Quantitative evaluation of maximum operating pressure and storage capacity for gas-top sandstone reservoir-type gas storage
-
摘要: 提高运行上限压力是增加储气库工作气量最直接、最有效且综合效益最优的方案。通过在矿场井中原位实测得到的最小主应力,对冀东南堡油田1-29气顶砂岩油藏型储气库的运行上限压力和库容量进行了定量评价,研究结果表明:基于最小主应力准则,盖层发生拉张破坏对应的上限压力最低,即根据实测最小主应力确定南堡油田1-29储气库的运行上限压力为27.2 MPa。基于有效库容计算模型,综合考虑气层含水量、残余水和边缘孔隙以及油层的波及系数、气驱液效率和含油空间利用率等因素,将上限压力从原始地层压力22.5 MPa提升到27.2 MPa,储气库的有效库容从15.46×108 m3增加到18.14×108 m3,库容量增加约17.3%,预期可显著提升储气库的经济效益。研究成果对其他地下储气库运行上限压力和库容量定量评价具有一定参考价值。
-
关键词:
- 南堡1-29气顶砂岩油藏 /
- 地下储气库 /
- 地应力 /
- 上限压力 /
- 库容
Abstract:Objective The maximum operating pressure for underground gas storage facilities designed for oil and gas reservoirs, both constructed and under construction in China, is currently set at the original formation pressure. There have yet to be successful cases of overpressure operation, which significantly impacts the economic benefits of converting depleted oil and gas reservoirs into underground gas storage facilities. This article aims to evaluate the maximum operating pressure and storage capacity of the Nanpu 1-29 gas storage facility from the perspective of the ultimate bearing capacity of cap layers and faults, with the goal of effectively enhancing the construction benefits of the facility. Methods The evaluation of the maximum operating pressure for the Nanpu 1-29 gas storage facility in eastern Hebei is based on the minimum principal stress measured in situ in the mining wells. Different effective porosity calculation methods are employed to quantitatively evaluate the effective storage capacity of gas and oil reservoirs, as well as the incremental capacity after pressure boosting operation, based on their development differences. Results The evaluation of the maximum operating pressure for the Nanpu 1-29 gas storage facility indicates that the minimum principal stress of the cap layers determined by the in-situ measurements in the mining wells is 34.00 MPa. Based on the tensile failure criteria determined by the minimum principal stress, the maximum operating pressure for the tensile failure of the cap layer is 27.20 MPa. Combined with the maximum safe injection pressure corresponding to shear failure of the cap layer (30.60 MPa) and the maximum safe injection pressure corresponding to unstable slip of the fault (27.60 MPa), the final maximum operating pressure for the Nanpu 1-29 gas storage facility is determined to be 27.20 MPa. Based on the effective storage capacity calculation model, considering factors such as the water content of the gas reservoir, residual water and edge porosity as well