The impact of the Dagangshan Reservoir impoundment in Sichuan Province on the 2022 Luding MS 6.8 earthquake and its aftershocks
-
摘要: 2022年9月5日四川省泸定县发生MS 6.8地震,2023年1月发生MS 5.6余震。该次地震发生在鲜水河断裂南段,位于泸定地震震中东南部70 km的大岗山水库。该水库自建成蓄水后,引起库区北西侧磨西断裂的地震活动性显著变化:2014年11月水库达到预定水位之前的3年内,磨西段地震震级较小,多为0~2级微震;11月之后的3年内该区域地震震级和数量明显增加。文章利用高精度DEM数据、精准的地表断裂信息和地层地质信息,建立了三维孔隙弹性有限元数值模型,并根据震源机制解得到断层参数,定量计算了水库水位变化对地层孔隙压力、断层库仑应力的影响。在相关参数约束下的结果表明:水库蓄水造成MS 6.8地震震源位置在发震时刻的地层孔隙压力增加5 kPa,库仑应力增加3.6 kPa,对其发生具有一定促进作用。对于MS 5.6正断层型余震,水库蓄水造成其震源位置孔隙压力增加0.32 kPa,库仑应力降低0.69 kPa,对其所处断层面的滑动具有抑制作用。Abstract:
Objective The MS 6.8 earthquake that struck Luding County, Sichuan Province, on September 5, 2022, and its aftershocks have drawn widespread attention, especially concerning the potential risks of induced seismicity associated with the construction of high-dam reservoirs in regions with high seismic intensity. Previous studies have explored the possible link between reservoirs and seismic activity, without reaching a definitive conclusion. This study aims to assess the impact of water storage in the Dagangshan Reservoir on the surrounding strata and its correlation with recent seismic events. Methods Numerical simulation methods were employed using high-precision digital elevation model (DEM) data, fault data, and reservoir water level information to develop a three-dimensional poroelastic finite element numerical model extending from the surface to a depth of 25 km. By analyzing the hydrogeological conditions, lithology of rock masses, and groundwater dynamic changes, this study evaluated the seismic hazard risk of major faults, such as the Moxi Fault, and calculated variations in Coulomb stress and strata pore pressure at the hypocenter during the occurrence of the earthquake. Results The study indicates that, during the MS 6.8 Luding earthquake on September 5, 2022, the pore pressure at the epicenter reached 5 kPa, and the Coulomb stress increased by 3.6 kPa, suggesting that the impoundment of the Dagangshan Reservoir contributed to an increased risk along the Moxi Fault on the northwestern side of the reservoir. Using the source parameters of the MS 5.6 aftershock that occurred on January 26, 2023, it was observed that the impoundment caused a change in Coulomb stress at the epicenter of -0.69 kPa and a pore pressure of approximately 0.32 kPa. It is evident that the reservoir impoundment had a relatively minor impact on the fault activity where the MS 5.6 aftershock occurred and even exhibited a certain inhibitory effect. Moreover, seismic activity was mainly concentrated in two areas on the western side of the reservoir, with both the seismicity and expected magnitudes in these regions reflecting a higher risk of earthquakes. Conclusion This study demonstrates a correlation between the impoundment activities of the Dagangshan Reservoir and the occurrence of the Luding County earthquake and its aftershocks. The spatial distribution characteristics of the earthquakes align with the geological stress adjustment patterns following the reservoir impoundment, which played a promotive role in the occurrence of the MS 6.8 main shock, leading to an increased risk of earthquakes in the Moxi Fault region. This finding is significant for understanding the mechanisms of reservoir-induced earthquakes, subsequent aftershock analyses, and earthquake disaster prevention and mitigation efforts. Significance The results of this study provide new insights into the complex relationship between reservoir water storage and seismic events. This study offers a scientific basis for future assessments of seismic risks of reservoir design and operation, contributing to improved accuracy in earthquake early warnings and efficiency in disaster prevention and mitigation efforts. -
