留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北克拉通辽北清原地体新太古代基性麻粒岩变质作用演化

崔润泽 魏春景

崔润泽, 魏春景, 2023. 华北克拉通辽北清原地体新太古代基性麻粒岩变质作用演化. 地质力学学报, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049
引用本文: 崔润泽, 魏春景, 2023. 华北克拉通辽北清原地体新太古代基性麻粒岩变质作用演化. 地质力学学报, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049
CUI Runze, WEI Chunjing, 2023. Evolution of metamorphic processes in the Neoarchean mafic granulites of the Qingyuan Terrane in northern Liaoning, North China Craton. Journal of Geomechanics, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049
Citation: CUI Runze, WEI Chunjing, 2023. Evolution of metamorphic processes in the Neoarchean mafic granulites of the Qingyuan Terrane in northern Liaoning, North China Craton. Journal of Geomechanics, 29 (5): 736-756. DOI: 10.12090/j.issn.1006-6616.2023049

华北克拉通辽北清原地体新太古代基性麻粒岩变质作用演化

doi: 10.12090/j.issn.1006-6616.2023049
基金项目: 

国家自然科学基金项目 41872057

国家自然科学基金项目 418930834

详细信息
    作者简介:

    崔润泽(1996-), 男, 在读博士, 主要从事变质作用与相平衡模拟研究。E-mail: rzcui@pku.edu.cn

  • 中图分类号: P583

Evolution of metamorphic processes in the Neoarchean mafic granulites of the Qingyuan Terrane in northern Liaoning, North China Craton

Funds: 

the Funds of the National Natural Science Foundation of China 41872057

the Funds of the National Natural Science Foundation of China 418930834

  • 摘要:

    对华北克拉通新太古代的构造演化模式有多种不同的认识, 需要进行更加深入的变质作用研究。通过对辽北清原地体基性麻粒岩进行系统的岩相学观察、矿物化学分析、相平衡模拟和锆石定年研究, 以阐明其变质演化过程和大地构造意义。研究选择的基性麻粒岩样品分为含石榴石域(19DJ07-GD)和不含石榴石域(19DJ07-NGD)两类, 含石榴石的区域呈条带状且分布不均匀。两种区域都发育两期麻粒岩相组合。在含石榴石域, 第一期变质矿物组合为石榴石+单斜辉石+斜方辉石+角闪石+黑云母+斜长石+石英。其中, 第一期斜长石(Pl1)发育复杂成分环带, 钙长石摩尔分数(xAn)从核部到幔部升高, 然后再向边部降低; 第一期角闪石(Amp1)的Ti成分环带同样为从核部到幔部升高再向边部降低。通过矿物组合和相应的成分环带推测第一期麻粒岩相变质作用具有逆时针型P-T轨迹, 包含峰期前升温升压阶段以及峰后降温降压阶段。通过相平衡模拟约束峰期温压条件为0.8~0.9 GPa/900~950 ℃, 达到高温—超高温(high-ultrahigh temperature)变质条件。锆石定年结果表明变质作用峰后冷却时间为2498±6.9 Ma(MSWD=0.39)。综合区域上的"穹隆-龙骨"构造、逆时针的变质轨迹以及和TTG岩浆活动晚期脉冲几乎一致的表壳岩变质时间, 表壳岩超高温麻粒岩相变质作用被认为受太古宙特有的垂向构造/沉落(sagduction)构造体制控制。第二期变质组合以局部生长的石榴石+石英±单斜辉石的后成合晶/冠状体为特征, 代表一期与古元古代造山事件有关的高压麻粒岩相变质作用。

     

  • 太古宙克拉通是大陆地壳中的重要构造单元,许多太古宙克拉通具有“穹隆-龙骨(dome-and-keel)”构造,表现为大小不一的表壳岩呈块状/皮筏状产于TTG(tonalite-trondhjemite-granodiorite)穹隆内,或呈带状处在穹隆之间(如:Collins et al., 1998Hickman, 2004Lin and Beakhouse, 2013Anhaeusser, 2014)。这些表壳岩经历了绿片岩相-麻粒岩相变质作用(Condie, 1981)。Brown(2007)Brown and Johnson(2018)对17个太古宙高级地体的总结表明,麻粒岩相表壳岩的P-T条件为0.65~1.40 GPa/800~1100 ℃,地热梯度很高,大于775 ℃/GPa。这些高温—超高温麻粒岩大多显示逆时针的P-T轨迹,但它们的构造体制仍存在争议。例如,Mezger et al.(1990)认为苏必利尔克拉通(Superior Craton)的~2.7 Ga皮奎托内(Pikwitonei)麻粒岩形成于大陆岩浆弧环境;Jayananda et al. (2012)认为东达瓦尔克拉通(Eastern Dharwar Craton)中部的~2.7 Ga泥质麻粒岩可能与洋脊俯冲有关;然而,来自华北克拉通冀东地体的~2.5 Ga麻粒岩被认为形成于垂直的沉落(sagduction)构造体制(Duan et al., 2017; Liu and Wei, 2018; Liu et al., 2020, 2022a)。对太古宙麻粒岩相表壳岩变质演化的研究可以为研究地球早期的构造体制提供新的认识。

    同世界上其他克拉通一样,华北克拉通具有漫长且复杂的演化历史(Zhai and Santosh, 2011郑建平, 2020万渝生等, 2022)。很多研究表明华北克拉通东部陆块太古宙表壳岩在新太古代晚期(~2.50 Ga)发生了角闪岩相-麻粒岩相变质作用,关于其形成的大地构造环境有三种不同的认识:与微陆块拼贴时发生的俯冲-碰撞有关(Zhai and Santosh, 2013翟明国, 2019);与板块俯冲引起的碰撞造山有关(Kusky et al., 2016);与地幔柱有关(Geng et al., 2006Kwan et al., 2016)。这些表壳岩记录了不同的峰期条件和P-T演化轨迹。其中角闪岩相表壳岩记录顺时针:(如Liu et al., 2020)或逆时针型P-T轨迹(如:Zhao, 1995Wu and Wei, 2021);而麻粒岩相表壳岩一般记录逆时针型P-T轨迹(如:Duan et al., 2017Zhang et al., 2019Lu and Wei, 2020)。因此,需要对太古宙表壳岩进行更多的研究,以明晰其变质作用演化,并进一步探讨华北克拉通太古宙克拉通的构造体制。

    清原地体位于华北克拉通北缘东段,其表壳岩在新太古代晚期经历了角闪岩相-麻粒岩相变质作用(万渝生等, 2005a, 2005bPeng et al., 2015Wu et al., 2016Li and Wei, 2017Wu and Wei, 2021)。大部分表壳岩都经历了角闪岩相变质作用,记录了逆时针型P-T轨迹,峰期温压为0.7~1.0 GPa/750~890 ℃(Wu et al., 2013Wu and Wei, 2021Liu et al., 2022b)。只有东井沟、线金厂、唐力和平岭后地区出露着一些麻粒岩相表壳岩,但尚未对其变质演化进行研究。此外,清原地体新太古代晚期的构造模式也存在诸多争议,包括和地幔柱有关的垂向构造模型(Zhai et al., 1985Wu et al., 2013, 2016Li and Wei, 2017),和洋壳俯冲有关的横向构造模型(万渝生等, 2005aPeng et al., 2015Wang et al., 2016a, 2016b王康等, 2018袁玲玲等,2020),以及太古宙特有的垂向/沉落构造体制(Wu and Wei, 2021)。沉落过程是指在花岗质岩浆底辟上涌的同时表壳岩下坠,最终形成穹隆-龙骨构造(Collins et al., 1998François et al., 2014)。为了进一步探讨清原地体新太古代晚期的构造体制,特别是在麻粒岩相变质演化的背景下,需要进行更多的研究。文章通过对清原地体东井沟地区基性麻粒岩的系统岩石学、矿物化学、相平衡模拟和锆石年代学研究,约束了其变质作用和构造演化。

    华北克拉通的构造演化是近年来研究的热点,主要有三种不同的构造模型。第一种模型认为,华北克拉通包括四个太古宙地块:阴山、鄂尔多斯、龙岗和狼林地块(图 1a)。阴山地块和鄂尔多斯地块在~1.95 Ga拼合形成了西部陆块和孔兹岩带,龙岗地块和朗林地块在~1.90 Ga拼合形成了东部陆块和胶-辽-吉带,最后东、西陆块在~1.85 Ga拼合形成了华北中部造山带(TNCO)和整个华北克拉通(Zhao et al., 2005, 2012)。第二种模型认为,在新太古代末期(~2.5 Ga)微陆块和岛弧拼贴形成了华北克拉通(Zhai et al., 2000, 2005Zhai and Santosh, 2011),随后在古元古代(约2.0~1.82 Ga)经历了裂谷-俯冲-增生-碰撞等一系列构造过程,形成了丰镇带、晋豫带、胶-辽-吉带。第三种模型认为华北克拉通是由两个太古宙陆块(东部、西部陆块)在2.5~2.4 Ga发生碰撞形成(Kusky and Li, 2003Kusky et al., 2016),并且华北克拉通北缘在2.3~1.9 Ga转变为安第斯型大陆边缘。随后,华北克拉通在1.90~1.85 Ga与未知大陆发生碰撞,形成华北克拉通北缘的内蒙-冀北造山带(Kusky et al., 2016)。

    图  1  华北克拉通构造分区图及清原地体地质简图
    a—华北克拉通构造分区(据Zhao et al., 2005修改);b—清原地体地质简图(据万渝生等,2005bPeng et al., 2015Li and Wei, 2017修改)
    Figure  1.  Tectonic subdivision of the North China Craton and geological sketch map of the Qingyuan Terrane
    (a) Tectonic subdivision of the North China Craton (modified from Zhao et al., 2005); (b) Geological sketch map of the Qingyuan Terrane (modified from Wan et al., 2005b; Peng et al., 2015; Li and Wei, 2017)