as the coefficient of influence, the efficiency of gas-driven fluid, and the utilization rate of oil-containing space, the maximum operating pressure increased from the original formation pressure of 22.50 MPa to 27.20 MPa. The practical storage capacity of the gas storage facility increased from 15.46×108 m3 to 18.14×108 m3, an increase of approximately 17.3%. Conclusion (1) The construction of gas storage facilities can be re-evaluated for the maximum operating pressure based on the minimum principal stress measured in situ in the mining wells, and overpressure design can be conducted under appropriate conditions. (2) Overpressure design can effectively increase storage capacity and improve the economic benefits of reservoir construction. Significance The research results have a certain reference value for the quantitative evaluation of the maximum operating pressure and storage capacity of other underground gas storage facilities, and are expected to significantly improve the economic benefits of overpressure-designed reservoir-type gas storage facilities in China. -
0. 引言
油气藏型储气库是一种高效、低成本的储气调峰设施,在保障天然气安全平稳供应中可发挥不可替代的作用。京津冀地区冬季天然气需求量大,利用冀东油田枯竭油气藏建设地下储气库具有明显区位优势和重要战略意义(刘炜等,2011;陈思敏,2016;潘季荣等,2019;孙莉莉等,2019)。冀东油田南堡1-29气顶砂岩油藏具有储层构造相对简单、厚度大、高孔、中高渗,盖层及断层封闭性较好等特点,适宜建设地下储气库(胡欣蕾等,2019)。文章从地应力的角度,重点开展了储气库运行上限压力评价技术研究,提出了以运行上限压力为核心参数的气顶砂岩油藏库容计算方法,并以冀东南堡油田1-29储气库为例,定量评价了其运行上限压力,提出了气顶砂岩油藏型储气库超压运行的设计方案。
运行上限压力与地下储气库的效益密切相关。国际上,一般都是采用提高上限压力来增强储气库调峰能力,根据国际天然气联盟(IGU)数据库,美国有记录资料的269座气藏型储气库中40%储气库的运行上限压力超过原始地层压力,平均增幅27%。俄罗斯、欧盟国家、意大利等也有气藏型地下储气库提压运行的实例(Reinhard et al.,1998;Bérest et al.,2015)。目前,中国已建成和正在建设的油气藏型地下储气库其运行上限压力均为原始地层压力,尚没有超压运行的成功案例,这严重影响了常压油气藏改建地下储气库的经济效益(丁国生和李文阳,2002)。以冀东南堡油田1-29气顶砂岩油藏地下储气库为例,从盖层和断层极限承载能力的角度,对储气库运行上限压力进行评价,并根据其开发差异性,采用不同有效孔隙计算方法,定量评价气层和油层的有效库容,以及提压运行后的库容增量,预期相关成果可显著提升建库的经济效益,并对后续类似储气库建设具有一定的参考价值。
1. 地质背景
冀东南堡1-29气顶砂岩油藏型储气库位于河北省唐山市。构造上处于南堡凹陷南堡1号构造西南部,为发育在南堡1号断层上升盘的背斜构造,自下而上依次发育第四系平原组、新近系明化镇组(Nm)和馆陶组(Ng)、古近系东营组(Ed)。油藏储层发育辫状河沉积的复合韵律砂岩、含砾不等粒砂岩,孔隙度平均为27.1%,渗透率为619.9×10−3 μm2,油气藏分布主要受构造和岩性控制,含油层位为馆陶组Ⅳ段②油组(NgⅣ②),其中NgⅣ②3小层为气顶气藏,NgⅣ②5~6小层为带气顶油藏,油藏埋深为−2200~−2310 m,具有相对统一的油水界面(图1),含油面积为4.74 km2,原油地质储量为709.73×104 t,天然气储量为9.67×108 m3,溶解气储量为10.4×108 m3,原始地层压力为22.5 MPa。经过15年的注水开发,目前全区日产液为837 t,日产油为102 t,日产气为2.2×104 m3,综合含水为87.8%,地质储量采出程度为20.7%,采油速度为0.5%,气藏地层压力下降至14.0 MPa,油藏地层压力下降至17.5 MPa(赵其生和于连忠,2013)。建库区为南堡109断块、南堡1-29断块、南堡12-X66断块。
2. 储气库运行上限压力
2.1 盖层极限承载能力
储气库运行上限压力大于盖层最小主应力时将发生拉张破坏,或多周期注采的交变载荷导致盖层岩石发生剪切破坏,均可导致盖层的密封性失效(Bruno et al.,2000)。因此,储气库的运行上限压力由盖层的极限承载能力决定。