0. 引言
平原区一直是我国重要的工农业基地,人口密集,城市化水平高,与经济发展密切相关的大面积松散沉积物覆盖区的地质条件、地质环境保护、地下水开发、工程建设的地面稳定性等问题,已越来越多地被社会所关注。浅表的第四纪地质调查是平原区地质填图的重要组成部分,研究与浅层地下水、土壤污染等环境地质问题密切相关的3~5 m以浅松散沉积物的组成是平原区浅表地质调查的主要任务。在浅表地质调查中,槽型取样钻技术是目前国内外普遍采用的技术手段[1~2],可揭露3~5 m以浅松散沉积物组成。地质图上加以槽型钻柱状图表达,这种表达方式虽然可以使人大致了解浅表的沉积物组成,但是,由于槽型钻柱状图仅能代表孤立的地质点上的沉积物组成,直观性不够,并且不能直接应用于浅表地质环境的研究当中,当人们需要了解浅表较详细的沉积物物质组成以及不同时代或不同岩性岩层的展布时,传统的地质图表达方式已不能满足人们的需求[3]。
本文以1:5万生祠堂镇幅浅表地质填图为例,以层面为空间约束条件,以槽型钻揭露的各层沉积物粒度为属性约束条件,快速生成沉积物粒度的三维模型,模型能够更好地表达沉积物颗粒粗细的分布特征,应用领域广泛。
1. 研究区地貌概况及填图
研究区位于江苏省泰兴市与靖江市交界处(见图 1),属长江三角洲核心区域,面积约437.3 km2,地面高程2~7 m,相对高度1~5 m,地表沉积物为长江所携带的泥沙堆积而成,主要为长江边滩、心滩、河漫滩相灰黄、灰色粉砂质粘土、粘土质粉砂、粉砂。通过分析ETM遥感影像,参考地质、水文、土壤、植被等地理要素的相关信息,综合分析判读,对研究区地貌进行综合解译(见图 1)。研究区地貌类型属长江三角洲冲积平原,主要地貌类型为边滩、心滩及河漫滩等。
采用槽型钻进行路线填图时,地质路线安排采用穿越法为主、追索法为辅,布置的原则为穿越不同地貌、地质单元。对特殊意义的地质体采用多种方法相结合,以准确圈定其界线。本次根据地貌解译结果,布置了北西向路线15条,路线间距控制在1.5~2 km/线,地质点点距不大于线距,实际槽型钻位置见图 2。
2. 三维浅表模型构建流程
目前,我国新近开展的区域地质调查工作在数字填图系统(DGSS)[4~5]中均建立了较为全面的空间数据库,将野外路线数据、槽形钻分层数据、实际材料图、地质图等原始资料和成果统一组织管理,这就为浅表三维模型的建立奠定了坚实的数据基础。本文正是基于这些资料,提取了野外调查槽型钻的位置、沉积物分层深度以及粒度等信息,将其转化为空间位置和空间属性信息,进而生成三维空间属性点。同时,根据区域地质背景,建立研究区浅表标准分层,对槽型钻进行标准化分层,进而建立分层地质面,以分层地质面为分割面,生成各标准层位的三维格网模型,以三维空间属性点为插值属性控制点,基于DSI插值算法,生成沉积物粒度三维属性模型,基本流程见图 3所示。
在图 3所示的浅表三维模型构建基本流程中,DSI(Discrete Smooth Interpolation,离散光滑插值)是模型构建的关键技术,该插值方法是由法国Nancy大学Mallet教授提出的[6],DSI算法的基本内容是对一个离散化的自然体模型,建立相互之间联系的网络,如果网络上的点值满足某种约束条件,则未知节点上的值可通过解一个线性方程得到[7]。DSI通常用于地质结构面的拟合[8~10],在本次试验中,认为在横向上属性变化不大的浅表粒度建模也可适用。
3. 浅表三维模型构建
3.1 岩性信息获取
通过槽型钻获取的岩心样如图 4所示,可揭示沉积物颜色、岩性、成分、结构构造、粘性、塑性等。
该槽型钻描述如下:
① 0~0.20 m:耕植土,黄褐色、灰黄色,含较多的植物根茎残留。
② 0.20~1.50 m:灰黄—黄褐色粉砂质粘土,颜色为灰黄—黄褐色,岩性为粉砂质粘土,粉砂泥质结构,块状构造,切面较光滑,可塑—软塑,能搓成细长条状,但手搓仍有明显砂感,局部有少量锈黄色斑点。
③ 1.50~2.20 m:灰—灰黄色粘土质粉砂、粉砂,颜色为灰—灰黄色,岩性为粘土质粉砂,局部达到粉砂,砂质结构,手搓砂感明显,切面较粗糙,略显水平层理,局部见有锈黄色斑点、斑块,含少量云母碎片。
④ 2.20~4.00 m:青灰色粉细砂,颜色为灰—青灰色,岩性为粉细砂,砂质结构,手搓砂感明显,切面较粗糙,顶部20 cm颜色灰黄—青灰色,略显粘土质粉砂—粉砂质粘土,略有粘性,层中有水平层理可见。
3.2 岩性量化
根据研究区槽型钻揭露,区内地表 0~4 m范围内沉积物主要分为三层,顶部为耕植土层,厚0~0.5 m;中间层为边滩、心滩相灰黄、黄灰、灰色粉砂质粘土、粘土质粉砂、粉砂,厚0.5~3.5 m;底部为滨海相青灰色粉砂、粉细砂、细砂,区内所有槽型钻均未见其底,依据周边深钻揭露,厚约2~7 m。
结合区内槽型钻揭露的岩性特征,按照沉积物颗粒的粗细,可将4 m以浅的沉积物量化(见表 1):
表 1 研究区槽型钻揭露岩性粒度量化表Table 1. Sediments' granularity quantification岩性 量化值 岩性 量化值 岩性 量化值 粘土/含粉砂粘土 1 粉砂质粘土 2 粘土质粉砂 3 含粘土粉砂/
粉砂/粉细砂4 耕植土 6 因此,图 4所示的槽型钻岩性可量化为:0~0.2 m,6;0.2~1.5 m,2;1.5~2.2 m,3;2.2~4 m,4。同理,将区内所有槽型钻进行岩性的量化,这样各槽型钻各岩性段均赋予了粒度属性特征,代表了沉积物的粗细。至此,槽型钻空间位置、分层深度、粒度属性值组成三维空间属性点。
3.3 浅表三维模型生成
根据槽型钻揭露深度,拟定本次研究对象为0~4 m范围内的沉积物,主要分为三个地质层面,由下而上分别为滨海相潮上带沉积层、河漫滩和河床相沉积层、耕植土层,将这三个层位定为本次研究的标准层位。各层沉积环境相差较大,因而需对各层分别建模。根据地质描述,将每个槽型钻进行标准分层,然后提取各分层的层底埋深,建立三个层位的层面模型,见图 5。
考虑到区内沉积物粒度垂向上变化较横向上变化大,且地貌界线走向为近东西向,因此,将全区划分为400×400×100的三维格网,即每个单元格网为扁的长方体,大小为60 m×45 m×0.04 m。全区格网被三个标准层面切割为三部分,分别代表三个标准层位,其中,耕植土格网的粒度属性值均被定义为6,因而无需插值。
通过DSI,分别对滨海相沉积层和河流相沉积层进行插值运算,由于插值后属性大小位于1~4之间,为与岩性对应,需要对插值后的属性数值进行重分类,通过多方对比,本文选取表 2所示区间将插值结果分区表达,得到浅表三维岩性模型(见图 6)。同时,可对模型进行等距剖切,得到浅表岩性模型剖切图(见图 7)。
表 2 属性区间与岩性对应表Table 2. Correspondence table of attribute interval and lithology岩性 属性区间 岩性 属性区间 岩性 属性区间 粘土/含粉砂粘土 1~1.5 粉砂质粘土 1.5~2.5 粘土质粉砂 2.5~3.5 含粘土粉砂/粉砂/粉细砂 3.5~4 耕植土 6 图 7中可明显看出沉积物粒度纵向、横向的变化。岩性整体垂向上由下而上显示由粗到细的变化特征,揭露深度愈深,粒度愈大,第二层河流相沉积层以粉砂质粘土、粘土质粉砂为主,第三层滨海相沉积层以粉砂/粉细砂为主,这与槽型钻揭露的岩性特征基本一致;横向上则表现为南细北粗的特征。
4. 三维模型地质解译
研究区浅表三维模型是结合地质分层和沉积物岩性两者构建的,因而,相对于传统的槽型钻剖面和地质图,不仅能表达纵向分层,还可客观表达岩性横向的变化。
为进一步挖掘浅表三维模型所表达的地质意义,选择AA′剖面,对三维模型进行切割,见图 8所示。
该剖面清晰地揭示了浅层松散沉积物岩性空间分布特征,地表 4 m以浅由下而上主要分为两层(耕植土除外),下部是滨海相潮上带的青灰色粉砂、粉细砂,上部主要为河流冲积相沉积,剖面北西部分表现为河漫滩相灰黄、黄灰色粘土质粉砂、粉砂为主,中间部分表现为边滩相灰黄、黄灰色粉砂质粘土,局部为粘土质粉砂,南东部分表现为心滩相灰黄、黄灰色粉砂质粘土和粘土质粉砂为主。同时,图 8还揭示,上层的河流相沉积物粗细的分布与底层层面的起伏有一定关系,在底层层面高的地方,沉积物颗粒较细,以粉砂质粘土为主,而在底层层面相对低的地方,沉积物颗粒粗,以粉砂/粉细砂为主。
此外,浅表三维模型还可辅助岩性岩相界线的勾绘,由于研究区地表全部被耕植土覆盖,因而岩性岩相图需要剥去耕植土层,在浅表岩性模型中,可以轻易地将耕植土剥去,得到岩性空间分布(见图 9),结合遥感地貌解译,可勾绘出本区岩性岩相界线图(见图 10)。
5. 结论
本文以1:5万填图原始数据为建模数据,建立生祠堂镇幅0~4 m地层的三维模型,模型构建流程简单、易懂,模型结果客观可靠,应用范围广,可作为深覆盖区浅表填图成果表达新技术加以推广。