    辽北清原地体地处龙岗陆块的东北部(图 1a),具有典型的“穹隆-龙骨”构造。清原地体主要由TTG质(英云闪长质-奥长花岗质-花岗闪长质)-花岗质片麻岩和少量表壳岩组成,TTG质-花岗质片麻岩呈穹隆状,而表壳岩则以皮筏状或带状处于穹隆内或穹隆之间(图 1b)。清原地体TTG质-花岗质片麻岩中岩浆锆石的年龄显示了其侵位时间为2.57~2.49 Ga(万渝生等, 2005b白翔等, 2014Peng et al., 2015Wang et al., 2016a, 2016bWu et al., 2016王康等, 2018Li et al., 2020袁玲玲等,2020),并且它们和表壳岩一样经历了角闪岩相-麻粒岩相变质作用,变质年龄为2.55~2.42 Ga (白翔等, 2014Wang et al., 2016a, 2016bLi et al., 2020)。清原地体的表壳岩由下至上可划分为石棚子组、红透山组和南天门组(Zhai et al., 1985)。石棚子组以麻粒岩、斜长角闪岩、辉石角闪岩、黑云母斜长片麻岩、石榴方辉石岩等为主,可能的原岩有科马提岩、拉斑玄武岩、英安岩和富铁沉积物;红透山组主要由斜长角闪岩、黑云母斜长片麻岩等组成,含少量夕线石或蓝晶石片麻岩,其原岩可能为拉斑岩、英安岩、泥质-杂砂质沉积岩;南天门组以黑云斜长片麻岩、二云母片岩、斜长角闪岩、磁铁石英岩和大理岩为主,其原岩可能为凝灰岩、泥质-杂砂质沉积岩、基性火山岩、条带状铁质建造以及碳酸盐岩。锆石年代学显示,表壳岩的变质年龄约为2.55~2.43 Ga(万渝生等, 2005b白翔等, 2014Peng et al., 2015Wang et al., 2016a, 2016bLi and Wei, 2017Wu and Wei, 2021)。Li and Wei(2017)将红透山组的玄武质岩石按照稀土元素特征划分为富集型和亏损型两个系列,并推测其成因与地幔柱活动有关。其中富集型玄武质岩石稀土元素总量高、富集轻稀土元素,具有岛弧型地球化学特征;而亏损型玄武质岩石稀土元素总量较低。

    清原地体还有很多古元古代变质基性岩墙(图 2),它们侵入了新太古代TTG质片麻岩和表壳岩。Duan et al. (2019)Wu and Wei (2021)报道称变质基性岩墙经历了角闪岩相-高压麻粒岩相变质作用,具有顺时针型P-T轨迹,峰值条件为0.9~1.1 GPa/720~780 ℃。岩墙侵位时间为~2.12 Ga,变质时间为~1.85 Ga,其变质作用可能与地壳增厚造山事件有关。

    图  2  显示岩性分布和样品采集点的清原地区地质图(据Duan et al., 2019修改)
    Figure  2.  Geological sketch map of the Qingyuan area showing lithological distribution and sample localities (modified from Duan et al., 2019)

    文中研究的基性麻粒岩样品(19DJ07)采自东井沟村公路旁的采石坑(124°57′55.523″N,42°12′14.957″E;图 2)。清原地体高级表壳岩包含三种岩性:基性麻粒岩、中酸性麻粒岩以及变富铁沉积岩,三种表壳岩互层产出;TTG质片麻岩侵入表壳岩,其内可见大小不一的表壳岩捕虏体。基性麻粒岩与变富铁沉积岩互层;基性麻粒岩部分熔融程度较高,露头上常见宽度不等的浅色脉体(图 3a)。部分基性麻粒岩的浅色体中包含石榴石和斜方辉石。基性麻粒岩的部分区域含有石榴石(图 3a3b)。

    图  3  表壳岩的露头照片、基性麻粒岩19DJ07的野外露头及显微照片
    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英
    下标数字:0—包裹体状态的第一期矿物;1—第一期矿物;2—第二期矿物
    a、b标记的线条对应图 4中的矿物成分剖面
    a—基性麻粒岩(含石榴石域和无石榴石域)和富铁沉积物互层,露头见部分熔融产生的浅色脉体;b—含石榴石细带的样品19DJ07露头照片;c—样品薄片的扫描照片,岩石分为石榴石域(19DJ07-GD)和无石榴石域(19DJ07-NGD);d、e—两期石榴石显微照片对比,其中Grt2和Qz构成冠状后成合晶,发育两期斜方辉石(Opx1、Opx2)、三期角闪石(包裹体Amp0、岩石主体矿物之一Amp1呈变晶结构、Amp2粒度细且生长在辉石周围;f—岩石局部叠加变质组合显微特征,发育Grt2+Qz+Cpx2的后成合晶和两期斜长石(Pl1、Pl2);g—两期单斜辉石(Cpx1、Cpx2)的显微特征;h—岩石近粒变晶结构显微特征,发育被辉石包裹的Amp0和两期斜长石(Pl1、Pl2)
    Figure  3.  Outcrop photo of supracrustal rock, and field outcrop photo and microphotographs of mafic granulite 19DJ07
    (a) Interbedding of mafic granulite (containing garnet-bearing and non-garnet-bearing domains) with iron-rich metasediments, with outcrops displaying light-colored veins formed by partial melting; (b) Outcrop photo of sample 19DJ07, which contains fine bands of garnet; (c) Scanned photos of sample thin-section, categorizing the rocks into garnet-bearing domain (19DJ07-GD) and non garnet-bearing domain (19DJ07-NGD); (d and e) Comparative microphotographs of two generations of garnet, where Grt2 and Qz form coronal symplectites, and two generations of orthopyroxene (Opx1/2) and three types of amphibole (Amp0/1/2) are developed; Amp0 occurs as inclusions, Amp1 as one of the main minerals of rock exhibits blastic texture, and Amp2 is fine-grained and grows around pyroxene; (f) Microscopic characteristics of locally superimposed metamorphic combinations in rocks, showing the development of symplectites of Grt2+Qz+Cpx2 and two generations of plagioclase (Pl1/2); (g) Microscopic characteristics of two generations of clinopyroxene(Cpx1/2); (h) Homeoblast texture in 19DJ07-NGD, with Amp0 enclosed by pyroxene and two generations of plagioclase (Pl1/2)
    The lines labeled with a and b corresponds to the composition zoning profile in Fig. 4; mineral abbreviations are according to Whitney and Evans, 2010; Warr (2021): Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz

    研究样品的全岩主量元素测试分析于中国地质大学(北京)的相关实验室完成,使用仪器为电感耦合等离子体发射光谱仪(ICP-OES),测试结果见表 1

    表  1  清原地区基性麻粒岩的全岩成分以及相平衡模拟用的有效全岩成分
    Table  1.  Bulk-rock compositions and effective bulk-rock compositions of samples from Qingyuan terrane
    样品 ICP-OES分析得到的全岩成分含量/% A/CNK Mg#
    SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI
    19DJ07 50.20 1.46 12.86 15.15 0.21 5.32 10.41 3.10 0.59 0.18 0.17 0.53 0.41
    样品 用于相平衡模拟的标准化全岩成分摩尔分数/% Mg# A/CNK 图幅
    H2O SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O
    19DJ07-GD 2.07 52.89 8.45 11.38 7.23 12.87 0.38 3.12 1.17 0.44 0.36 0.57 图 5
    19DJ07-NGD 2.68 51.83 8.79 11.22 9.22 10.64 0.41 3.41 0.99 0.79 0.46 0.58 图 6
    注:Fe2O3全铁;LOI烧失量;Mg#=MgO/(MgO+FeOtotal);A/CNK=Al2O3/(CaO+Na2O+K2O)
    下载: 导出CSV 
    | 显示表格

    矿物化学分析使用了北京大学地球与空间科学学院的JXA-8100型号的电子探针,测试条件为:加速电压15 kV,电流10 nA,束斑直径为2 μm(测试黑云母时为5 μm),使用SPI公司的53种矿物作为标准样品。

    基性麻粒岩样品19DJ07中含石榴石的区域呈条带状分布,条带宽度0.4~1.0 cm(图 3b3c),因此,可以划分为含石榴石域(19DJ07-GD)和无石榴石域(19DJ07-NGD)两部分,分别为石榴二辉麻粒岩和二辉麻粒岩组合。两个结构域的代表性矿物成分见表 2表 3

