anticline, northern margin of the Pamir[J]. Seismology and Geology, 33(2): 308-322. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2011.02.005
    LI T, CHEN J, XIAO W P, 2013. Late-quaternary folding of the Mingyaole anticline southwestern tip, Pamir-Tianshan convergent zone[J]. Seismology and Geology, 35(2): 234-246. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2013.02.004
    LI T, CHEN J, XIAO W P, 2014. Deformation characteristics and kinematics of active detachment fold scarp: a case study from the Mingyaole anticline, Pamir-southern Tianshan foreland[J]. Seismology and Geology, 36(3): 677-691. (in Chinese with English abstract)
    LI T, CHEN J, THOMPSON J A, et al., 2015a. Hinge-migrated fold-scarp model based on an analysis of bed geometry: a study from the Mingyaole anticline, southern foreland of Chinese Tian Shan[J]. Journal of Geophysical Research: Solid Earth, 120(9): 6592-6613. doi: 10.1002/2015JB012102
    LI T, CHEN J, THOMPSON J A, et al., 2015b. Active flexural-slip faulting: a study from the Pamir-Tian Shan convergent zone, NW China[J]. Journal of Geophysical Research: Solid Earth, 120(6): 4359-4378. doi: 10.1002/2014JB011632
    LI T, CHEN J, THOMPSON J A, et al., 2017. Active flexural-slip faulting: controls exerted by stratigraphy, geometry, and fold kinematics[J]. Journal of Geophysical Research: Solid Earth, 122(10): 8538-8565. doi: 10.1002/2017JB013966
    LI T, CHEN J, THOMPSON J A, et al., 2018. Active bending-moment faulting: geomorphic expression, controlling conditions, accommodation of fold deformation[J]. Tectonics, 37(8): 2278-2306. doi: 10.1029/2018TC004982
    LI Y H, 2022. The active out-of-sequence thrusting and folding of the southern Junggar structural wedges[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    LI Z G, CHEN W, JIA D, et al., 2020. The effects of fault geometry and kinematic parameters on 3D fold morphology: insights from 3D geometric models and comparison with the Dushanzi anticline, China[J]. Tectonics, 39(2): e2019TC005713.
    LU H F, WANG S L, SUPPE J, et al., 2002. Quaternary folding in the south piedmont of central segment of Tianshan Mountains[J]. Chinese Science Bulletin, 47(22): 1907-1911. doi: 10.1360/02tb9417
    MCCLAY K R, 1992. Thrust tectonics[M]. London: Chapman & Hall: 71-104.
    MITRA S, 2002. Fold-accommodation faults[J]. AAPG Bulletin, 86(4): 671-693.
    MORLEY C K, 1988. Out-of-sequence thrusts[J]. Tectonics, 7(3): 539-561. doi: 10.1029/TC007i003p00539
    NAMSON J S, DAVIS T L, 1988. Seismically active fold and thrust belt in the San Joaquin Valley, central California[J]. GSA Bulletin, 100(2): 257-273. doi: 10.1130/0016-7606(1988)100<0257:SAFATB>2.3.CO;2
    PENG F N, YE Y C, 2004. Seismogenic fault of the 1999 Chi-Chi earthquake in Taiwan province and the features of earthquake damages[J]. Seismology and Geology, 26(4): 576-585. (in Chinese with English abstract)
    PHILIP H, MEGHRAOUI M, 1983. Structural analysis and interpretation of the surface deformations of the El ASNAM earthquake of October 10, 1980[J]. Tectonics, 2(1): 17-49. doi: 10.1029/TC002i001p00017
    POBLET J, MCCLAY K, STORTI F, et al., 1997. Geometries of syntectonic sediments associated with single-layer detachment folds[J]. Journal of Structural Geology, 19(3-4): 369-381. doi: 10.1016/S0191-8141(96)00113-7
    RAMSEY L A, WALKER R T, JACKSON J, 2008. Fold evolution and drainage development in the Zagros mountains of Fars province, SE Iran[J]. Basin Research, 20(1): 23-48. doi: 10.1111/j.1365-2117.2007.00342.x
    RAN Y K, WANG H, LI Y B, et al., 2012. Key techniques and several cases analysis in paleoseismic studies in China' s mainland (1): trenching sites, layouts and paleoseismic indicators on active strike-slip faults[J]. Seismology and Geology, 34(2): 197-210. (in Chinese with English abstract)
    RUBIN C M, 1996. Systematic underestimation of earthquake magnitudes from large intracontinental reverse faults: historical ruptures break across segment boundaries[J]. Geology, 24(11): 989-992. doi: 10.1130/0091-7613(1996)024<0989:SUOEMF>2.3.CO;2
    SHI L, ZHENG W J, ZHANG Y, et al., 2022. Correlation between active fault scarp evolution and strong earthquake activity based on high resolution geomorphic data[J]. Earthquake Research in China, 38(3): 472-485. (in Chinese with English abstract)
    SONG H P, SHEN J, XIANG Z Y, et al., 2009. Active fault surveying and seismic risk assessment in Urumqi[M]. Beijing: Seismological Press: 168-185. (in Chinese)
    SUPPE J, 1983. Geometry and kinematics of fault-bend folding [J]. American Journal of Science, 283: 684-721.