(1) 通过浅表三维模型,揭示了本区标准层的空间分布及层面起伏特征,以层面为空间约束条件,以槽型钻揭露的各层沉积物粒度为属性约束条件,建立了各层的沉积物岩性三维模型;
(2) 通过北西向剖面及剥去耕植土后岩性空间分布模型,对研究区纵向及横向上的沉积相进行解读,切合槽型钻实际揭露情况,很好地解译了三维模型地质涵义。
(3) 研究区属小城镇,0~4 m地层结构的建立对区内民屋建设,污水排放、工厂选址中的生态环境评价等方面都很重要,应用范围比传统地质图更广。
责任编辑:王婧 -
图 2 泸定MS 6.8地震的构造背景和余震分布(据Zhang et al., 2023修改)
图 2a中红色矩形表示图 2b的区域,蓝色和黄色椭圆分别表示1700年至1900年和1900年至今强震的地表破裂,区域上不同颜色代表不同构造单元,白色箭头表示构造块大致运动方向,一对黑色箭头表示鲜水河断裂带左旋运动,主要断裂用灰线表示,红线表示鲜水河断层,黑线和蓝线分别表示主要和次要块边界,箭头代表地块的移动方向;图 2b中震源球大小与震级正相关,两条黑色实线cut1和cut2代表图 6的剖面位置
a—泸定MS6.8地震的构造背景;b—余震分布Figure 2. Tectonic setting and aftershock distribution of the Luding MS 6.8 earthquake (modified from Zhang et al., 2023)
(a) Tectonic setting of Luding MS 6.8 earthquake; (b) Aftershock distribution
In Fig. 2a, the red rectangle represents the area shown in Fig. 2b; the blue and yellow ellipses respectively indicate surface ruptures of strong earthquakes from 1700 to 1900 and from 1900 to the present; different colors in the area represent different tectonic units; white arrows indicate the approximate movement direction of tectonic blocks; a pair of black arrows indicates left-lateral movement of the Xianshuihe fault zone; major faults are represented by gray lines; the red line represents the Xianshuihe fault; black and blue lines respectively represent the primary and secondary block boundaries; arrows denote the movement direction of blocks. In Fig. 2b, the size of the focal sphere is positively correlated with the magnitude of the earthquake; the two solid black lines cut1 and cut2 represent the position of the profile in Fig. 6.图 3 大岗山库区蓄水位与地震情况关系图(庄园旭等,2022)
a—大岗山库区N-T图;b—大岗山库区蓄水位与地震日频次关系图
Figure 3. Diagrams showing the relationship between water level in Dagangshan Reservoir and seismic activity(Zhuang et al., 2022)
(a)N-T plot of Dagangshan Reservoir; (b) Relationship between water level in Dagangshan Reservoir and daily seismic frequency
图 5 MS6.8泸定地震发震时刻16 km深度处孔隙压力和库仑应力平面分布图
黄色五角星代表震源位置,红色实线代表断裂,黑色实线包围区域为水库蓄水区域
a—孔隙压力分布;b—不考虑孔隙压力计算得到的震源深度处库仑应力;c—考虑孔隙压力计算得到的震源深度处库仑应力Figure 5. Plane distribution diagram of pore pressure and Coulomb stress at 15 km depth in the reservoir during the occurrence of the Luding MS 6.8 earthquake
(a)Distribution of pore pressure; (b) Coulomb stress at the hypocenter depth calculated without considering pore pressure; (c) Coulomb stress at the hypocenter depth calculated considering pore pressure
The yellow pentagon represents the hypocenter location, red solid lines represent the faults, and the black solid line encloses the reservoir storage area图 6 MS 6.8泸定地震发震时刻震源位置的孔隙压力和库仑应力剖面分布图
a、c、e是以震源点的纬度线对模型的剖面cut1的结果图,b、d、f是以震源点的经度线对模型的剖面cut2的结果图,图中黄色五角星代表震源位置
a、b—孔隙压力分布;c、d—不考虑孔隙压力计算得到的库仑应力;e、f—考虑孔隙压力计算得到的库仑应力Figure 6. Profile distribution diagram of pore pressure and Coulomb stress at the hypocenter during the occurrence of the Luding MS 6.8 earthquake
(a, b) Distribution of pore pressure; (c, d) Coulomb stress calculated without considering pore pressure; (e, f) Coulomb stress calculated considering pore pressure
Figures a, c, and e represent the results of cross-sectional cut1 of the model along the latitude line of the hypocenter; b、d、f represent the results of cross-sectional cut2 of the model along the longitude line of the hypocenter. The yellow pentagon represents the hypocenter location图 8 MS 5.6泸定地震余震发震时刻10 km深度处库仑应力平面分布图
图中黄色圆代表2022年9月至2023年1月3级以上余震的震源位置,红色圆代表主震震源位置,绿色圆代表MS 5.6余震震源位置,红色实线代表断裂,黑色实线包围区域为水库蓄水区域
a—孔隙压力分布;b—不考虑孔隙压力计算得到的库仑应力;c—考虑孔隙压力计算得到的库仑应力Figure 8. Plane distribution diagram of Coulomb stress at 10 km depth in the reservoir during the occurrence of the Luding MS 5.6 aftershock
(a)Distribution of pore pressure; (b) Coulomb stress calculated without considering pore pressure; (c) Coulomb stress calculated considering pore pressure.