    表  2  清原地体基性麻粒岩19DJ07-GD中代表性矿物的探针分析
    Table  2.  Selected microprobe analyses for mafic granulite 19DJ07-GD from the Qingyuan terrane
    矿物 Grt1-C Grt1-R Grt2 Cpx1 Cpx2 Opx1 Opx2 Amp0 Amp1-C Amp1-M Amp1-R Amp2 Bt1 Bt2 Pl1-C Pl1-M Pl1-R1 Pl1-R2 Pl2
    SiO2 36.47 38.05 37.48 51.53 52.25 49.84 50.33 41.82 42.17 39.74 41.17 42.18 35.94 35.92 58.93 58.24 60.15 63.24 63.89
    TiO2 0.10 0.11 - 0.07 0.08 0.02 0.05 2.39 1.83 2.10 1.57 1.66 4.77 4.70 0.02 0.03 - - -
    Al2O3 20.08 19.57 20.46 1.14 1.34 0.43 0.45 11.72 11.01 11.48 11.18 10.77 13.65 13.70 26.37 25.67 25.44 23.85 23.00
    Cr2O3 0.05 0.02 0.02 0.06 0.03 - - - 0.07 0.08 0.07 0.06 0.06 - - 0.01 0.02 - -
    FeO 29.78 31.34 30.58 13.42 13.58 34.57 33.77 19.44 20.46 20.43 20.92 19.78 22.03 20.70 0.08 0.05 0.04 0.39 0.50
    MnO 1.06 1.24 1.28 0.15 0.21 0.44 0.41 0.10 - - - 0.10 - - - - - - -
    MgO 2.90 2.83 2.95 11.05 11.02 14.08 14.71 7.56 8.03 7.62 7.55 8.30 10.00 9.84 - - - - -
    CaO 8.82 7.48 7.46 22.93 22.81 0.62 0.42 11.73 11.75 11.80 11.68 11.85 - - 8.90 8.56 7.29 5.44 4.62
    Na2O 0.13 0.06 0.16 0.46 0.71 0.05 - 1.75 1.64 1.39 1.60 1.51 0.16 - 6.67 5.77 7.21 8.19 8.80
    K2O - - - - - - - 1.34 1.41 1.20 1.30 1.18 9.51 9.37 0.10 0.07 0.14 0.12 0.03
    Total 99.47 100.71 100.40 100.81 102.02 100.04 100.16 97.85 98.44 95.92 97.12 97.39 96.14 94.23 101.09 98.40 100.31 101.23 100.87
    O 12.000 12.000 12.000 6.000 6.000 6.000 6.000 23.000 23.000 23.000 23.000 23.000 11.000 11.000 8.000 8.000 8.000 8.000 8.000
    Si 2.912 3.018 2.969 1.940 1.941 1.966 1.976 6.383 6.412 6.199 6.357 6.452 2.768 2.800 2.609 2.635 2.669 2.765 2.799
    Ti 0.006 0.007 - 0.002 0.002 0.001 0.001 0.274 0.209 0.246 0.182 0.191 0.276 0.276 0.001 0.001 - - -
    Al 1.890 1.830 1.911 0.051 0.059 0.020 0.021 2.109 1.974 2.111 2.035 1.942 1.239 1.259 1.376 1.369 1.331 1.229 1.188
    Cr - - - - - - - - - - - - - - - - - - -
    Fe3+ 0.299 0.130 0.175 0.097 0.106 0.050 0.024 - 0.120 0.360 0.216 0.150 - - - - - - -
    Fe2+ 1.690 1.949 1.850 0.325 0.316 1.090 1.085 2.481 2.481 2.305 2.485 2.381 1.419 1.350 - - - - -
    Mn 0.072 0.083 0.086 - - 0.015 0.014 0.013 - 0.011 0.010 - - - - - - - -
    Mg 0.345 0.335 0.348 0.620 0.610 0.828 0.861 1.720 1.820 1.771 1.737 1.892 1.148 1.143 - - - - -
    Ca 0.755 0.636 0.633 0.925 0.908 0.026 0.018 1.918 1.914 1.972 1.932 1.942 - - 0.422 0.415 0.347 0.255 0.217
    Na 0.020 - 0.025 0.034 0.051 0.004 - 0.518 0.484 0.420 0.479 0.448 0.024 - 0.573 0.506 0.620 0.694 0.748
    K - - - - - - - 0.261 0.274 0.239 0.256 0.230 0.934 0.932 - - - - -
    x(矿物) 0.26 0.21 0.22 0.66 0.66 0.43 0.44 0.41 0.42 0.43 0.41 0.44 0.45 0.46 0.42 0.45 0.36 0.27 0.22
    y(矿物) 0.12 0.11 0.12 0.01 0.00 0.01 0.01 0.00
    注: x(Grt)=xGr=Ca/(Fe2++Mg+Ca+Mn);y(Grt)=xPy=Mg/(Fe2++Mg+Ca+Mn);x(Cpx)=Mg/(Fe2++Mg);x(Opx)=Mg/(Fe2++Mg);x(Amp)=Mg/(Fe2++Mg);x(Bt)=Mg/(Fe2++Mg+Mn);x(Pl)=xAn=Ca/(Ca+Na+K);y(Pl)=xOr=K/(Ca+Na+K)。后缀含义:-C,核部;-M,幔部;-R,边部;斜长石,-R1为内边、-R2为外边。矿物分子式采用AX程序计算。“-”指示该含量低于检测线。2~12行的单位为%,13~24行的单位为p.f.u.,25、26行的单位为%。
    下载: 导出CSV 
    | 显示表格
    表  3  清原地体基性麻粒岩样品19DJ07-NGD中代表性矿物的探针分析
    Table  3.  Selected microprobe analyses for mafic granulite 19DJ07-NGD from the Qingyuan terrane
    矿物 Cpx1 Opx1 Amp0 Amp1-C Amp1-M Amp1-R Amp2 Bt1 Pl1-C Pl1-M Pl1-R1 Pl1-R2 Pl2
    SiO2 52.38 50.88 41.82 43.01 42.78 42.28 42.86 36.81 59.73 59.53 59.67 63.35 63.18
    TiO2 0.07 - 2.39 1.55 2.18 1.63 1.40 4.70 - - - - -
    Al2O3 1.23 0.39 11.72 10.57 11.37 11.53 11.48 13.48 25.94 26.61 25.77 23.45 23.67
    Cr2O3 0.06 0.03 - 0.03 0.07 0.04 0.04 0.06 0.03 0.04 0.03 0.01 0.04
    FeO 14.21 35.60 19.44 20.67 20.25 19.18 19.86 22.74 0.08 0.08 0.04 0.06 0.36
    MnO 0.20 0.53 0.10 0.11 - - - - - - - - -
    MgO 10.20 13.75 7.56 8.65 8.03 8.71 8.71 9.27 - - - - -
    CaO 22.29 0.47 11.73 11.92 11.65 11.99 11.77 0.13 8.49 9.02 7.50 5.03 5.56
    Na2O 0.50 - 1.75 1.37 1.61 1.62 1.46 0.08 6.67 6.01 6.61 8.36 8.11
    K2O - - 1.34 1.31 1.23 1.25 1.31 9.52 0.14 0.16 0.17 0.19 0.23
    Total 101.16 101.67 97.85 99.19 99.24 98.31 98.93 96.84 101.15 101.46 99.81 100.50 101.18
    O 6.000 6.000 23.000 23.000 23.000 23.000 23.000 11.000 8.000 8.000 8.000 8.000 8.000
    Si 1.976 1.984 6.383 6.451 6.421 6.388 6.422 2.816 2.637 2.619 2.658 2.786 2.766
    Ti - - 0.274 0.175 0.246 0.185 0.158 0.270 - - - - -
    Al 0.055 0.018 2.109 1.869 2.012 2.054 2.028 1.216 1.350 1.380 1.353 1.216 1.222
    Cr - - - 0.004 0.008 0.005 0.005 0.004 - - - - -
    Fe3+ 0.024 0.014 - 0.316 0.123 0.142 0.252 - - - - - 0.013
    Fe2+ 0.424 1.147 2.481 2.277 2.420 2.282 2.236 1.455 - - - - -
    Mn - 0.018 0.013 0.014 - 0.010 - - - - - - -
    Mg 0.573 0.799 1.720 1.934 1.796 1.961 1.945 1.057 - - - - -
    Ca 0.901 0.020 1.918 1.916 1.874 1.941 1.890 0.011 0.402 0.425 0.358 0.237 0.261
    Na 0.037 - 0.518 0.398 0.469 0.475 0.424 0.012 0.571 0.513 0.571 0.713 0.689
    K - - 0.261 0.251 0.236 0.241 0.250 0.929 - - 0.010 0.011 0.013
    x(矿物) 0.57 0.41 0.41 0.46 0.43 0.46 0.47 0.42 0.41 0.45 0.38 0.25 0.27
    y(矿物) 0.01 0.01 0.01 0.01 0.01
    注: x(Grt)=xGr=Ca/(Fe2++Mg+Ca+Mn);y(Grt)=xPy=Mg/(Fe2++Mg+Ca+Mn);x(Cpx)=Mg/(Fe2++Mg);x(Opx)=Mg/(Fe2++Mg);x(Amp)=Mg/(Fe2++Mg);x(Bt)=Mg/(Fe2++Mg+Mn);x(Pl)=xAn=Ca/(Ca+Na+K);y(Pl)=xOr=K/(Ca+Na+K)。后缀含义:-C,核部;-M,幔部;-R,边部;斜长石,-R1为内边、-R2为外边。矿物分子式采用AX程序计算。“-”指示该含量低于检测线。2~12行的单位为%,13~24行的单位为p.f.u.,25、26行的单位为%。
    下载: 导出CSV 
    | 显示表格

    (1) 19DJ07-GD的矿物组合各成分体积分数φ分别为石榴石(5%)、单斜辉石(15%)、斜方辉石(6%)、角闪石(28%)、黑云母(1%)、斜长石(40%)、石英(3%)及钛铁矿+磁铁矿(2%)。具有典型等粒粒状变晶结构(图 3d3g)。

    石榴石分为Grt1和Grt2两类。Grt1为他形—半自形,粒度0.1~0.5 mm,部分颗粒含有极少的包裹体(石英或黑云母)(图 3d)。Grt1的成分中xGrs= Ca/(Mg+Fe+Ca+Mn),xAlm(铁铝榴石摩尔分数)、xSps(锰铝榴石摩尔分数)、xPy(镁铝榴石摩尔分数)依此类推,从核部到边部逐渐降低(0.26→0.21);xPy具有与xGrs相似的环带(0.13→0.10);xAlm表现出与xPy相反的环带,从核部到边部升高(0.59→0.65);xSps只有0.02~0.03,整体较为均匀(图 4a)。Grt2作为0.1~0.2 mm宽的冠状环带生长在其他矿物周围(图 3d3g);Grt2呈筛状,常与细粒石英包裹体及Cpx2构成后成合晶结构(图 3f)。相比于Grt1,Grt2xGrs更低,为0.19~ 0.24,但是xAlm更高,为0.60~0.68;xPy为0.09~ 0.13,xSps为0.02~0.03。

    图  4  样品19DJ07中代表性矿物的成分特征图
    a—19DJ07-GD的Grt1的成分剖面(xAlm=Fe2+/(Fe2++Mn+Mg+Ca), xSpsxPyxGrs依此类推);b、c—典型角闪石的Ti成分环带(b—19DJ07-GD的Amp1,c—19DJ07-NGD的Amp1);d、e—典型斜长石的的xAn成分剖面图,xAn=Ca/(Ca+Na+K)(d—19DJ07-GD的Pl1,e—19DJ07-NGD的Pl1)
    Figure  4.  Composition diagrams of representative minerals in Sample 19DJ07
    (a) Grt1 chemical zoning profiles in 19DJ07-GD (xAlm=Fe2+/(Fe2++Mn+Mg+Ca); xSps, xPy, and xGrs follow this pattern, respectively); (b and c) Typical composition zoning of Ti for Amp1 in 19DJ07-GD (b) and 19DJ07-NGD (c); (d) Typical composition zoning of xAn(=Ca/(Ca+Na+K)) for Pl1 in 19DJ07-GD (d) and 19DJ07-NGD (e)

    单斜辉石包含Cpx1和Cpx2两类。Cpx1作为主体矿物之一,粒度0.2~0.3 mm,他形粒状(图 3d3f);而Cpx2则是0.01~0.02 mm的他形的颗粒或冠状体,生长于辉石或角闪石周围(图 3f3g)。Cpx1和Cpx2具有相似的透辉石成分:xWo=0.46~0.51、xEn=0.29~0.36(Morimoto, 1988)。

    斜方辉石包含Opx1和Opx2两类。Opx1是粒度0.1~0.3 mm的他形—半自形柱状颗粒(图 3d3e);Opx2常生长于叠加变质结构域的二辉石周围,粒度~0.01 mm(图 3e3g)。两类斜方辉石都具有斜铁辉石的成分,xEn (=Mg/ (Mg+Fe+ Ca))=0.39~0.46、xWo (=Ca/ (Mg+Fe+Ca)) = 0.01(Morimoto, 1988)。

    根据岩石结构,角闪石可以分为Amp0、Amp1和Amp2三类。Amp0粒度约为0.01~0.10 mm,作为斜方辉石或斜长石的包裹体存在(图 3e3g);Amp1作为主体矿物之一,粒度为0.1~0.5 mm,他形—半自形(图 3d3g);Amp2为他形,粒度为0.01~0.05 mm,生长于其他矿物边部(图 3d3f)。根据Hawthorne et al. (2012)的分类,三类角闪石都属于韭闪石((Na+K)A=0.59~0.75,(Al+Fe3++2Ti)C=0.87~1.20)。Amp0成分中Ti含量为0.19~0.27 p.f.u.(per formula unit)、xMg= 0.41~0.47。Amp1的Ti含量为0.17~0.25 p.f.u.,且具有从核部到幔部升高再到边部降低的成分环带(图 4b);xMg=0.39~0.47。Amp2的Ti含量最低,为0.14~0.21 p.f.u.,xMg=0.44~0.46。