    SUPPE J, MEDWEDEFF D A. 1990. Geometry and kinematics of fault propagation folding[J]. Eclogacgeol Helv, 83 (3): 409-454.
    WALLACE R E, 1984. Faulting related to the 1915 earthquakes in pleasant Valley, Nevada[R]. Washington: United States Government Printing Office.
    WANG Y Q, FENG W P, ZHANG P Z, 2022. Present deformation of ~90° intersecting conjugate faults and mechanical implication to regional tectonics: a case study of 2019 MW≥6.4 philippines earthquake sequence[J]. Seismology and Geology, 44(2): 313-332. (in Chinese with English abstract)
    XU X W, WEN X Z, YE J Q, et al., 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 30(3): 597-629. (in Chinese with English abstract)
    YAN Y, 2023. The tunnel damage effects and implications of the coseismic rupture of the Menyuan MS 6.9 Earthquake in Qinghai, China[J]. Journal of Geomechanics, 29(6): 869-878. (in Chinese with English abstract)
    YANG X P, WU G, CHEN L C, et al., 2016. The seismogenic structure of the April 25, 2015 MW7.8 Nepal earthquake in the southern margin of Qinghai-Tibetan Plateau[J]. Chinese Journal of Geophysics, 59(7): 2528-2538. (in Chinese with English abstract)
    YANG Z H, ZHANG Y S, GUO C B, et al., 2017. Landslide hazard rapid assessment in the MS8.1 nepal earthquake-impacted area, based on newmark model[J]. Journal of Geomechanics, 23(1): 115-124. (in Chinese with English abstract)
    YAO Y, WEN S Y, YANG L, et al., 2022. A shallow and left-lateral rupture event of the 2021 Mw 5.3 Baicheng earthquake: Implications for the diffuse deformation of southern Tianshan[J]. Earth and Space Science, 9(3): e2021EA001995.
    YEATS R S, CLARK M N, KELLER E A, et al., 1981. Active fault hazard in southern California: ground rupture versus seismic shaking[J]. GSA Bulletin, 92(4): 189-196.
    YEATS R S, 1986. Active faults related to folding[M]//WALLACE R E. Active tectonics: impact on society. Washington: National Academy Press: 63-79.
    YEATS R S, PRENTICE C S, 1996. Introduction to special section: paleoseismology[J]. Journal of Geophysical Research: Solid Earth, 101(B3): 5847-5853.
    ZENG Z X, 1991. An experimental research on conjugate shear angles[J]. Geological Science and Technology Information, 10(4): 45-49. (in Chinese with English abstract)
    ZHANG L, YANG X P, LI S Q, et al., 2020. Study on paleo-seismic events in trenches of the eastern Qiulitage anticlinal belt[J]. Seismology and Geology, 42(5): 1039-1057. (in Chinese with English abstract)
    ZHANG P Z, DENG Q D, XU X W, et al., 1994. Blind thrust, folding earthquake, and the 1906 Manas earthquake, Xinjiang[J]. Seismology and Geology, 16(3): 193-204. (in Chinese with English abstract)
    陈杰, SCHARER K M, BURBANK D W, 等, 2005a. 利用河流阶地限定活动褶皱的类型和生长机制: 运动学模型[J]. 地震地质, 27(4): 513-529. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200504000.htm
    陈杰, SCHARER K M, BURBANK D W, 等, 2005b. 西南天山明尧勒背斜的第四纪滑脱褶皱作用[J]. 地震地质, 27(4): 530-547. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200504001.htm
    邓洪菱, 张长厚, 李海龙, 等, 2009. 褶皱相关断裂构造及其地质意义[J]. 自然科学进展, 19(3): 285-296. doi: 10.3321/j.issn:1002-008X.2009.03.007
    邓起东, 冯先岳, 张培震, 等, 2000. 天山活动构造[M]. 北京: 地震出版社: 1-415.
    冯先岳, 1997. 新疆古地震[M]. 乌鲁木齐: 新疆科技卫生出版社: 217-222.
    郭长宝, 张永双, 王涛, 等, 2017. 南北活动构造带中段地质灾害与重大工程地质问题概论[J]. 地质力学学报, 23(5): 707-722. doi: 10.3969/j.issn.1006-6616.2017.05.008
    虢顺民, TAPPONNIER P, 陈志泰, 等, 1990. 阿尔及利亚阿斯南地震地表破裂特征及古地震事件研究[J]. 地震学报, 12(4): 389-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199004005.htm
    黄伟亮, 2015. 天山内部焉耆盆地中晚第四纪地壳缩短速率研究[D]. 北京: 中国地震局地质研究所.