Yellow circles represent the hypocenter locations of aftershocks with magnitudes above 3 from September 2022 to January 2023, red circles represent the epicenter locations of the mainshock, and green circles represent the epicenter location of the MS 5.6 aftershock. Red solid lines represent the faults, and the black solid line encloses the reservoir storage area.表 1 模型所采用的计算参数
Table 1. Calculation parameters used in the model
断层弹性模量Ef/GPa 非断层区弹性模量E/GPa 断层区域扩散系数cf/(m2/s) 断层区扩散系数c/(m2/s) 非断层区域排水泊松比ν 12.5 82.5 2.5 0.1 0.25 表 2 泸定地震主震及MS 5.6余震的震源机制解
Table 2. Source mechanism solutions for the mainshock and MS 5.6 aftershocks of the Luding earthquake
时间 经度 纬度 深度/km 震级/MS 走向/(°) 倾角/(°) 滑动角/(°) 2022-09-05 102.08°E 29.59°N 16 6.8 162.31 83.42 1.68 2023-01-26 102.01°E 29.63°N 11 5.6 165.16 55.47 -95.75 -
ALLEN C R, LUO Z L, QIAN H, et al., 1991. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China[J]. GSA Bulletin, 103(9): 1178-1199. doi: 10.1130/0016-7606(1991)103<1178:FSOAHA>2.3.CO;2 BELL M L, NUR A, 1978. Strength changes due to reservoir-induced pore pressure and stresses and application to Lake Oroville[J]. Journal of Geophysical Research: Solid Earth, 83(B9): 4469-4483. doi: 10.1029/JB083iB09p04469 CHEN Y, 2009. Was the Wenchuan earthquake caused by reservoir water storage?[J]. Science in China Series D: Earth Sciences, 2009, 39(3): 257-259. (in Chinese with English abstract) CHENG H H, ZHANG H, ZHU B J, et al., 2012. Finite element investigation of the poroelastic effect on the Xinfengjiang Reservoir-Triggered earthquake[J]. Science China Earth Sciences, 55(12): 1942-1952. doi: 10.1007/s11430-012-4470-8 CHENG H H, ZHANG H, SHI Y L, 2015. Comprehensive understanding of the Zipingpu reservoir to the MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 58(4): 1220-1235, doi: 10.6038/cjg20150411.(in Chinese with English abstract) CHENG J, XU X W, 2018. Features of earthquake clustering from calculation of coulomb stress around the Bayan Har block, Tibetan plateau[J]. Seismology and Geology, 40(1): 133-154. (in Chinese with English abstract) CHENG W Z, 2013. The reservoir induced earthquake problem in the high intensity area[J]. Recent Developments in World Seismology(4): 10-18, 9. (in Chinese with English abstract) DENG K, ZHOU S Y, WANG R, et al., 2010. Evidence that the 2008 MW7.9 Wenchuan earthquake could not have been induced by the Zipingpu reservoir[J]. Bulletin of the Seismological Society of America, 100(5B): 2805-2814. doi: 10.1785/0120090222 DENG Q D, GAO X, CHEN G H, et al., 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan Plateau[J]. Earth Science Frontiers, 17(5): 163-178. (in Chinese with English abstract) DENG Q D, CHENG S P, MA J, et al., 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 57(7): 2025-2042, doi: 10.6038/cjg20140701.(in Chinese with English abstract) DING Y Z, PAN J X, XIAO A Y, et al., 1983. Tectonic environment of reservoir induced earthquake in the Xinfengjiang reservoir area[J]. Seismology and Geology(3): 63-74. (in Chinese with English abstract) GAHALAUT K, GAHALAUT V K, 2010. Effect of the Zipingpu reservoir impoundment on the occurrence of the 2008 Wenchuan earthquake and local seismicity[J]. Geophysical Journal International, 183(1): 277-285. doi: 10.1111/j.1365-246X.2010.04715.x GE S M, LIU M, LU N, et al., 2009. Did the Zipingpu reservoir trigger the 2008 Wenchuan earthquake? [J]. Geophysical Research Letters, 36(20): L20315. GUO C B, DU Y B, ZHANG Y S, et al., 2015. Geohazard effects of the Xianshuihe fault and characteristics of typical landslides in western Sichuan[J]. Geological Bulletin of China, 34(1): 121-134. (in Chinese with English abstract) GUO R M, ZHENG Y, TIAN W, et al., 2018. Locking status and earthquake potential hazard along the middle-south Xianshuihe fault[J]. Remote Sensing, 10(12): 2048. doi: 10.3390/rs10122048 HAN M M, CHEN L C, ZENG D, et al., 2022. Discussion on the latest surface ruptures near the Zhonggu village along the Selaha segment of the Xianshuihe fault zone[J]. Journal of Geomechanics, 28(6): 969-980, doi: 10.12090/j.issn.1006-6616.20222824.