    黑云母也分Bt1和Bt2两类,Bt1为他形或半自形,粒度为0.01~0.1 mm;Bt2为他形,粒度为~0.01 mm(图 3d3f);两类黑云母成分相似,xMg=0.45~0.46, Ti含量为0.27~0.28 p.f.u.。

    斜长石可以分为Pl1和Pl2两类。Pl1为他形—半自形,粒度为0.1~5.0 mm(图 3d3e3g)。Pl1xAn从核部到幔部升高再到内边降低(0.42→0.45→0.40),部分Pl1颗粒还生长了xAn更低的外边部(0.26~0.36;图 4d),可能为熔体局部汇聚结晶形成(Liu et al., 2020Zhang et al., 2020, 2021)。部分Pl1颗粒的核部xAn较低,低至0.36。Pl2一般生长在叠加变质结构域,其xAn更低,且从核部到边部降低(0.32→0.22),粒度也较Pl1更细(0.01~0.05 mm)。

    根据矿物的结构和化学成分,可以划分出三个阶段的矿物组合,即第一期变质峰期阶段、第一期变质固相线阶段以及叠加变质阶段。第一期变质峰期阶段的矿物组合为Grt1+Cpx1+Opx1+Pl1+Ilm;第一期变质固相线的矿物组合与峰期阶段相比的差别是峰后阶段伴随熔体结晶生长的角闪石、黑云母和斜长石等;叠加变质的矿物组合为Grt2+Qz±Cpx2的后成合晶以及Opx2、Pl2和Amp2

    (2) 19DJ07-NGD的矿物组合中各成分体积分数φ分别为单斜辉石(10%)、斜方辉石(7%)、角闪石(37%)、黑云母(1%)、斜长石(43%)、石英(1%)及钛铁矿+磁铁矿(1%) (图 3g3h)。岩石具有麻粒岩典型的等粒变晶结构、三联点结构。

    单斜辉石和斜方辉石为他形,粒度0.1~0.5 mm,内部常含角闪石包裹体(图 3g3h)。单斜辉石中xEn=0.28~0.32、xWo=0.47~0.51,斜方辉石中xEn=0.39~0.41、xWo=0.01,根据Morimoto (1988)的分类,它们分别为透辉石和斜铁辉石。

    角闪石可以分为三类(图 3h):Amp0Amp1和Amp2。Amp0是斜方辉石或斜长石中的包裹体,Ti含量为0.18~0.24 p.f.u.,xMg=0.38~0.44。Amp1粒度为0.1~0.5 mm,他形—半自形,Ti含量为0.17~0.29 p.f.u.,且呈现从核部到幔部升高再到边部降低的成分环带(图 4c);xMg=0.37~0.47。Amp2是粒度~0.01 mm的他形颗粒,生长在辉石周围,Ti含量为0.14~0.24 p.f.u.,xMg=0.42~0.48。三类角闪石的(Na+K)A=0.40~ 0.75、(Al+Fe3++2Ti)C=0.49~1.32,根据Hawthorne et al. (2012)的分类,大部分颗粒属于韭闪石,少部分颗粒属于透闪石、镁质闪石及钙镁闪石。黑云母为0.05~0.1 mm片状,xMg=0.42,Ti含量为0.27 p.f.u.。

    斜长石有Pl1、Pl2两类。Pl1为他形,粒度0.1~0.5 mm(图 3g3h)。Pl1xAn从核部到幔部升高再在到边部降低(图 4e)。岩石中Pl1核部-幔部的xAn一般集中在0.42~0.45,内边部xAn集中在0.40左右;但是部分颗粒的核部xAn可以低至0.35。大部分Pl1颗粒外边部的xAn更低(0.25~0.33),可能代表着局部的熔体汇聚、结晶(如:Liu et al., 2020; Zhang et al., 2020, 2021)。Pl2为他形颗粒,粒度~0.1 mm,成分XAn从核部到边部降低(0.35→0.24)。

    根据观察到的岩石结构及矿物成分,可以划分出三个阶段的矿物组合:第一期变质峰期阶段矿物组合Opx+Cpx+Pl1+Ilm±Amp、以峰后冷却阶段生长角闪石、斜长石为特征的固相线组合Opx+Cpx+Pl1+Amp1+Bt+Ilm+Qz以及叠加变质矿物Pl2。包裹在二辉石中的Amp0也许代表着进入变质阶段。

    基于上述样品的矿物组合及矿物化学成分,在NCKFMASHTO (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2- H2O-TiO2-Fe2O3)体系中,利用THERMOCALC 3.45 (Holland and Powell, 1998)和热力学数据库ds62(Holland and Powell, 2011)进行了视剖面图计算。所用矿物相活度-成分(a-x)模型包括:石榴石(White et al., 2007, 2014),角闪石、单斜辉石、熔体(Green et al., 2016),斜方辉石、黑云母(White et al., 2014),斜长石(Holland and Powell, 2003),钛铁矿(White et al., 2000),石英为纯端元组分。模拟中所使用的H2O和O值是依据T-M(H2O/O)图解来确定的,以确保模拟的固相线组合与实际观察的一致(Korhonen et al., 2013),并且这样确定的O值可避免样品制备过程中潜在的污染或氧化以及在抬升出露过程中可能的流体作用导致的氧逸度的变化(如:Dos Santos et al., 2011Cao et al., 2011Korhonen et al., 2012)。

    为了使视剖面图更好地反映样品的实际情况,采用有效全岩成分的摩尔分数进行相平衡模拟。有效全岩是据样品的矿物组合、矿物的体积分数及化学成分进行整合计算得到的。所有样品的有效全岩均列在了表 1中。

    19DJ07-GD的P-T视剖面图(图 5)中,P-T范围是0.2~1.2 GPa/700~1000 ℃。在相关的矿物组合区域绘制出了石榴石的xGrs等值线、斜长石的xAn等值线以及角闪石的Ti含量等值线。固相线组合Grt1+Opx1+Cpx1+Amp1+Bt1+Pl1+Qz±Ilm稳定的温压范围是0.75~0.92 GPa/780~810 ℃,推测的峰期组合Grt1+Opx1+Cpx1+Pl1+Ilm+Qz可以给出一个更大的温压范围0.75~0.9 GPa/860~980 ℃。Amp0中最高的Ti含量(0.27 p.f.u.)对应着大约900 ℃的温度条件;将实测Pl1xAn(核部-幔部-边部:0.42→0.45→0.36)投到图中,再结合推测的峰期矿物组合可以确定峰期条件为0.8~0.9 GPa/900~940 ℃。依据Pl1xAn从核部到幔部再到内边部先升高后降低的成分剖面(图 4d)可以给出一条逆时针的变质轨迹,且最小值0.36正好和固相线组合预测的等值线数值一致。xAn=0.25~0.33的外边部则代表着亚固相线条件下的更低温压条件,可能由局部熔体结晶形成。Amp1从核部到幔部升高再到边部降低的Ti成分环带(0.17~0.25 p.f.u.;图 4b)同样对应着逆时针的演化轨迹。图中角闪石最高Ti含量投影超过了角闪石的最大稳定域,可能原因是角闪石稳定域被低估,如果模拟中考虑F、Cl等组分,角闪石的稳定域会扩大(Sajeev et al., 2009)。所以19DJ07-GD的峰期温度一定在900 ℃以上。或许由于受到熔体在某些区域汇聚而产生局部平衡的影响,实测的石榴石的成分并不能投到图 5中,图中预测的xGrs最大值(0.20)小于实测的xGrs最小值(0.21)。在逆时针演化的峰后降温降压过程中,斜长石、角闪石、黑云母以及石英都会生长。

    图  5  样品19DJ07-GD在NCKFMASHTO体系下的P-T视剖面图及P-T轨迹
    计算P-T视剖面图所使用的有效全岩成分见表 1
    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英;L—熔体
    Figure  5.  P-T pseudosection with proposed P-T vectors for 19DJ07-GD in the NCKFMASHTO system
    The effective bulk-rock compositions used to calculate the P-T pseudosection are shown in Table 1.
    Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz; L-melt

    19DJ07-NGD的P-T视剖面图(图 6)中,在相关的矿物组合区域绘制出了斜长石的xAn等值线以及角闪石的Ti等值线。观察到的固相线组合Cpx+Opx+Amp1+Pl1+Ilm+Bt+Qz在视剖面图中被预测稳定在一个狭窄的P-T区域0.3~0.9 GPa/740~830 ℃,推测的峰期矿物组合Opx+Cpx+Pl1+Ilm±Amp稳定在 < 0.9 GPa/>840 ℃的宽泛区域。依据Pl1幔部的最大xAn(0.45)和Amp1最高Ti值以确定峰期温压条件为~0.9 GPa/>950 ℃,并位于含石榴石的组合中。Pl1xAn从幔部到外边部降低(0.45→0.40)对应着峰后降温降压的演化阶段,岩石中实测的Pl1最低xAn=0.35和固相线区域预测的数值一致。在峰后降温及轻微降压的过程中,石榴石会通过Grt+Cpx+Ilm+L=Opx+Amp+Pl的变质反应被消耗殆尽(图 6)。沿着这条降压冷却轨迹,相图中的角闪石的Ti值、斜长石的xAn降低。实测中从核部到幔部升高再到内边部降低的Pl1xAn成分环带(图 4e)以及从核部到幔部升高再到边部降低的Amp1的Ti成分环带(图 4c)都对应着一条逆时针的演化轨迹(图 6)。在图 6XAn < 0.35的等值线将投到亚固相线的条件下(Pl1的外边部xAn=0.24~0.35),反映其可能生长于由熔体汇聚形成的局部区域,并且记录了比图中固相线更低的温度(如:Liu et al., 2020Zhang et al., 2021)。

    图  6  样品19DJ07-NGD在NCKFMASHTO体系下的P-T视剖面图及P-T轨迹
    计算P-T视剖面图所使用的有效全岩成分见表 1
    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英;Mt—磁铁矿;L—熔体
    Figure  6.  P-T pseudosection with proposed P-T vectors for 19DJ07-NGD in the NCKFMASHTO system
    The effective bulk-rock compositions used to calculate the P-T pseudosection are shown in Table 1.
    Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz; Mt-magnetite; L-melt

    19DJ07的锆石U-Pb年代学测试及微量元素分析在北京大学造山带与地壳演化教育部重点实验室完成。测试的16个标准锆石91500的207Pb/206Pb加权平均年龄为1066±24 Ma(2SE;MSWD=0.19),和参考的TIMS年龄(1065.4±0.3 Ma;2SE)几乎一致(Wiedenbeck et al., 1995),误差在2σ以内。测试的9个Plešovice锆石的206Pb/238U加权平均年龄为336.7±2.3 Ma (2SE;MSWD=0.76),和参考的TIMS年龄(337.1±0.4 Ma;2SE)几乎一致(Sláma et al., 2008)。所有19DJ07锆石的测试结果详细数据见表 4