(1)储气库盖层拉张破坏评估。目前国内外常用最小主应力的80%作为运行上限压力,相关评价方法已写入欧盟和澳大利亚等国家组织的储气库建设标准(郑雅丽等,2020)。为获取1-29储气库盖层可靠的最小主应力量值,利用水压致裂地应力测量方法,开展了矿场井中原位地应力测试(图2),获取了直接泥岩盖层和玄武岩盖层的实测压力−时间曲线(陈朝伟等,2014;陈群策等,2019;赵昱超等,2022),进而利用压力时间导数和G函数等方法求取压裂缝的闭合压力,确定最小主应力量值(Haimson and Cornet,2003;Barree et al.,2009)。结果表明储气层顶界深度的最小主应力约为34.0 MPa,按最小主应力的80%计算得到储气库的运行上限压力为27.2 MPa。
(2)储气库盖层剪切破坏评价。通常用库伦−摩尔准则评价发生在岩石力学中的剪切破坏的临界条件,根据室内岩石力学试验结果,在上覆围岩压力作用下,盖层抗压强度平均高达304.1 MPa,抗剪强度为136.6 MPa,远高于目前三维地应力作用强度。根据摩尔−库伦准则,理论计算得到盖层剪切安全指数为0.37,高于破坏临界值(一般为0.2)。基于有效应力理论涉及的参数包括岩石的内聚力、摩擦角和有效应力,其中岩石的内聚力和摩擦角可根据室内岩石力学试验确定,有效应力为实测最大和最小主应力与地层压力之差,根据式(1)计算剪切破坏临界值为0.2时,盖层可承受的最大地层压力(pmax)为30.6 MPa。
pmax<14(2Ccosφ+S1+3S3) (1) 式中,C—内聚力,φ—内摩擦角,S1、S3—最大、最小有效应力。
2.2 断层极限承载能力
根据断层涂抹系数(SGR)定量评价结果,结合断层两盘井中压力、油水分布等动态数据,认为冀东南堡1-29储气库断层封闭性良好(窦松江和赵平起,2010;钟城等,2018)。但随着储气库注采活动,特别是注气超过原始地层压力时,由于超压引起断层面上的有效正应力降低,从而导致断层滑移密封失效,因此,通过断层临界滑移指标计算,可评价储气库注采过程中断层的极限承载能力。考虑断层力学参数的不确定性,开展多参数、多种运行工况的四维地质力学模拟,最终得到1-29储气库断层的滑移指数介于0.50~0.97,均小于滑移临界值1.0。其中南堡F1断层滑移指数最高,南堡F1断层不同地层压力系数下的滑移指数模拟曲线图表明(图3),随着地层压力系数增大,断层滑移指数持续增加,断层滑移指数为1.0时对应的地层压力系数为1.23,在断层极限承载能力范围内,计算得到地层压力上限为27.6 MPa。
3. 库容量计算模型
库容是地下储气库运行指标设计中的核心参数。在初期库容参数设计上,国内外都是直接用容积法或压降法计算天然气地质储量(刘吉余等,2008;李季和张吉军,2013),并未考虑储层物性及非均质性、水侵、应力敏感等诸多因素,因此导致原始含气孔隙体积被高估,从而使得库容设计指标偏大(Sawyer et al.,1998;Malakooti et al.,2011;Anyadiegwu,2012)。地下储气库实际运行动态特征也证实了这一点(Coffin et al.,2007;Dietert et al.,2008;胥洪成等,2015)。郑得文等(2017)发现储气库短期高速采气周期内,气藏动态地质储量难以完全动用,边底水侵入、反凝析损失、储集层塑性变形和微观气水互锁效应会形成封闭气,将减小含气孔隙体积。对于南堡1-29储气库,基于气顶自由气库容、油藏自由气库容和油层溶解气库容总和(王皆明和姜凤光,2007),充分考虑储层的物性、非均质性、水侵等各种因素对库容的影响,扣减每个区带的不可动孔隙体积(丁国生等,2011;马小明等,2010;唐立根等,2014),并考虑超压设计,建立了超压设计有效库容量计算模型。
3.1 气层有效库容
气层注水开发后,受储层物性及润湿性影响,排液通道有限,气层内部存在较多的封闭气。由于储层岩石具有亲水性,在气水两相流动过程中,当驱替压差不大时,不管是孔隙或者喉道,其气水分布与流动方式主要呈现为水包气,即水沿管壁流动,气体在孔道中央流动;水驱气时会产生多种形式的滞留气,具体表现为绕流、卡断、孔隙盲端、角隅以及“H型”孔道所产生的封闭气,从而减少了可动含气孔隙体积。此外,受储层沉积微相和非均质性的影响,河道侧缘物性较差,高速注采过程动用率较低,对有效库容贡献小。因此在评价气层有效库容时,应首先评价并扣除现有存水量、气层滞留水以及河道侧缘等不可动用的非有效孔隙空间。其库容计算表达式为:
Qg=(Vg−V1−V2)/Bgz (2) 式中,Qg—气层有效库容,104 m3;Bgz—不同压力下的天然气体积系数;Vg—原始有效含气孔隙,104 m3;V1—残余水占据孔隙,104 m3;V2—扣减侧缘孔隙,104 m3。
3.2 油层有效库容
油层有效库容包括自由气库容和溶解气库容(王皆明和姜凤光,2007)。根据生产数据,目前南堡1-29区块油层的地层压力较高,平均为17.5 MPa。同时,油层为黑油,在储气库高速注采过程中天然气与原油溶解、释放较弱,因此,溶解气库容可忽略,油层有效库容量主要为自由气库容。
受砂岩储层非均质性的影响,气体驱替水淹油层过程中油−气−水三相流动机理非常复杂(王皆明和姜凤光,2007;丁国生和王皆明,2011),因此采用静态和水驱动态相结合的方法,对水淹油层形成的自由气库容量进行计算。由于气顶油藏在改建地下储气库时,油藏已经处于人工水驱晚期阶段,因此可以利用水驱动态资料,将改建储气库后气体总的波及体积系数与油藏水驱总波及体积系数相类比,由此得到气体总的波及体积系数的上限值,计算公式为:
ηg=ER/Ew (3) 式中,ηg—宏观波及系数,%;ER—水驱标定采收率,%;Ew—岩芯水驱油效率,%。
在确定气体总的波及体积系数后,再结合油气相对渗透率曲线,求得最大气驱饱和度,即气驱效率,从而确定含油孔隙空间利用率,其计算公式为:
Lg=ηg×Sg (4) 式中,Lg—含油孔隙空间利用率,%;Sg—气驱效率,%;其他变量同上。
由此确定油层自由气库容,其计算公式为:
Qo=(Vo×Lg)/Bgz=Vo×ηg×Sg/Bgz (5) 式中,Qo—油层有效库容,104 m3;Bgz—不同压力下的天然气体积系数; Vo—原始含油孔隙,104 m3;其他变量同上。