(in Chinese with English abstract) HUANG S H, WAN Y G, LIU J G, et al., 2022. Influence of the Luding, Sichuan MS6.8 earthquake on Sep. 5, 2022 on the surrounding region and subsequent earthquakes and its geodynamics background[J]. Journal of Institute of Disaster Prevention, 24(4): 23-33. (in Chinese with English abstract) KATO N, LEI X L, WEN X Z, 2007. A synthetic seismicity model for the Xianshuihe fault, southwestern China: simulation using a rate- and state-dependent friction law[J]. Geophysical Journal International, 169(1): 286-300. doi: 10.1111/j.1365-246X.2006.03313.x KERR R A, STONE R, 2009. A human trigger for the great quake of Sichuan?[J]. Science, 323(5912): 322. doi: 10.1126/science.323.5912.322 LEI X L, MA S L, WEN X Z, et al., 2008. Integrated analysis of stress and regional seismicity by surface loading: a case study of Zipingpu reservoir[J]. Seismology and Geology, 30(4): 1046-1064. (in Chinese with English abstract) LI B X, TIAN M W, MO S T, et al., 2014. Research progress and thoughts on reservoir-induced seismicity[J]. China Earthquake Engineering Journal, 36(2): 380-386, 412. (in Chinese with English abstract) LI D Y, CHEN L C, LIANG M J, et al., 2017. Holocene palaeoseismologic record and rupture behavior of large earthquakes on the Xianshuihe fault[J]. Seismology and Geology, 39(4): 623-643. (in Chinese with English abstract) LI T M, ZHU Y Q, YANG Y L, et al., 2019. The current slip rate of the Xianshuihe fault zone calculated using multiple observational data of crustal deformation[J]. Chinese Journal of Geophysics, 62(4): 1323-1335, doi: 10.6038/cjg2019L0723.(in Chinese with English abstract) LI T S, DU Q F, YOU Z L, et al., 1997. Xianshuihe active fault zone and strong earthquake hazard assessment[R]. Sichuan Seismological Bureau. (in Chinese) MENG Q, GAO K, CHEN Q Z, et al., 2021. Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: Numerical simulation analysis[J]. Journal of Geomechanics, 27(4): 614-627, doi: 10.12090/j.issn.1006-6616.2021.27.04.051.(in Chinese with English abstract) PAN J W, BAI M K, LI C, et al., 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai)MS7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670. (in Chinese with English abstract) PARSONS T, 2002. Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone[J]. Journal of Geophysical Research: Solid Earth, 107(B9): 2199. PARSONS T, JI C, KIRBY E, 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin[J]. Nature, 454(7203): 509-510. doi: 10.1038/nature07177 RUAN X, HAN J, XIE R H, et al., 2017. Background characteristics of natural seismic activity in Dagangshan Reservoir[J]. Earthquake, 37(3): 157-168. (in Chinese with English abstract) SHAN B, XIONG X, ZHENG Y, et al., 2009. Stress changes on major faults caused by MW7.9 Wenchuan earthquake, May 12, 2008[J]. Science in China Series D: Earth Sciences, 52(5): 593-601. doi: 10.1007/s11430-009-0060-9 STEIN R S, KING G C P, LIN J, 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 Magnitude = 7.4 Landers earthquake[J]. Science, 258(5086): 1328-1332. doi: 10.1126/science.258.5086.1328 SUN Y J, ZHANG H, DONG S W, et al., 2012. Study on effect of the Zipingpu reservoir on the occurrence of the 2008 Wenchuan earthquake based on a 3D-poroelastic model[J]. Chinese Journal of Geophysics, 55(7): 2353-2361, doi: 10.6038/j.issn.0001-5733.2012.07.020.(in Chinese with English abstract) TALWANI P, CHEN L Y, GAHALAUT K, 2007. Seismogenic permeability, kS[J]. Journal of Geophysical Research: Solid Earth, 112(B7): B07309. TODA S, LIN J, MEGHRAOUI M, et al., 2008. 