    贾丽云, 马秀敏, 姜景捷, 等, 2023.1605年琼山M 7½级地震区现今地应力动态变化特征及对东寨港沉陷的指示意义[J]. 地质力学学报, 29(3): 339-354. doi: 10.12090/j.issn.1006-6616.20232904
    李安, 2010. 焉耆盆地北缘和静逆断裂-褶皱带晚第四纪构造活动及古地震[D]. 北京: 中国地震局地质研究所.
    李安, 杨晓平, 黄伟亮, 等, 2011. 焉耆盆地北缘哈尔莫敦背斜区的活动断裂及其形成机制[J]. 地震地质, 33(4): 789-803. doi: 10.3969/j.issn.0253-4967.2011.04.005
    李胜强, 张玲, 杨晓平, 等, 2016. 库车坳陷东部秋里塔格背斜带的活动断层及其形成机制[J]. 地震地质, 38(2): 223-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201602001.htm
    李涛, 陈杰, 肖伟鹏, 等, 2011. 利用变形河流阶地限定帕米尔北缘木什背斜的缩短、隆升和侧向扩展[J]. 地震地质, 33(2): 308-322. doi: 10.3969/j.issn.0253-4967.2011.02.005
    李涛, 陈杰, 肖伟鹏, 2013. 帕米尔—天山对冲带明尧勒背斜西南倾伏端晚第四纪褶皱变形[J]. 地震地质, 35(2): 234-246. doi: 10.3969/j.issn.0253-4967.2013.02.004
    李涛, 陈杰, 肖伟鹏, 2014. 滑脱褶皱陡坎的变形特征和运动学模型: 以帕米尔-南天山前陆地区明尧勒背斜为例[J]. 地震地质, 36(3): 677-691. doi: 10.3969/j.issn.0253-4967.2014.03.011
    李跃华, 2022. 准噶尔盆地南缘活动挤压构造楔的无序逆断与褶皱作用[D]. 北京: 中国地震局地质研究所.
    卢华复, 王胜利, SUPPE J, 等, 2002. 天山中段南麓的第四纪褶皱作用[J]. 科学通报, 47(21): 1675-1679. doi: 10.3321/j.issn:0023-074X.2002.21.015
    彭阜南, 叶银灿, 2004. 台湾9.21集集地震考察兼论强震发震断层[J]. 地震地质, 26(4): 576-585. doi: 10.3969/j.issn.0253-4967.2004.04.004
    冉勇康, 王虎, 李彦宝, 等, 2012. 中国大陆古地震研究的关键技术与案例解析(1): 走滑活动断裂的探槽地点、布设与事件识别标志[J]. 地震地质, 34(2): 197-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502001.htm
    石霖, 郑文俊, 张岩, 等, 2022. 基于高分辨率地形数据的断层陡坎形态演化与强震活动关系研究[J]. 中国地震, 38(3): 472-485. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202203009.htm
    宋和平, 沈军, 向志勇, 等, 2009. 乌鲁木齐市活断层探测与地震危险性评价[M]. 北京: 地震出版社: 168-185.
    王雨晴, 冯万鹏, 张培震, 2022. 交角约90°共轭断裂的现今形变及对构造应力场的指示意义: 以2019年MW≥6.4菲律宾地震序列为例[J]. 地震地质, 44(2): 313-332. doi: 10.3969/j.issn.0253-4967.2022.02.003
    徐锡伟, 闻学泽, 叶建青, 等, 2008. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 597-629. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200803003.htm
    阎渊, 2023. 青海门源MS 6.9地震同震破裂的隧道破坏效应与启示[J]. 地质力学学报, 29(6): 869-878. doi: 10.12090/j.issn.1006-6616.2023027
    杨晓平, 吴果, 陈立春, 等, 2016. 青藏高原南缘2015年尼泊尔MW7.8地震发震构造[J]. 地球物理学报, 59(7): 2528-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201607018.htm
    杨志华, 张永双, 郭长宝, 等, 2017. 基于Newmark模型的尼泊尔MS8.1级地震滑坡危险性快速评估[J]. 地质力学学报, 23(1): 115-124. https://journal.geomech.ac.cn/article/id/1ec137bf-593c-4c8a-8ec8-fe021b4c52d7
    曾佐勋, 1991. 共轭剪切角的实验研究[J]. 地质科技情报, 10(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199104014.htm
    张玲, 杨晓平, 李胜强, 等, 2020. 秋里塔格褶皱带东段探槽的古地震事件[J]. 地震地质, 42(5): 1039-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202005002.htm
    张培震, 邓起东, 徐锡伟, 等, 1994. 盲断裂、褶皱地震与新疆1906年玛纳斯地震[J]. 地震地质, 16(3): 193-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ403.000.htm
  • 加载中
图(9)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  101
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-10-08
  • 录用日期:  2024-01-22
  • 预出版日期:  2024-04-09
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回