4. 工程应用
4.1 提压可行性评价
提高运行上限压力是增加储气库工作气量最直接、最有效以及综合效益最优的方案。虽然降低运行下限压力也可以增加工作气量,但存在诱发水侵和降低采气末期调峰能力等风险。为提高运行上限压力,对冀东南堡油田1-29储气库开展了盖层和断层的动态密封性评价。评价方法包括将矿场井中原位实测确定最小主应力的80%作为盖层拉张破坏的最大安全注气压力;基于库伦−摩尔准则和剪切破坏临界值为0.2时,盖层可承受的最大安全注气压力为30.6 MPa;基于断层滑移指数和地层压力关系曲线,当断层滑移指数为1.0时对应的最大安全注气压力为27.6 MPa(表1;孙军昌等,2018)。通过综合评估确定了南堡1-29储气库最大工作压力为27.2 MPa,较原始地层压力增幅约20%(杨跃辉,2022),预期将建成全国首座超压设计的油气藏型储气库。
表 1 冀东南堡油田1-29储气库运行上限压力评价Table 1. Evaluation results of the maximum operating pressure in Gas Storage 1-29, Nanpu Oilfield, eastern Hebei动态密封性 破坏类型 评价方法 最大安全
注气压力运行上
限压力盖层拉张破坏 矿场地应力测试 ≤27.2 MPa 27.20 MPa 盖层剪切破坏 库伦−摩尔准则 ≤30.6 MPa 断层承载能力 断层滑移指数 ≤27.6 MPa 4.2 提高上限压力后库容评价
在运行上限压力评价结果的基础上,利用气层和油层有效库容模型,对南堡油田1-29气顶砂岩油藏地下储气库的总库容量进行估算,得到库容约为18.14×108 m3。通过提高运行上限压力,储气库的有效库存量增加约17.3%,预期可显著提升建库投资的经济效益。
4.2.1 气层自由气库容量
根据气藏开发物质平衡计算得到建库主力区气层的原始含气孔隙空间为367.49×104 m3;根据油气藏开发动态和数值模拟评价得到建库主力区气层目前的含水量为62.54×104 m3;根据气驱水实验确定的气驱排水效率计算得到建库注气后无法对有效库容产生贡献的残余水孔隙空间为25.45×104 m3。根据长岩芯实验确定气驱效率结果,综合考虑了不同沉积微相、微观孔隙结构和气层注水赋存等的影响,减去局部低渗无法有效动用的侧缘孔隙体积为15.33×104 m3。最终计算得到气层有效建库储气孔隙体积为326.71×104 m,上限压力下气层自由气库容量为8.45×108 m3(表2)。
表 2 气层自由气库容量评价结果Table 2. Evaluation results of free air capacity in gas reservoir断块 气层原始含气
孔隙/×104 m3气层含水量/
×104 m3残余水孔隙/
×104 m3侧缘孔隙/
×104 m3有效储气孔隙/
×104 m3气体波及体积系数 库容/×108 m3 常压22.5 MPa
压力系数1.0超压27.2 MPa
压力系数1.2常压22.5 MPa
压力系数1.0超压27.2 MPa
压力系数1.2南堡1-29 246.45 32.84 13.36 8.26 224.83 0.00454 0.00387 4.96 5.82 南堡109 121.04 29.70 12.09 7.07 101.88 0.00454 0.00387 2.24 2.63 合计 367.49 62.54 25.45 15.33 326.71 − − 7.20 8.45 4.2.2 油层自由气库容量
根据油气藏开发物质平衡计算得到的建库主力区油层总孔隙体积为785.45×104 m3;根据油藏开发动态标定的水驱采收率为35%。结合实验确定的气驱液效率(71.6%),最终确定含油孔隙空间利用率为46.54%,油层自由气有效储存孔隙体积为374.94×104 m3,最终计算得到上限压力下油层建库自由气库容量为9.69×108 m3(表3)。
表 3 油层自由气库容量评价结果Table 3. Evaluation results of free gas capacity in oil reservoir断块 油层原始含油
孔隙/×
104 m3波及系
数/%气驱液
效率/%含油空间
利用率/%有效含气孔隙
体积/×104 m3气体波及体积系数 库容/×108 m3 常压22.5 MPa
压力系数1.0超压27.2 MPa
压力系数1.2常压22.5 MPa
压力系数1.0超压27.2 MPa
压力系数1.2南堡1-29 261.81 65 71.6 46.54 121.8 0.00454 0.00387 2.68 3.15 南堡109 412.34 65 71.6 46.54 191.9 0.00454 0.00387 4.23 4.96 南堡12-X66 111.31 65 71.6 46.54 61.19 0.00454 0.00387 1.35 1.58 合计 785.45 − − − 374.94 − − 8.26 9.69 5. 结论
(1)冀东南堡1-29储气库运行上限压力评价结果表明,矿场井中原位实测确定盖层最小主应力为34.0 MPa,基于最小主应力的拉张破坏判断准则确定盖层拉张破坏的运行上限压力为27.2 MPa,并结合盖层发生剪切破坏的最大安全注气压力(30.6 MPa)以及断层发生失稳滑移对应的最大安全注气压力(27.6 MPa),最终确定南堡油田1-29储气库的运行上限压力为27.2 MPa。
(2)库容量评价结果表明,利用气层和油层有效库容模型,综合考虑气层含水量、残余水和边缘孔隙以及油层的波及系数、气驱液效率和含油空间利用率等因素,得到南堡1-29气顶砂岩油藏地下储气库的总库容量约为18.14×108 m3。
(3)通过矿场井中原位地应力实测,确定南堡1-29储气库上限压力从原始地层压力22.50 MPa提升至27.20 MPa,对应的有效库容从15.46×108 m3增加到18.14×108 m3,库容量增长约17.3%,预期可显著提升国内超压设计油气藏型储气库的经济效益。
-