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J]. Geophysical Research Letters, 35(17): L17305. WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental china derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774 WANG X, LI S P, SONG S Y, 2023. Coseismic slip distribution and coulomb stress variation of 2022 Luding MW6.6 earthquake based on InSAR constraint[J]. Geodesy and Geodynamics, 43(3): 226-231, 238, doi: 10.14075/j.jgg.2023.03.002.(in Chinese with English abstract) WEN X Z, MA S L, XU X W, et al., 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. doi: 10.1016/j.pepi.2008.04.013 WEN X Z, ZHANG P Z, DU F, et al., 2009. The background of historical and modern seismic activities of the occurrence of the 2008 MS8.0 Wenchuan, Sichuan, earthquake[J]. Chinese Journal of Geophysics, 52(2): 444-454. (in Chinese with English abstract) WEN X Z, 2018. The 2008 Wenchuan, 2013 Lushan and 2017 Jiuzhaigou earthquakes, Sichuan, in the last more than one thousand years of rupture history of the eastern margin of the Bayan Har block[J]. Acta Seismologica Sinica, 40(3): 255-267, doi: 10.11939/jass.20170211.(in Chinese with English abstract) XU G, SU K Z, CHANG T G, 2013. Comments on "earthquake hazards and large dams in western China"[J]. Technology for Earthquake Disaster Prevention, 8(2): 189-197. (in Chinese with English abstract) XU J, JING L Z, YUAN Z D, et al., 2022. Airborne LiDAR-based mapping of surface ruptures and Coseismic slip of the 1955 Zheduotang earthquake on the Xianshuihe fault, East Tibet[J]. Bulletin of the Seismological Society of America, 112(6): 3102-3120. doi: 10.1785/0120220012 XU Z Q, YANG J S, LI H B, et al., 2007. Plate collision, collision and uplift mechanism of the Qinghai-Tibet Plateau[M]. Beijing: Geology Press. (in Chinese) YANG Z G, DAI D Q, ZHANG Y, et al., 2022. Rupture process and aftershock focal mechanisms of the 2022 M6.8 Luding earthquake in Sichuan[J]. Earthquake Science, 35(6): 474-484. doi: 10.1016/j.eqs.2022.12.005 YI G X, LONG F, WEN X Z, et al., 2015. Seismogenic structure of the M6.3 Kangding earthquake sequence on 22 Nov. 2014, southwestern China[J]. Chinese Journal of Geophysics, 58(4): 1205-1219. (in Chinese with English abstract) YI G X, LONG F, VALLAGE A, et al., 2016. Focal mechanism and tectonic deformation in the seismogenic area of the 2013 Lushan earthquake sequence, southwestern China[J]. Chinese Journal of Geophysics, 59(10): 3711-3731, doi: 10.6038/cjg20161017.(in Chinese with English abstract) YI G X, LONG F, LIANG M J, et al., 2023. Seismogenic structure of the 5 September 2022 Sichuan Luding MS6.8 earthquake sequence[J]. Chinese Journal of Geophysics, 66(4): 1363-1384. (in Chinese with English abstract) ZANG S X, 1983. The effect of infiltrating of water and mechanism and characteristics of earthquakes in Xinfengjiang reservoir[J]. Seismology and Geology, 5(2): 59-69. (in Chinese with English abstract) ZHAN Y, LIANG M J, SUN X Y, et al., 2021. Deep structure and seismogenic pattern of the 2021.5.22 Madoi(Qinghai)MS7.4 earthquake[J]. Chinese Journal of Geophysics, 64(7): 2232-2252. (in Chinese with English abstract) ZHONG G H, 2004. The hydrogeological analysis of reservoir-induced seismicity for DaGangShan power station[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract) ZHOU B, XUE S F, DENG Z H, et al., 2010. Relationship between the evolution of reservoir-induced seismicity in space-time and the process of reservoir water body load-unloading and water infiltration: a case study of Zipingpu reservoir[J]. Chinese Journal of Geophysics, 53(11): 2651-2670. (in Chinese with English abstract) ZHU J Z, SUN Y J, 2022. Numerical simulation of the effect of water storage on seismic activity in Dagangshan Reservoir, Sichuan, China[J]. Chinese Journal of Geophysics, 65(10): 3930-3943. (in Chinese with English abstract) ZHUANG Y X, DING Y, DU Y, et al., 2022. Three-dimensional velocity imaging study before and after impoundment in the reservoir area of Dagangshan Reservoir[J]. Technology Innovation and Application, 12(11): 1-18. DOI: 10.19981/j.CN23-1581/G3.2022.11.001.