    表  4  清原地体基性麻粒岩样品19DJ07的锆石U-Pb同位素数据
    Table  4.  U-Pb isotopic data for zircon of mafic granulite 19DJ07 from the Qingyuan terrane
    232Th/×10-6 238U/×10-6 Th/U 校正后的同位素比值 校正后的年龄/Ma
    207Pb/235Pb 1σ 206Pb/238U 1σ 207Pb/206U 1σ 207Pb/235Pb 1σ 206Pb/238U 1σ 207Pb/206U 1σ
    19DJ07-02 101.76 412.86 0.25 10.65807 0.13565 0.47126 0.00469 0.16398 0.00215 2494 12 2489 21 2497 10
    19DJ07-03 51.98 196.22 0.26 10.71738 0.13947 0.47578 0.00477 0.16333 0.00219 2499 12 2509 21 2490 10
    19DJ07-04 48.30 139.87 0.35 10.99687 0.14640 0.48107 0.00487 0.16575 0.00228 2523 12 2532 21 2515 10
    19DJ07-05 53.26 325.75 0.16 10.94539 0.14137 0.48217 0.00482 0.16459 0.00219 2519 12 2537 21 2503 10
    19DJ07-06 128.79 844.01 0.15 10.79254 0.13826 0.48447 0.00482 0.16152 0.00213 2505 12 2547 21 2472 10
    19DJ07-07 40.22 299.79 0.13 10.02721 0.13068 0.44111 0.00442 0.16482 0.00221 2437 12 2356 20 2506 10
    19DJ07-08 65.81 378.36 0.17 10.56486 0.13723 0.46878 0.00469 0.16341 0.00219 2486 12 2478 21 2491 10
    19DJ07-09 130.96 600.06 0.22 10.41049 0.13488 0.46489 0.00464 0.16237 0.00217 2472 12 2461 20 2480 10
    19DJ07-10 73.42 402.44 0.18 10.73260 0.14078 0.47718 0.00478 0.16308 0.00220 2500 12 2515 21 2488 10
    19DJ07-11 66.82 356.87 0.19 9.28255 0.13476 0.41464 0.00432 0.16232 0.00243 2366 13 2236 20 2480 12
    19DJ07-12 113.78 578.19 0.20 10.29161 0.13614 0.45722 0.00458 0.16320 0.00222 2461 12 2427 20 2489 10
    19DJ07-13 111.41 737.56 0.15 9.23818 0.12275 0.41160 0.00413 0.16274 0.00222 2362 12 2222 19 2484 11
    19DJ07-14 203.43 816.71 0.25 9.01265 0.12004 0.41360 0.00415 0.15799 0.00216 2339 12 2231 19 2434 11
    19DJ07-15 63.08 385.86 0.16 10.64258 0.14333 0.47371 0.00477 0.16289 0.00225 2492 13 2500 21 2486 11
    19DJ07-16 206.75 1201.80 0.17 10.52492 0.14108 0.47749 0.00479 0.15981 0.00220 2482 12 2516 21 2454 11
    19DJ07-17 72.53 658.48 0.11 10.17297 0.13737 0.45181 0.00454 0.16325 0.00226 2451 12 2403 20 2490 11
    19DJ07-18 64.62 505.23 0.13 9.92018 0.13627 0.43789 0.00443 0.16425 0.00232 2427 13 2341 20 2500 11
    19DJ07-19 187.81 605.52 0.31 10.36092 0.14190 0.45673 0.00461 0.16447 0.00231 2468 13 2425 20 2502 11
    19DJ07-20 149.38 794.16 0.19 10.48069 0.14522 0.46511 0.00471 0.16338 0.00232 2478 13 2462 21 2491 11
    19DJ07-21 84.37 195.32 0.43 11.03961 0.15985 0.48406 0.00497 0.16535 0.00245 2526 13 2545 22 2511 12
    19DJ07-22 42.54 105.08 0.40 11.30560 0.16854 0.49434 0.00513 0.16581 0.00253 2549 14 2589 22 2516 12
    19DJ07-23 182.24 738.27 0.25 10.49468 0.14943 0.46203 0.00469 0.16468 0.00240 2479 13 2449 21 2504 12
    19DJ07-24 244.23 1085.32 0.23 10.65064 0.15172 0.47204 0.00479 0.16358 0.00239 2493 13 2493 21 2493 12
    19DJ07-25 64.29 368.52 0.17 11.16502 0.16189 0.49423 0.00505 0.16378 0.00243 2537 14 2589 22 2495 12
    19DJ07-26 23.78 90.03 0.26 10.84158 0.16602 0.47499 0.00496 0.16548 0.00260 2510 14 2505 22 2512 13
    19DJ07-27 118.49 469.57 0.25 10.82470 0.15872 0.47761 0.00488 0.16431 0.00246 2508 14 2517 21 2501 12
    19DJ07-28 189.31 415.74 0.46 10.75754 0.15893 0.47502 0.00486 0.16418 0.00248 2502 14 2506 21 2499 12
    19DJ07-30 110.41 481.92 0.23 11.37164 0.16921 0.50097 0.00513 0.16456 0.00250 2554 14 2618 22 2503 12
    19DJ07-31 61.79 367.00 0.17 10.98146 0.16769 0.48513 0.00500 0.16410 0.00256 2522 14 2550 22 2498 13
    19DJ07-32 67.73 402.17 0.17 10.84644 0.16660 0.47944 0.00495 0.16401 0.00257 2510 14 2525 22 2497 13
    19DJ07-33 67.66 392.51 0.17 10.09102 0.15580 0.45204 0.00467 0.16183 0.00255 2443 14 2404 21 2475 13
    19DJ07-34 65.52 378.32 0.17 10.81767 0.16843 0.47610 0.00493 0.16472 0.00262 2508 14 2510 22 2505 13
    19DJ07-35 84.03 436.80 0.19 10.84746 0.16919 0.47914 0.00496 0.16412 0.00261 2510 15 2524 22 2499 13
    19DJ07-36 34.40 165.27 0.21 11.82197 0.18984 0.52046 0.00545 0.16467 0.00270 2590 15 2701 23 2504 14
    19DJ07-37 93.49 513.01 0.18 10.45095 0.16536 0.46574 0.00483 0.16267 0.00262 2476 15 2465 21 2484 14
    19DJ07-38 236.83 533.72 0.44 11.00081 0.17540 0.48221 0.00501 0.16538 0.00269 2523 15 2537 22 2511 14
    19DJ07-39 62.63 397.06 0.16 10.76432 0.17279 0.47288 0.00492 0.16502 0.00270 2503 15 2496 22 2508 14
    19DJ07-40 133.93 631.49 0.21 10.78947 0.17337 0.47623 0.00495 0.16424 0.00269 2505 15 2511 22 2500 14
    19DJ07-41 119.66 453.45 0.26 9.96767 0.16727 0.43971 0.00462 0.16432 0.00281 2432 15 2349 21 2501 15
    19DJ07-42 38.24 322.60 0.12 8.54360 0.15262 0.39138 0.00420 0.15832 0.00330 2291 16 2129 19 2438 36
    19DJ07-43 109.38 638.11 0.17 9.70541 0.16596 0.42941 0.00454 0.16384 0.00285 2407 16 2303 20 2496 15
    19DJ07-44 54.78 318.28 0.17 11.09025 0.18957 0.48858 0.00516 0.16454 0.00286 2531 16 2565 22 2503 15
    19DJ07-45 166.15 718.67 0.23 10.62991 0.18102 0.47511 0.00499 0.16218 0.00281 2491 16 2506 22 2479 15
    19DJ07-46 41.68 224.75 0.19 10.17533 0.17866 0.45097 0.00480 0.16355 0.00292 2451 16 2400 21 2493 16
    19DJ07-47 80.44 469.36 0.17 11.09185 0.19323 0.48948 0.00518 0.16426 0.00291 2531 16 2568 22 2500 16
    19DJ07-48 59.47 356.07 0.17 10.89295 0.19184 0.47708 0.00507 0.16550 0.00296 2514 16 2515 22 2513 16
    19DJ07-49 193.31 1136.34 0.17 11.10746 0.19455 0.48858 0.00516 0.16479 0.00293 2532 16 2565 22 2505 16
    19DJ07-50 75.63 196.47 0.38 10.99443 0.19778 0.47885 0.00513 0.16642 0.00304 2523 17 2522 22 2522 16
    19DJ07-51 77.89 429.49 0.18 10.69287 0.19419 0.47206 0.00504 0.16418 0.00302 2497 17 2493 22 2499 17
    19DJ07-52 217.58 772.49 0.28 10.96441 0.19950 0.48128 0.00513 0.16513 0.00304 2520 17 2533 22 2509 17
    19DJ07-53 85.53 491.85 0.17 11.16913 0.20522 0.48972 0.00524 0.16531 0.00308 2537 17 2569 23 2511 17
    19DJ07-54 47.44 259.81 0.18 9.94901 0.18611 0.44208 0.00473 0.16322 0.00352 2430 17 2360 21 2489 37
    19DJ07-55 70.21 391.66 0.18 10.15480 0.18917 0.45024 0.00479 0.16358 0.00351 2449 17 2396 21 2493 37
    19DJ07-56 41.09 112.69 0.36 10.93995 0.21216 0.48010 0.00528 0.16515 0.00325 2518 18 2528 23 2509 18
    19DJ07-57 16.18 52.24 0.31 11.38073 0.22959 0.49261 0.00555 0.16745 0.00343 2555 19 2582 24 2532 19
    19DJ07-59 94.50 524.18 0.18 10.73346 0.20448 0.47358 0.00511 0.16427 0.00317 2500 18 2499 22 2500 18
    19DJ07-60 123.63 631.05 0.20 11.23814 0.21513 0.49341 0.00533 0.16508 0.00320 2543 18 2585 23 2508 18
    下载: 导出CSV 
    | 显示表格

    锆石颗粒大部分为长柱状,少数为浑圆状,直径10~100 μm,长宽比为1∶1~5∶1。锆石的CL图像显示了其内部结构为补丁状、冷杉叶状,少数具有震荡环带或较均匀,少数锆石具有核-边结构。锆石的颜色有亮白色、浅灰色、深灰色或黑色(图 7a)。57个U-Pb同位素分析点位显示207Pb/206Pb表观年龄范围为2508±18 Ma到2497±10 Ma,加权平均年龄为2494.7±4.4 Ma(MSWD= 1.7),谐和图上交点年龄为2498±6.9 Ma(MSWD=0.39)(图 7b)。锆石Th/U=0.11~0.46,(Lu/Gd)N=41.4~111.9;大部分锆石具有负Eu异常,极个别为正Eu异常(Eu/Eu*=0.29~1.3);重稀土元素呈现上升的配分模式(图 7c)。上述锆石结构和化学特征表明,锆石可能生长于麻粒岩相变质过程(Vavra et al., 1999Rubatto, 2002Corfu et al., 2003)。