表 1 冀东南堡油田1-29储气库运行上限压力评价
Table 1. Evaluation results of the maximum operating pressure in Gas Storage 1-29, Nanpu Oilfield, eastern Hebei
动态密封性 破坏类型 评价方法 最大安全
注气压力运行上
限压力盖层拉张破坏 矿场地应力测试 ≤27.2 MPa 27.20 MPa 盖层剪切破坏 库伦−摩尔准则 ≤30.6 MPa 断层承载能力 断层滑移指数 ≤27.6 MPa 表 2 气层自由气库容量评价结果
Table 2. Evaluation results of free air capacity in gas reservoir
断块 气层原始含气
孔隙/×104 m3气层含水量/
×104 m3残余水孔隙/
×104 m3侧缘孔隙/
×104 m3有效储气孔隙/
×104 m3气体波及体积系数 库容/×108 m3 常压22.5 MPa
压力系数1.0超压27.2 MPa
压力系数1.2常压22.5 MPa
压力系数1.0超压27.2 MPa
压力系数1.2南堡1-29 246.45 32.84 13.36 8.26 224.83 0.00454 0.00387 4.96 5.82 南堡109 121.04 29.70 12.09 7.07 101.88 0.00454 0.00387 2.24 2.63 合计 367.49 62.54 25.45 15.33 326.71 − − 7.20 8.45 表 3 油层自由气库容量评价结果
Table 3. Evaluation results of free gas capacity in oil reservoir
断块 油层原始含油
孔隙/×
104 m3波及系
数/%气驱液
效率/%含油空间
利用率/%有效含气孔隙
体积/×104 m3气体波及体积系数 库容/×108 m3 常压22.5 MPa
压力系数1.0超压27.2 MPa
压力系数1.2常压22.5 MPa
压力系数1.0超压27.2 MPa
压力系数1.2南堡1-29 261.81 65 71.6 46.54 121.8 0.00454 0.00387 2.68 3.15 南堡109 412.34 65 71.6 46.54 191.9 0.00454 0.00387 4.23 4.96 南堡12-X66 111.31 65 71.6 46.54 61.19 0.00454 0.00387 1.35 1.58 合计 785.45 − − − 374.94 − − 8.26 9.69 -
[1] ANYADIEGWU C I C, 2012. Estimation of storage capacity of an underground gas storage reservoir[J]. International Journal of Academic Research, 4(4): 11-15. doi: 10.7813/2075-4124.2012/4-4/A.2 [2] BARREE R D, BARREE V L, CRAIG D P, 2009. Holistic fracture diagnostics: consistent interpretation of Prefrac injection tests using multiple analysis methods[J]. SPE Production & Operations, 24(3): 396-406. [3] BÉREST P, BROUARD B, FAVRET F, et al 2015. Maximum pressure in gas storage caverns[C]//Solution Mining Research Institute spring 2015 technical conference. New Work: Solution Mining Research Institute: 1-17. [4] BRUNO M S, DEWOLF G, FOH S, 2000. Geomechanical analysis and decision analysis for delta pressure operations in gas storage reservoirs[C]//Paper presented at the American gas association operations conference. Denver. [5] CHEN Q C, SUN D S, CUI J J, et al, 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract [6] CHEN S M, 2016. Energy consumption and natural gas emission reduction potential in the Beijing-Tianjin-Hebei region[J]. Resources Economization & Environmental Protection, 31(4): 1, 3. (in Chinese) [7] CHEN Z W, YANG X T, WANG G, et al, 2014. Analytical technique of horizontal maximum principal stress for petroleum engineering[J]. Journal of Geomechanics, 20(1): 94-102. (in Chinese with English abstract [8] COFFIN P, LEBAS G, 2007. Converting the Pecorade oil field into an underground gas storage[C]//International petroleum technology conference. Dubai: OnePetro. [9] DIETERT J, PURSELL D, 2008. Underground natural gas storage, Simmons and company international. 