(in Chinese with English abstract) 陈颙, 2009. 汶川地震是由水库蓄水引起的吗?[J]. 中国科学D辑: 地球科学, 39(3): 257-259. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903002.htm 程惠红, 张怀, 朱伯靖, 等, 2012. 新丰江水库地震孔隙弹性耦合有限元模拟[J]. 中国科学: 地球科学, 42(6): 905-916. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206011.htm 程惠红, 张怀, 石耀霖, 2015. 关于紫坪铺水库蓄水是否与汶川地震有关的影响因素综合分析[J]. 地球物理学报, 58(4): 1220-1235, doi: 10.6038/cjg20150411. 程佳, 徐锡伟, 2018. 巴颜喀拉块体周缘强震间应力作用与丛集活动特征初步分析[J]. 地震地质, 40(1): 133-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201801011.htm 程万正, 2013. 高烈度区的水库地震问题[J]. 国际地震动态(4): 10-18, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201304006.htm 邓起东, 高翔, 陈桂华, 等, 2010. 青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘, 17(5): 163-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005017.htm 邓起东, 程绍平, 马冀, 等, 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 57(7): 2025-2042, doi: 10.6038/cjg20140701. 丁原章, 潘建雄, 肖安予, 等, 1983. 新丰江水库诱发地震的构造条件[J]. 地震地质(3): 63-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198303009.htm 郭长宝, 杜宇本, 张永双, 等, 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理[J]. 地质通报, 34(1): 121-134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201501010.htm 韩明明, 陈立春, 曾蒂, 等, 2022. 鲜水河断裂带色拉哈段中谷村一带的最新地表破裂讨论[J]. 地质力学学报, 28(6): 969-980, doi: 10.12090/j.issn.1006-6616.20222824. 黄少华, 万永革, 刘敬光, 等, 2022. 2022年9月5日泸定MS6.8地震对周围地表和后续地震的影响及与背景应力的关系[J]. 防灾科技学院学报, 24(4): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-FZJS202204003.htm 雷兴林, 马胜利, 闻学泽, 等, 2008. 地表水体对断层应力与地震时空分布影响的综合分析: 以紫坪铺水库为例[J]. 地震地质, 30(4): 1046-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200804023.htm 李碧雄, 田明武, 莫思特, 等, 2014. 水库诱发地震研究进展与思考[J]. 地震工程学报, 36(2): 380-386, 412. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201402026.htm 李东雨, 陈立春, 梁明剑, 等, 2017. 鲜水河断裂带乾宁段古地震事件与大震复发行为[J]. 地震地质, 39(4): 623-643. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201704001.htm 李天袑, 杜其方, 游泽李, 等, 1997. 鲜水河活动断裂带及强震危险性评估[R]. 四川省地震局. 李铁明, 祝意青, 杨永林, 等, 2019. 综合利用多种地壳形变观测资料计算鲜水河断裂带现今滑动速率[J]. 地球物理学报, 62(4): 1323-1335, doi: 10.6038/cjg2019L0723. 孟秋, 高宽, 陈启志, 等, 2021. 2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟[J]. 地质力学学报, 27(4): 614-627, doi: 10.12090/j.issn.1006-6616.2021.27.04.051. 潘家伟, 白明坤, 李超, 等, 2021. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106001.htm 阮祥, 韩进, 谢蓉华, 等, 2017. 大岗山水库天然地震活动本底特征[J]. 地震, 37(3): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201703016.htm 孙玉军, 张怀, 董树文, 等, 2012. 利用三维孔隙弹性模型探讨紫坪铺水库对汶川地震的影响[J]. 地球物理学报, 55(7): 2353-2361, doi: 10.6038/j.issn.0001-5733.2012.07.020. 王欣, 李水平, 宋舜跃, 2023. 基于InSAR约束的2022年泸定MW 6.6地震同震滑动分布及库仑应力变化[J]. 大地测量与地球动力学, 43(3): 226-231, 238, doi: 10.14075/j.jgg.2023.03.002. 闻学泽, 张培震, 杜方, 等, 2009. 2008年汶川8.0级地震发生的历史与现今地震活动背景[J]. 地球物理学报, 52(2): 444-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902017.htm 闻学泽, 2018. 巴颜喀拉块体东边界千年破裂历史与2008年汶川、2013年芦山和2017年九寨沟地震[J]. 地震学报, 40(3): 255-267, doi: 10.11939/jass.20170211. 许光, 苏克忠, 常廷改, 2013. 对"中国西部的地震灾害与水电大坝"一文的商榷[J]. 震灾防御技术, 8(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201302010.htm 许志琴, 杨经绥, 李海兵, 等, 2007. 造山的高原: 青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京: 地质出版社. 易桂喜, 龙锋, 闻学泽, 等, 2015. 2014年11月22日康定M6.3级地震序列发震构造分析[J]. 地球物理学报, 58(4): 1205-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201504010.htm 易桂喜, 龙锋, VALLAGE A, 等, 2016. 2013年芦山地震序列震源机制与震源区构造变形特征分析[J]. 