    图  7  石榴二辉麻粒岩样品19DJ07的锆石分析结果
    a—代表性锆石颗粒的阴极发光图像,显示其内部结构和分析位置,编号详情见表 4;b—通过LA-ICP-MS分析结果计算的U-Pb同位素谐和图、加权平均年龄图和U-Pb年龄分布图;c—球粒陨石标准化的稀土配分模式图(根据Sun and McDonough, 1989进行标准化)
    Figure  7.  Analytical results of zircons from mafic granulite 19DJ07
    (a) Cathodoluminescence images of selected zircon grains showing the inner structures and analyzed locations with the identification numbers as in Table 4; (b) U-Pb isotopic concordia, weighted mean age diagram, and U-Pb age distribution diagram showing the LA-ICP-MS analytical results; (c) Chondrite-normalized REE patterns of zircons (normalized according to Sun and McDonough, 1989)

    基于清原地体基性麻粒岩的岩相学特征和相平衡模拟,划分了三个变质阶段,包括峰前升温升压至峰期阶段、峰后减压冷却阶段和后期叠加变质阶段。

    峰期前的升温升压阶段主要依据矿物成分的变化趋势确定。如图 4b4c所示,无论19DJ07-GD还是-NGD,Amp1的Ti成分环带都呈现出从核部到幔部升高再到边部降低的成分环带。两个区域Amp1幔部及Amp0核部的最高Ti值(0.27~0.29)指示峰期温度为900~950 ℃,从核部到幔部升高的Ti值预示着峰期前的升温过程。同样,如图 4d4e所示,Pl1从核部到幔部升高的xAn成分环带也对应着升温升压的进变质过程(图 5图 6)。依据所推测的岩石峰期矿物组合(-GD和-NGD均为Grt + Cpx + Opx + Pl + Ilm ± Amp)及相应的矿物等值线推测岩石峰期的压力为0.8~0.9 GPa。

    19DJ07-GD和-NGD峰后减压冷却过程均以Grt+Cpx+L=Opx+Pl+Amp的反应为主。在此过程中石榴石被消耗而斜长石、角闪石生长;斜长石幔部到边部的xAn降低(图 4d4e),角闪石幔部到边部的Ti含量降低(图 4b4c)。图 5图 6的模拟结果表明,类似的演化过程可以使-NGD的石榴石被完全消耗,而-GD的石榴石存留下来,因为后者比前者具有更低的Mg#值,更有利于石榴石的稳定。如图 5图 6所示,降温降压过程终止于固相线,含有黑云母的固相线组合给出了0.70~0.78 GPa/~800 ℃的P-T条件。

    19DJ07-GD和-NGD都发育了叠加变质组合,尤其以-GD更为丰富。叠加变质组合以Grt2+Qz±Cpx2的后成合晶/冠状体及第二期矿物Opx2/Pl2为特征(图 3f3h),和岩石主体矿物的细粒变晶结构有明显差别。虽然19DJ07没有古元古代的年龄记录,但是Grt2+Qz ± Cpx2后成合晶和区内经历了古元古代晚期(~1.85 Ga)高压麻粒岩相变质的基性岩墙中石榴石+石英±单斜辉石后成合晶一致。Duan et al. (2019)认为该后成合晶组合记录了顺时针型P-T轨迹,可能与古元古代华北克拉通北缘的地壳增厚造山事件有关。在冀东地体诸多记录了新太古代—古元古代两期变质年龄的表壳岩中都发现了类似的后成合晶叠加结构(如:Yang and Wei, 2017; Lu and Wei, 2020)。Yang and Wei (2017)通过石榴子石-全岩Lu-Hf等时线方法得到了基性麻粒岩中和Qz构成冠状后成合晶的Grt2年龄为1.79~1.77 Ga。在清原地体发育着丰富石榴石+石英后成合晶结构的中酸性麻粒岩中也发现了两期的年龄记录。于是认为基性麻粒岩19DJ07同样经历了古元古代高压麻粒岩相变质的叠加,并且保留了形成于缺流体的升温升压阶段的冠状体/后成合晶结构。

    基性麻粒岩19DJ07的锆石记录了新太古代末期变质年龄位2508±18~2497±10 Ma,加权平均年龄2494.7±4.4 Ma(MSWD=1.7)(图 7)。变质锆石的生长主要受熔体/流体行为控制。Zr在熔体中有较高的溶解度(Watson and Harrison, 1984),所以锆石在含有大量熔体的进变质过程中不会生长(Roberts and Finger, 1997),而会在峰后降温冷却过程中随着熔体结晶生长。所以高级变质岩中的变质锆石一般记录峰后冷却过程的时间(Kelsey and Powell, 2011; Zhang et al., 2013; Wei et al., 2014; Yakymchuk et al., 2014, 2017)。如图 8所示,统计已有研究在该地区的工作,TTG质-花岗质片麻岩中岩浆锆石的年龄为2.57~2.49 Ga,代表了其侵位时间;角闪岩相表壳岩的变质年龄为2.55~2.43 Ga,并且在2.51 Ga、2.49 Ga、2.47 Ga出现峰期;麻粒岩相表壳岩的变质年龄为2.50~ 2.46 Ga,并且在2.49 Ga、2.47 Ga出现峰期。所以19DJ07获得的新太古代末期的变质年龄与清原地体其它角闪岩相-麻粒岩相表壳岩变质年龄基本一致,并与区内TTG质-花岗质岩浆活动晚期脉冲年龄相同(图 8)。至于岩石并未记录古元古代变质年龄的原因有以下三种:古元古代叠加变质事件发生于缺流体的条件下,不利于锆石生长;第二期叠加变质事件峰期温度较第一期变质事件更低,因此无法改造第一期变质事件中形成的锆石;“Oswald熟化”表明大颗粒的表面能更低,因此第一期较高温度的变质事件形成的粗粒锆石很难被改造而形成小颗粒锆石(Nemchin et al., 2001)。

    图  8  清原地区各类岩石的年龄汇总图
    图中展示了其他角闪岩相-麻粒岩相表壳岩的年龄(万渝生等, 2005b; 白翔等, 2014; Peng et al., 2015; Wang et al., 2016a; Wu et al., 2016; Li and Wei, 2017; Wu and Wei, 2021)、TTG质-花岗质片麻岩的结晶年龄(万渝生等, 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016a, 2016b; Wu et al., 2016; 王康等, 2018; Li et al., 2020; 袁玲玲等, 2020)以及研究样品19DJ07的年龄
    Figure  8.  Age summary chart of different rock types from the Qingyuan Terrane
    The ages of other amphibolite-granulite facies supracrustal rocks (Wan et al., 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016; Wu et al., 2016; Li and Wei, 2017; Wu and Wei, 2021) and the crystallization ages of TTG-granitic gneiss (Wan et al., 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016a, 2016b; Wu et al., 2016; Wang et al., 2018; Li et al., 2020; Yuan et al., 2020) are shown in the diagram. The age data for the investigated samples 19DJ07 are presented for comparison with other research data

    基性麻粒岩19DJ07记录了逆时针的P-T轨迹,包括峰前升温升压至峰期和峰后降温降压至固相线的变质阶段(图 9),峰期变质条件为0.8~0.9 GPa/900~950 ℃,对应地温梯度30 ℃/km。清原地体基性麻粒岩的P-T轨迹与冀东新太古代麻粒岩相表壳岩几乎一致,只是峰期温度略低(图 9Liu and Wei, 2018, 2020)。清原地体具有典型的太古宙“穹隆-龙骨构造”(图 1Collins et al., 1998Hickman, 2004Lin and Beakhouse, 2013Anhaeusser, 2014),并且表壳岩变质时间与TTG质-花岗质岩浆活动的晚期脉冲基本相同(图 8),由此推断麻粒岩相表壳岩变质作用演化与太古宙特有的垂向/沉落构造体制有关(如:Duan et al., 2017Liu and Wei, 2018, 2020Liu et al., 2020Wu and Wei, 2021)。沉落构造体制包括以下过程:首先地壳浅部表壳岩被侵入的高温TTG质-花岗质岩浆加热;然后受热的表壳岩碎裂成大小不一的块体,坠入巨大“TTG岩浆海”的深部,对应峰前升压过程;最后TTG岩浆/岩石穹窿抬升并冷却,裹挟其中的表壳岩块体发生峰后降压降温的变质演化(Duan et al., 2017; Liu and Wei, 2018)。

    图  9  清原地区和冀东地区新太古代表壳岩的P-T-t轨迹总结
    清原地区:19DJ07为文中研究样品;Wu21a为Wu and Wei (2021)报道的新太古代石榴角闪岩。冀东地区:LW18和LW20为Liu and Wei (2018, 2020)报道的新太古代麻粒岩相表壳岩;Liu20为Liu et al. (2020)报道的新太古代角闪岩相表壳岩。基性岩的湿固相线(WS)来自Lambert and Wyllie (1972)。角闪石的消失线:Amp-out-a来自Wyllie and Wolf (1993),Amp-out-b来自Sen and Dunn (1994);石榴石生成线:Grt-in-a来自Winther and Newton (1991),Grt-in-b来自Liu et al. (1996)。变质相界线来自魏春景等(2017),特别指出麻粒岩相包括正常麻粒岩亚相(< 900 ℃)和超高温麻粒岩亚相(>900 ℃)(Brown, 2007)
    Figure  9.  A summary of the P-T-t paths for Neoarchean supracrustal rocks from the Qingyuan Terrane with comparison to those from the Eastern Hebei Terrane
    For the Qingyuan terrane: 19DJ07, the investigated sample of this study; Wu21a, Neoarchean garnet amphibolite in Wu and Wei (2021); LW18 and LW20, granulite facies supracrustal rocks in Liu and Wei (2018, 2020); Liu20, amphibolite facies supracrustal rock in Liu et al. (2020). The wet solidus of mafic rocks (WS) is after Lambert and Wyllie (1972); the amphibole-out curves: Amp-out-a is from Wyllie and Wolf (1993), and Amp-out-b is from Sen and Dunn (1994); the garnet-in curves: Gtr-in-a is from Winther and Newton (1991), and Gtr-in-b from Liu et al. (1996). The distributions of metamorphic facies are from Wei et al. (2017) It is pointed out that the granulite facies include normal granulite subfacies (< 900 ℃) and UHT granulite subfacies (>900 ℃)