5000 Bank of America Houston, Texas 77002. [10] DING G S, LI W Y, 2002. Foreign and domestic underground gas storage tanks: current situation and development trends[J]. International Petroleum Economics, 10(6): 23-26. (in Chinese with English abstract [11] DING G S, WANG J M, 2011. Key points in the reconstruction of an underground gas storage based on a depleted gas reservoir[J]. Natural Gas Industry, 31(5): 87-89. (in Chinese with English abstract [12] DOU S J, ZHAO P Q, 2010. Application of fault-sealing in oilfield development[J]. Fault-Block Oil & Gas Field, 17(1): 28-31. (in Chinese with English abstract [13] HAIMSON B C, CORNET F H. 2003. ISRM suggested methods for rock stress estimation: part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. [14] HU X L, LÜ Y F, FU G, et al, 2019. Quantitative evaluation of fault vertical sealing ability of 1st structure in Nanpu Sag[J]. Earth Science, 44(11): 3882-3893. (in Chinese with English abstract [15] LI J, ZHANG J J, 2013. Design of reservoir capacity for building reservoirs in unconfined gas reservoirs[J]. Broken block oil and gas field, 20(3): 359-361. (in Chinese with English abstract [16] LIU J Y, WANG L D, MA Z X. 2008. Comparison of two algorithms for the calculation of reserves out of the volumetric method[J]. Marine Geology Dynamics, 24(3): 40-42. (in Chinese with English abstract [17] LIU W, CHEN M, LV Z H, et al, 2011. Classification and development trend of underground gas storage[J]. Oil-Gas Field Surface Engineering, 30(12): 100-101. (in Chinese) [18] MA X M, YU B B, MA D B, et al, 2010. Project design and matching technologies for underground gas storage based on a depleted sandstone gas reservoir[J]. Natural Gas Industry, 30(8): 67-71. (in Chinese with English abstract [19] MALAKOOTI R, AZIN R, 2011. The optimization of underground gas storage in a partially depleted gas reservoir[J]. Petroleum Science and Technology, 29(8): 824-836. doi: 10.1080/10916460903486742 [20] PAN J R, LI L, ZHANG Y Q, et al , 2019. Research on the development of natural gas storage and peak shaving facilities in China[C]//China gas operation and safety seminar (10th) & gas branch of China Civil Engineering Society. Shanghai: Gas Branch of China Civil Engineering Society: 159-162. (in Chinese) [21] REINHARD R, STAUDTMEISTERK, ZANDER-SCHI-EBENHOFER D, 1998. Rock mechanical determination of the maximum internal pressure for gas storage caverns in rack