地球物理学报, 59(10): 3711-3731, doi: 10.6038/cjg20161017. 易桂喜, 龙锋, 梁明剑, 等, 2023. 2022年9月5日四川泸定MS6.8地震序列发震构造[J]. 地球物理学报, 66(4): 1363-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202304004.htm 臧绍先, 1983. 水的渗透作用及新丰江水库地震的特点和机制[J]. 地震地质, 5(2): 59-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198302007.htm 詹艳, 梁明剑, 孙翔宇, 等, 2021. 2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式[J]. 地球物理学报, 64(7): 2232-2252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202107002.htm 钟国华, 2004. 大岗山电站水库诱发地震的水文地质分析[D]. 成都: 成都理工大学. 周斌, 薛世峰, 邓志辉, 等, 2010. 水库诱发地震时空演化与库水加卸载及渗透过程的关系: 以紫坪铺水库为例[J]. 地球物理学报, 53(11): 2651-2670. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201011016.htm 朱家正, 孙玉军, 2022. 四川大岗山水库蓄水对地震活动影响的数值模拟研究[J]. 地球物理学报, 65(10): 3930-3943. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202210019.htm 庄园旭, 丁勇, 杜瑶, 等, 2022. 大岗山水库库区蓄水前后三维速度成像研究[J]. 科技创新与应用, 12(11): 1-18. DOI: 10.19981/j.CN23-1581/G3.2022.11.001. 期刊类型引用(33)
1. 崔成涛,李丽敏,符振涛,任瑞斌,王莲霞,封青青. 基于博弈论赋权信息量模型的滑坡易发性评价. 人民珠江. 2024(02): 9-17 . 百度学术
2. 赵萍,赵思逸,孙雨,阮旭东,王宁,张树衡. 基于斜坡单元和语义分割的皖南地区滑坡灾害易发性评估. 地质科学. 2024(02): 562-574 . 百度学术
3. 张建羽,吕敦玉,刘松波,王翠玲,孟舒然. 郑州市西部山地丘陵区地质灾害发育特征及危险性评价. 地质力学学报. 2024(04): 647-658 . 本站查看
4. 田尤,张佳佳,殷红,陈龙,高波,李洪梁. 基于多种数理模型及其融合的察雅县城滑坡易发性评价. 科学技术与工程. 2024(29): 12452-12460 . 百度学术
5. 刘志平,张建,闫晓勉. 基于ArcGIS的崩塌滑坡地质灾害易发性评价——以准格尔旗为例. 山西师范大学学报(自然科学版). 2024(04): 80-85 . 百度学术
6. 沈智,李飞,刘红良,赵博洋. 京张高铁地下站隧智能展示技术的探索与实践. 铁路计算机应用. 2023(02): 47-52 . 百度学术
7. 周嘉琦,谭衢霖,孙晗凌,贺佳,田亚护. 基于SINMAP模型的线路工程廊道浅层滑坡危险性评价. 测绘与空间地理信息. 2023(04): 29-33 . 百度学术
8. 李小倩,钟储汉,孙如华,苏可,刘元杰. 基于GIS和加权信息量模型的普光气田滑坡危险性评价. 河北地质大学学报. 2023(02): 27-32 . 百度学术
9. 张泽方,钱志宽,魏勇,朱星,王林均. 考虑最优影响因素组合的滑坡易发性评价——以水城区为例. 科学技术与工程. 2023(10): 4091-4099 . 百度学术
10. 曾营,张迎宾,张钟远,柳静,朱辉. 基于X-多层感知器耦合模型的滑坡易发性评价——以贵州省松桃自治县为例. 山地学报. 2023(02): 280-294 . 百度学术
11. 王宁,姜德才,郑向向,钟昶. 基于多源异构数据斜坡地质灾害隐患易发性评价——以深圳市龙岗区为例. 自然资源遥感. 2023(04): 122-129 . 百度学术
12. 何世阳,李立青,何亚辉. 滑坡地质灾害风险区划评价方法研究综述. 湖南交通科技. 2023(04): 1-7+17 . 百度学术
13. 张钟远,邓明国,徐世光,张云波,付弘流,李忠海. 镇康县滑坡易发性评价模型对比研究. 岩石力学与工程学报. 2022(01): 157-171 . 百度学术
14. 王惠卿,谭成轩,丰成君,戚帮申,王继明,杨为民,张春山,张鹏,孟静,杨肖肖,王士强,易冰,孙明乾,孟华君. 京津冀协同发展区活动构造与地壳稳定性. 地质通报. 2022(08): 1322-1341 . 百度学术
15. 韩帅,刘明军,伍剑波,张帅,孙强,张泰丽. 东南沿海台风暴雨型单体斜坡灾害风险评价——以泰顺仕阳北坡为例. 地质力学学报. 2022(04): 583-595 . 本站查看
16. 张泽方. 耦合MaxEnt模型的望谟县滑坡易发性对比研究. 赤峰学院学报(自然科学版). 2022(10): 108-113 . 百度学术
17. 杨波,高伏芳,罗志强,朱荣华,马浩翔. 基于大理市地质灾害易发性评价方法研究. 中国水运(下半月). 2022(10): 125-126+131 . 百度学术
18. 黄佳铭,刘羊,楼康明,谭建辉,陈凌伟. 基于GIS和信息量模型的坡面孤石发育程度评价. 城市勘测. 2022(06): 185-191 . 百度学术
19. 杨波,高伏芳,罗志强,朱荣华,马浩翔. 基于大理市地质灾害易发性评价方法研究. 中国水运. 2022(20): 125-126+131 . 百度学术
20. 赵东亮,兰措卓玛,侯光良,许长军,李万志. 青海省河湟谷地地质灾害易发性评价. 地质力学学报. 2021(01): 83-95 . 本站查看
21. 刘任鸿,李明辉,邓英尔,朱华平,黄勇,胡淑杰. 基于GIS的华蓥市地质灾害易发性评价. 沉积与特提斯地质. 2021(01): 129-136 . 百度学术
22. 祝清,谭衢霖,周嘉琦,黄俊宝,胡俊,周平根. 基于GIS和AHP的福建福安区域滑坡地质灾害危险性评价. 测绘与空间地理信息. 2021(05): 25-30 . 百度学术
23. 李怡静,胡奇超,刘华赞,杜臻,陈佳武,黄锦昌,黄发明. 耦合信息量和Logistic回归模型的滑坡易发性评价. 人民长江. 2021(06): 95-102 . 百度学术
24. 张博. 基于信息量模型的小流域泥石流灾害易发性分析. 山西焦煤科技. 2021(09): 39-42 . 百度学术
25. 王丽英,王红梅,郭盈盈,纪丁愈. 基于不同建模数据的陕西省志丹县滑坡易发性分区. 人民长江. 2021(12): 99-106 . 百度学术
26. 田钦,张彪,郭建飞,刘华赞,常志璐,李怡静,黄发明. 基于信息量和逻辑回归耦合模型的滑坡易发性评价. 科学技术与工程. 2020(21): 8460-8468 . 百度学术
27. 王智伟,王利,黄观文,韩清清,徐甫,岳聪. 基于BP神经网络的滑坡监测多源异构数据融合算法研究. 地质力学学报. 2020(04): 575-582 . 本站查看
28. 王雷,吴君平,赵冰雪,姚志强,张乐勤. 基于GIS和信息量模型的安徽池州地质灾害易发性评价. 中国地质灾害与防治学报. 2020(03): 96-103 . 百度学术
29. 何静,刘强,许丁友,刘乾坤,毛宇昆,王超,王潇. 基于聚类-信息量耦合模型下的广元市滑坡灾害易发性评价. 测绘与空间地理信息. 2020(12): 25-31 . 百度学术
30. 梁丽萍,刘延国,唐自豪,邹强,李景吉. 基于加权信息量的地质灾害易发性评价——以四川省泸定县为例. 水土保持通报. 2019(06): 176-182+321 . 百度学术
31. 戚帮申,丰成君,谭成轩,张鹏,孟静,王苗苗,张春山,杨为民,杨肖肖,雷晓东. 张家口及邻区地壳稳定性研究. 城市地质. 2018(03): 1-14 . 百度学术
32. 王苗苗,丰成君,戚帮申,孟静,张鹏,任思起,谭成轩. 考虑断层效应的高铁列车动荷载对地面沉降影响机理研究——以京张高铁怀来段为例. 地质力学学报. 2018(03): 407-415 . 本站查看
33. 谈树成,赵娟娟,杨林,赵志芳,蒋仁伟,赵筱青. 基于GIS和信息量-快速聚类模型的滑坡易发性研究——以云南省福贡县为例. 云南大学学报(自然科学版). 2018(06): 1148-1158 . 百度学术
其他类型引用(15)
-