    5条新太古代晚期表壳岩的变质演化P-T轨迹(19DJ07、LW18、LW20、Wu21a和Liu20,图 9)显示出虽然其峰前升压加热过程以及峰期温度不同,但峰期压力却很相似,都对应大约30~35 km地壳深度。这说明表壳岩在峰期前经历了不同的加热过程,但块体均沉落到了下地壳深度。事实上,华北克拉通东部陆块的角闪岩相-麻粒岩相表壳岩记录着十分复杂的P-T轨迹。以冀东地区为例,太古宙表壳岩-TTG片麻岩同样呈“穹隆-龙骨”构造,其中新太古代角闪岩相表壳岩记录了顺时针型P-T轨迹(Liu et al., 2020),而新太古代麻粒岩相表壳岩则记录着逆时针型P-T轨迹(Liu and Wei, 2018, 2020)。针对华北克拉通东部陆块新太古代表壳岩具有时间上共存的不同P-T-t轨迹的现象,Yu et al. (2022)进行了一系列数值模拟研究,认为这很可能是在和地幔柱相关的地球动力学机制下发展起来的。

    通过对清原地区基性麻粒岩进行的详细的岩石学、地球化学、相平衡模拟以及锆石年代学的研究,主要得出以下几点认识。

    (1) 清原地体基性麻粒岩记录了逆时针的P-T轨迹,峰期温压条件为0.8~0.9 GPa/900~950 ℃,峰前以升温升压为主,峰后为降温降压演化。

    (2) 锆石定年结果表明清原地体新太古代晚期高温—超高温麻粒岩相变质作用发生在~2.50 Ga,与区域上TTG质-花岗质岩浆活动的晚期脉冲时间一致;结合区域上的穹隆-龙骨构造、基性麻粒岩逆时针的P-T轨迹,推测清原新太古宙麻粒岩相变质作用形成于太古宙特有的垂向构造/沉落构造体制。

    (3) 清原地体的表壳岩都经历了古元古代高压麻粒岩相变质作用的叠加,特征为岩石局部发育后成合晶和冠状体结构。

    致谢: 感谢秦红、李小犁、马芳、武现伟对实验分析的帮助,感谢段站站、吴定、董杰、杨子珍对野外工作的参与帮助。
    责任编辑:王婧
  • 图  1  华北克拉通构造分区图及清原地体地质简图

    a—华北克拉通构造分区(据Zhao et al., 2005修改);b—清原地体地质简图(据万渝生等,2005bPeng et al., 2015Li and Wei, 2017修改)

    Figure  1.  Tectonic subdivision of the North China Craton and geological sketch map of the Qingyuan Terrane

    (a) Tectonic subdivision of the North China Craton (modified from Zhao et al., 2005); (b) Geological sketch map of the Qingyuan Terrane (modified from Wan et al., 2005b; Peng et al., 2015; Li and Wei, 2017)

    图  2  显示岩性分布和样品采集点的清原地区地质图(据Duan et al., 2019修改)

    Figure  2.  Geological sketch map of the Qingyuan area showing lithological distribution and sample localities (modified from Duan et al., 2019)

    图  3  表壳岩的露头照片、基性麻粒岩19DJ07的野外露头及显微照片

    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英
    下标数字:0—包裹体状态的第一期矿物;1—第一期矿物;2—第二期矿物
    a、b标记的线条对应图 4中的矿物成分剖面
    a—基性麻粒岩(含石榴石域和无石榴石域)和富铁沉积物互层,露头见部分熔融产生的浅色脉体;b—含石榴石细带的样品19DJ07露头照片;c—样品薄片的扫描照片,岩石分为石榴石域(19DJ07-GD)和无石榴石域(19DJ07-NGD);d、e—两期石榴石显微照片对比,其中Grt2和Qz构成冠状后成合晶,发育两期斜方辉石(Opx1、Opx2)、三期角闪石(包裹体Amp0、岩石主体矿物之一Amp1呈变晶结构、Amp2粒度细且生长在辉石周围;f—岩石局部叠加变质组合显微特征,发育Grt2+Qz+Cpx2的后成合晶和两期斜长石(Pl1、Pl2);g—两期单斜辉石(Cpx1、Cpx2)的显微特征;h—岩石近粒变晶结构显微特征,发育被辉石包裹的Amp0和两期斜长石(Pl1、Pl2)

    Figure  3.  Outcrop photo of supracrustal rock, and field outcrop photo and microphotographs of mafic granulite 19DJ07

    (a) Interbedding of mafic granulite (containing garnet-bearing and non-garnet-bearing domains) with iron-rich metasediments, with outcrops displaying light-colored veins formed by partial melting; (b) Outcrop photo of sample 19DJ07, which contains fine bands of garnet; (c) Scanned photos of sample thin-section, categorizing the rocks into garnet-bearing domain (19DJ07-GD) and non garnet-bearing domain (19DJ07-NGD); (d and e) Comparative microphotographs of two generations of garnet, where Grt2 and Qz form coronal symplectites, and two generations of orthopyroxene (Opx1/2) and three types of amphibole (Amp0/1/2) are developed; Amp0 occurs as inclusions, Amp1 as one of the main minerals of rock exhibits blastic texture, and Amp2 is fine-grained and grows around pyroxene; (f) Microscopic characteristics of locally superimposed metamorphic combinations in rocks, showing the development of symplectites of Grt2+Qz+Cpx2 and two generations of plagioclase (Pl1/2); (g) Microscopic characteristics of two generations of clinopyroxene(Cpx1/2); (h) Homeoblast texture in 19DJ07-NGD, with Amp0 enclosed by pyroxene and two generations of plagioclase (Pl1/2)
    The lines labeled with a and b corresponds to the composition zoning profile in Fig. 4; mineral abbreviations are according to Whitney and Evans, 2010; Warr (2021): Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz

    图  4  样品19DJ07中代表性矿物的成分特征图

    a—19DJ07-GD的Grt1的成分剖面(xAlm=Fe2+/(Fe2++Mn+Mg+Ca), xSpsxPyxGrs依此类推);b、c—典型角闪石的Ti成分环带(b—19DJ07-GD的Amp1,c—19DJ07-NGD的Amp1);d、e—典型斜长石的的xAn成分剖面图,xAn=Ca/(Ca+Na+K)(d—19DJ07-GD的Pl1,e—19DJ07-NGD的Pl1)

    Figure  4.  Composition diagrams of representative minerals in Sample 19DJ07

    (a) Grt1 chemical zoning profiles in 19DJ07-GD (xAlm=Fe2+/(Fe2++Mn+Mg+Ca); xSps, xPy, and xGrs follow this pattern, respectively); (b and c) Typical composition zoning of Ti for Amp1 in 19DJ07-GD (b) and 19DJ07-NGD (c); (d) Typical composition zoning of xAn(=Ca/(Ca+Na+K)) for Pl1 in 19DJ07-GD (d) and 19DJ07-NGD (e)

    图  5  样品19DJ07-GD在NCKFMASHTO体系下的P-T视剖面图及P-T轨迹

    计算P-T视剖面图所使用的有效全岩成分见表 1
    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英;L—熔体

    Figure  5.  P-T pseudosection with proposed P-T vectors for 19DJ07-GD in the NCKFMASHTO system

    The effective bulk-rock compositions used to calculate the P-T pseudosection are shown in Table 1.
    Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz; L-melt

    图  6  样品19DJ07-NGD在NCKFMASHTO体系下的P-T视剖面图及P-T轨迹

    计算P-T视剖面图所使用的有效全岩成分见表 1
    Grt—石榴石;Cpx—单斜辉石;Opx—斜方辉石;Bt—黑云母;Amp—角闪石;Ilm—钛铁矿;Pl—斜长石;Qz—石英;Mt—磁铁矿;L—熔体

    Figure  6.  P-T pseudosection with proposed P-T vectors for 19DJ07-NGD in the NCKFMASHTO system

    The effective bulk-rock compositions used to calculate the P-T pseudosection are shown in Table 1.
    Grt-garnet; Cpx-clinopyroxene; Opx-orthopyroxene; Bt-biotite; Amp-hornblende; Ilm-ilmenite; Pl-plagioclase; Qz-quartz; Mt-magnetite; L-melt

    图  7  石榴二辉麻粒岩样品19DJ07的锆石分析结果

    a—代表性锆石颗粒的阴极发光图像,显示其内部结构和分析位置,编号详情见表 4;b—通过LA-ICP-MS分析结果计算的U-Pb同位素谐和图、加权平均年龄图和U-Pb年龄分布图;c—球粒陨石标准化的稀土配分模式图(根据Sun and McDonough, 1989进行标准化)

    Figure  7.  Analytical results of zircons from mafic granulite 19DJ07

    (a) Cathodoluminescence images of selected zircon grains showing the inner structures and analyzed locations with the identification numbers as in Table 4; (b) U-Pb isotopic concordia, weighted mean age diagram, and U-Pb age distribution diagram showing the LA-ICP-MS analytical results; (c) Chondrite-normalized REE patterns of zircons (normalized according to Sun and McDonough, 1989)

    图  8  清原地区各类岩石的年龄汇总图

    图中展示了其他角闪岩相-麻粒岩相表壳岩的年龄(万渝生等, 2005b; 白翔等, 2014; Peng et al., 2015; Wang et al., 2016a; Wu et al., 2016; Li and Wei, 2017; Wu and Wei, 2021)、TTG质-花岗质片麻岩的结晶年龄(万渝生等, 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016a, 2016b; Wu et al., 2016; 王康等, 2018; Li et al., 2020; 袁玲玲等, 2020)以及研究样品19DJ07的年龄

    Figure  8.  Age summary chart of different rock types from the Qingyuan Terrane

    The ages of other amphibolite-granulite facies supracrustal rocks (Wan et al., 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016; Wu et al., 2016; Li and Wei, 2017; Wu and Wei, 2021) and the crystallization ages of TTG-granitic gneiss (Wan et al., 2005b; Bai et al., 2014; Peng et al., 2015; Wang et al., 2016a, 2016b; Wu et al., 2016; Wang et al., 2018; Li et al., 2020; Yuan et al., 2020) are shown in the diagram. The age data for the investigated samples 19DJ07 are presented for comparison with other research data

    图  9  清原地区和冀东地区新太古代表壳岩的P-T-t轨迹总结

    清原地区:19DJ07为文中研究样品;Wu21a为Wu and Wei (2021)报道的新太古代石榴角闪岩。冀东地区:LW18和LW20为Liu and Wei (2018, 2020)报道的新太古代麻粒岩相表壳岩;Liu20为Liu et al. (2020)报道的新太古代角闪岩相表壳岩。基性岩的湿固相线(WS)来自Lambert and Wyllie (1972)。角闪石的消失线:Amp-out-a来自Wyllie and Wolf (1993),Amp-out-b来自Sen and Dunn (1994);石榴石生成线:Grt-in-a来自Winther and Newton (1991),Grt-in-b来自Liu et al. (1996)。变质相界线来自魏春景等(2017),特别指出麻粒岩相包括正常麻粒岩亚相(< 900 ℃)和超高温麻粒岩亚相(>900 ℃)(Brown, 2007)