salt[S]. Hannover: Solution Mining Research Instit-ute: 1-20. [22] SAWYER W K, ZUBER M D, BUES A D, 1998. Reservoir simulation and analysis of the Sciota aquifer gas storage pool[C]//SPE eastern regional meeting. Pittsburgh: SPE. [23] SUN J C, XU H C, WANG J M, et al, 2018. Injection-production mechanisms and key evaluation technologies for underground gas storages rebuilt from gas reservoirs[J]. Natural Gas Industry, 38(4): 138-144. (in Chinese with English abstract [24] SUN L L, ZHANG M G, HU Z H, 2019. The analysis on influencing factors and relation of Beijing-Tianjin-Hebei natural gas market[J]. Urban Gas(7): 24-29. (in Chinese with English abstract [25] TANG L G, WANG J M, BAI F J, et al, 2014. Inventory forecast in underground gas storage based on modified material balance equation[J]. Petroleum Exploration and Development, 41(4): 480-484. (in Chinese with English abstract [26] WANG J M, JIANG F G, 2007. A method for calculating underground gas storage capacity reconstructed from sand gas-cap reservoir at the late water-driving stage[J]. Natural Gas Industry, 27(11): 97-99. (in Chinese with English abstract [27] XU H C, WANG J M, QU P, et al, 2015. A prediction model of storage capacity parameters of a geologically-complicated reservoir-type underground gas storage (UGS)[J]. Natural Gas Industry, 35(1): 103-108. (in Chinese with English abstract [28] YANG Y H, GAO G L, WANG F, et al, 2022. Layered in-situ stress measurement method for perforated interval of Nanpu gas storage, Jidong oilfield[J]. Oil & Gas Storage and Transportation, 41(9): 1029-1035. (in Chinese with English abstract [29] ZHAO Q S, YU L Z, 2013. Study on reservoir characteristics of Guantao Formation in No. 1 and No. 2 structures of Nanpu oilfield[J]. Journal of Oil and Gas Technology, 35(7): 38-43. (in Chinese with English abstract [30] ZHAO Y C, LUO Y, LI L X, et al, 2022. In-situ stress simulation and integrity evaluation of underground gas storage: a case study of the Xiangguosi underground gas storage, Sichuan, SW China[J]. Journal of Geomechanics, 28(4): 523-536. (in Chinese with English abstract [31] ZHENG D W, XU H C, WANG J M, et al, 2017. Key evaluation techniques in the process of gas reservoir being converted into underground gas storage[J]. Petroleum Exploration and Development, 44(5): 794-801. (in Chinese with English abstract [32] ZHENG Y L, SUN J C, QIU X S, et al, 2020. Connotation and evaluation technique of geological integrity of UGSs in oil-gas fields[J]. Natural Gas Industry, 40(5): 94-103. (in Chinese with English abstract [33] ZHONG C, QIN Q R, ZHOU J L, et al, 2018. Study on fault sealing of organic-rich shale by present stress: a case study of Longmaxi Formation in Dingshan Area, southeast Sichuan[J]. Journal of Geomechanics, 24(4): 452-464. (in Chinese with English abstract [34] 陈群策,孙东生,崔建军,等,2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报,25(5):853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070 [35] 陈思敏,2016. 京津冀地区的能源消费和天然气的减排潜力[J]. 资源节约与环保,31(4):1,3. [36] 陈朝伟,杨向同,王刚,等,2014. 石油工程水平最大地应力分析技术[J]. 地质力学学报,20(1):94-102. doi: 10.3969/j.issn.1006-6616.2014.01.009 [37] 丁国生,李文阳,2002. 国内外地下储气库现状与发展趋势[J]. 国际石油经济,10(6):23-26. doi: 10.3969/j.issn.1004-7298.2002.06.004 [38] 丁国生,王皆明,2011. 枯竭气藏改建储气库需要关注的几个关键问题[J]. 天然气工业,31(5):87-89. doi: 10.3787/j.issn.1000-0976.2011.05.023 [39] 窦松江,赵平起,2010. 断层封闭性在油田开发中的应用[J]. 断块油气田,17(1):28-31. [40] 胡欣蕾,吕延防,付广,等,2019. 南堡凹陷1号构造断层垂向封闭能力定量评价[J]. 地球科学,44(11):3882-3893. [41] 李季,张吉军,2013. 不封闭气藏建库库容设计[J]. 断块油气田,20(3):359-361,383. [42] 刘吉余,王立东,马志欣,2008. 容积法储量计算的两种算法比较[J]. 海洋地质动态,24(3):40-42. doi: 10.3969/j.issn.1009-2722.2008.03.009 [43] 刘炜,陈敏,吕振华,等,2011. 地下储气库的分类及发展趋势[J]. 油气田地面工程,30(12):100-101. doi: 10.3969/j.issn.1006-6896.2011.12.051 [44] 马小明,余贝贝,马东博,等,2010. 砂岩枯竭型气藏改建地下储气库方案设计配套技术[J]. 天然气工业,30(8):67-71. doi: 10.3787/j.issn.1000-0976.2010.08.018 [45] 潘季荣,李乐,张永清,等,2019. 我国天然气储气调峰设施发展研究[C]//中国燃气运营与安全研讨会(第十届)暨中国土木工程学会燃气分会2019年学术年会论文集(上册). 上海:中国土木工程学会燃气分会:159-162. [46] 孙军昌,胥洪成,王皆明,等,2018. 气藏型地下储气库建库注采机理与评价关键技术[J]. 天然气工业,38(4):138-144. doi: 10.3787/j.issn.1000-0976.2018.04.016 [47] 孙莉莉,张明光,胡周海,2019. 京津冀天然气市场影响因素及关联度分析[J]. 城市燃气(7):24-29. [48] 唐立根,王皆明,白凤娟,等,2014. 基于修正后的物质平衡方程预测储气库库存量[J]. 石油勘探与开发,41(4):480-484. doi: 10.11698/PED.2014.04.14 [49] 王皆明,姜凤光,2007. 砂岩气顶油藏改建储气库库容计算方法[J]. 天然气工业,27(11):97-99. doi: 10.3321/j.issn:1000-0976.2007.11.030 [50] 胥洪成,王皆明,屈平,等,2015. 复杂地质条件气藏储气库库容参数的预测方法[J]. 天然气工业,35(1):103-108. doi: 10.3787/j.issn.1000-0976.2015.01.014 [51] 杨跃辉,高广亮,王芳,等,2022. 冀东南堡储气库射孔段分层地应力测量方法[J]. 油气储运,41(9):1029-1035. [52] 赵其生,于连忠,2013. 南堡油田南堡1、2号构造馆陶组储层特征研究[J]. 石油天然气学报,35(7):38-43. doi: 10.3969/j.issn.1000-9752.2013.07.009 [53] 赵昱超,罗瑜,李隆新,等,2022. 地下储气库地应力模拟研究与地质完整性评估:以相国寺为例[J]. 地质力学学报,28(4):523-536. doi: 10.12090/j.issn.1006-6616.2021138 [54] 郑得文,胥洪成,王皆明,等,2017. 气藏型储气库建库评价关键技术[J]. 石油勘探与开发,44(5):794-801. doi: 10.11698/PED.2017.05.15 [55] 郑雅丽,孙军昌,邱小松,等,2020. 油气藏型储气库地质体完整性内涵与评价技术[J]. 天然气工业,40(5):94-103. doi: 10.3787/j.issn.1000-0976.2020.05.012 [56] 钟城,秦启荣,周吉羚,等,2018. 现今地应力对富有机质页岩断层封闭性的研究:以川东南丁山地区龙马溪组为例[J]. 地质力学学报,24(4):452-464. doi: 10.12090/j.issn.1006-6616.2018.24.04.047 期刊类型引用(1)
1. 魏恒飞,方杰,时俊杰,李秋媛,余贝贝,陈晶. 深部地下储存空间利用理论、技术及前景. 煤田地质与勘探. 2025(02): 67-83 . 百度学术
其他类型引用(0)
-