    Figure  9.  A summary of the P-T-t paths for Neoarchean supracrustal rocks from the Qingyuan Terrane with comparison to those from the Eastern Hebei Terrane

    For the Qingyuan terrane: 19DJ07, the investigated sample of this study; Wu21a, Neoarchean garnet amphibolite in Wu and Wei (2021); LW18 and LW20, granulite facies supracrustal rocks in Liu and Wei (2018, 2020); Liu20, amphibolite facies supracrustal rock in Liu et al. (2020). The wet solidus of mafic rocks (WS) is after Lambert and Wyllie (1972); the amphibole-out curves: Amp-out-a is from Wyllie and Wolf (1993), and Amp-out-b is from Sen and Dunn (1994); the garnet-in curves: Gtr-in-a is from Winther and Newton (1991), and Gtr-in-b from Liu et al. (1996). The distributions of metamorphic facies are from Wei et al. (2017) It is pointed out that the granulite facies include normal granulite subfacies (< 900 ℃) and UHT granulite subfacies (>900 ℃)

    表  1  清原地区基性麻粒岩的全岩成分以及相平衡模拟用的有效全岩成分

    Table  1.   Bulk-rock compositions and effective bulk-rock compositions of samples from Qingyuan terrane

    样品 ICP-OES分析得到的全岩成分含量/% A/CNK Mg#
    SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI
    19DJ07 50.20 1.46 12.86 15.15 0.21 5.32 10.41 3.10 0.59 0.18 0.17 0.53 0.41
    样品 用于相平衡模拟的标准化全岩成分摩尔分数/% Mg# A/CNK 图幅
    H2O SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O
    19DJ07-GD 2.07 52.89 8.45 11.38 7.23 12.87 0.38 3.12 1.17 0.44 0.36 0.57 图 5
    19DJ07-NGD 2.68 51.83 8.79 11.22 9.22 10.64 0.41 3.41 0.99 0.79 0.46 0.58 图 6
    注:Fe2O3全铁;LOI烧失量;Mg#=MgO/(MgO+FeOtotal);A/CNK=Al2O3/(CaO+Na2O+K2O)
    下载: 导出CSV

    表  2  清原地体基性麻粒岩19DJ07-GD中代表性矿物的探针分析

    Table  2.   Selected microprobe analyses for mafic granulite 19DJ07-GD from the Qingyuan terrane

    矿物 Grt1-C Grt1-R Grt2 Cpx1 Cpx2 Opx1 Opx2 Amp0 Amp1-C Amp1-M Amp1-R Amp2 Bt1 Bt2 Pl1-C Pl1-M Pl1-R1 Pl1-R2 Pl2
    SiO2 36.47 38.05 37.48 51.53 52.25 49.84 50.33 41.82 42.17 39.74 41.17 42.18 35.94 35.92 58.93 58.24 60.15 63.24 63.89
    TiO2 0.10 0.11 - 0.07 0.08 0.02 0.05 2.39 1.83 2.10 1.57 1.66 4.77 4.70 0.02 0.03 - - -
    Al2O3 20.08 19.57 20.46 1.14 1.34 0.43 0.45 11.72 11.01 11.48 11.18 10.77 13.65 13.70 26.37 25.67 25.44 23.85 23.00
    Cr2O3 0.05 0.02 0.02 0.06 0.03 - - - 0.07 0.08 0.07 0.06 0.06 - - 0.01 0.02 - -
    FeO 29.78 31.34 30.58 13.42 13.58 34.57 33.77 19.44 20.46 20.43 20.92 19.78 22.03 20.70 0.08 0.05 0.04 0.39 0.50
    MnO 1.06 1.24 1.28 0.15 0.21 0.44 0.41 0.10 - - - 0.10 - - - - - - -
    MgO 2.90 2.83 2.95 11.05 11.02 14.08 14.71 7.56 8.03 7.62 7.55 8.30 10.00 9.84 - - - - -
    CaO 8.82 7.48 7.46 22.93 22.81 0.62 0.42 11.73 11.75 11.80 11.68 11.85 - - 8.90 8.56 7.29 5.44 4.62
    Na2O 0.13 0.06 0.16 0.46 0.71 0.05 - 1.75 1.64 1.39 1.60 1.51 0.16 - 6.67 5.77 7.21 8.19 8.80
    K2O - - - - - - - 1.34 1.41 1.20 1.30 1.18 9.51 9.37 0.10 0.07 0.14 0.12 0.03
    Total 99.47 100.71 100.40 100.81 102.02 100.04 100.16 97.85 98.44 95.92 97.12 97.39 96.14 94.23 101.09 98.40 100.31 101.23 100.87
    O 12.000 12.000 12.000 6.000 6.000 6.000 6.000 23.000 23.000 23.000 23.000 23.000 11.000 11.000 8.000 8.000 8.000 8.000 8.000
    Si 2.912 3.018 2.969 1.940 1.941 1.966 1.976 6.383 6.412 6.199 6.357 6.452 2.768 2.800 2.609 2.635 2.669 2.765 2.799
    Ti 0.006 0.007 - 0.002 0.002 0.001 0.001 0.274 0.209 0.246 0.182 0.191 0.276 0.276 0.001 0.001 - - -
    Al 1.890 1.830 1.911 0.051 0.059 0.020 0.021 2.109 1.974 2.111 2.035 1.942 1.239 1.259 1.376 1.369 1.331 1.229 1.188
    Cr - - - - - - - - - - - - - - - - - - -
    Fe3+ 0.299 0.130 0.175 0.097 0.106 0.050 0.024 - 0.120 0.360 0.216 0.150 - - - - - - -
    Fe2+ 1.690 1.949 1.850 0.325 0.316 1.090 1.085 2.481 2.481 2.305 2.485 2.381 1.419 1.350 - - - - -
    Mn 0.072 0.083 0.086 - - 0.015 0.014 0.013 - 0.011 0.010 - - - - - - - -
    Mg 0.345 0.335 0.348 0.620 0.610 0.828 0.861 1.720 1.820 1.771 1.737 1.892 1.148 1.143 - - - - -
    Ca 0.755 0.636 0.633 0.925 0.908 0.026 0.018 1.918 1.914 1.972 1.932 1.942 - - 0.422 0.415 0.347 0.255 0.217
    Na 0.020 - 0.025 0.034 0.051 0.004 - 0.518 0.484 0.420 0.479 0.448 0.024 - 0.573 0.506 0.620 0.694 0.748
    K - - - - - - - 0.261 0.274 0.239 0.256 0.230 0.934 0.932 - - - - -
    x(矿物) 0.26 0.21 0.22 0.66 0.66 0.43 0.44 0.41 0.42 0.43 0.41 0.44 0.45 0.46 0.42 0.45 0.36 0.27 0.22
    y(矿物) 0.12 0.11 0.12 0.01 0.00 0.01 0.01 0.00
    注: x(Grt)=xGr=Ca/(Fe2++Mg+Ca+Mn);y(Grt)=xPy=Mg/(Fe2++Mg+Ca+Mn);x(Cpx)=Mg/(Fe2++Mg);x(Opx)=Mg/(Fe2++Mg);x(Amp)=Mg/(Fe2++Mg);x(Bt)=Mg/(Fe2++Mg+Mn);x(Pl)=xAn=Ca/(Ca+Na+K);y(Pl)=xOr=K/(Ca+Na+K)。后缀含义:-C,核部;-M,幔部;-R,边部;斜长石,-R1为内边、-R2为外边。矿物分子式采用AX程序计算。“-”指示该含量低于检测线。2~12行的单位为%,13~24行的单位为p.f.u.,25、26行的单位为%。
    下载: 导出CSV

    表  3  清原地体基性麻粒岩样品19DJ07-NGD中代表性矿物的探针分析

    Table  3.   Selected microprobe analyses for mafic granulite 19DJ07-NGD from the Qingyuan terrane

    矿物 Cpx1 Opx1 Amp0 Amp1-C Amp1-M Amp1-R Amp2 Bt1 Pl1-C Pl1-M Pl1-R1 Pl1-R2 Pl2
    SiO2 52.38 50.88 41.82 43.01 42.78 42.28 42.86 36.81 59.73 59.53 59.67 63.35 63.18
    TiO2 0.07 - 2.39 1.55 2.18 1.63 1.40 4.70 - - - - -
    Al2O3 1.23 0.39 11.72 10.57 11.37 11.53 11.48 13.48 25.94 26.61 25.77 23.45 23.67
    Cr2O3 0.06 0.03 - 0.03 0.07 0.04 0.04 0.06 0.03 0.04 0.03 0.01 0.04
    FeO 14.21 35.60 19.44 20.67 20.25 19.18 19.86 22.74 0.08 0.08 0.04 0.06 0.36
    MnO 0.20 0.53 0.10 0.11 - - - - - - - - -
    MgO 10.20 13.75 7.56 8.65 8.03 8.71 8.71 9.27 - - - - -
    CaO 22.29 0.47 11.73 11.92 11.65 11.99 11.77 0.13 8.49 9.02 7.50 5.03 5.56
    Na2O 0.50 - 1.75 1.37 1.61 1.62 1.46 0.08 6.67 6.01 6.61 8.36 8.11
    K2O - - 1.34 1.31 1.23 1.25 1.31 9.52 0.14 0.16 0.17 0.19 0.23
    Total 101.16 101.67 97.85 99.19 99.24 98.31 98.93 96.84 101.15 101.46 99.81 100.50 101.18
    O 6.000 6.000 23.000 23.000 23.000 23.000 23.000 11.000 8.000 8.000 8.000 8.000 8.000
    Si 1.976 1.984 6.383 6.451 6.421 6.388 6.422 2.816 2.637 2.619 2.658 2.786 2.766
    Ti - - 0.274 0.175 0.246 0.185 0.158 0.270 - - - - -
    Al 0.055 0.018 2.109 1.869 2.012 2.054 2.028 1.216 1.350 1.380 1.353 1.216 1.222
    Cr - - - 0.004 0.008 0.005 0.005 0.004 - - - - -
    Fe3+ 0.024 0.014 - 0.316 0.123 0.142 0.252 - - - - - 0.013
    Fe2+ 0.424 1.147 2.481 2.277 2.420 2.282 2.236 1.455 - - - - -
    Mn - 0.018 0.013 0.014 - 0.010 - - - - - - -
    Mg 0.573 0.799 1.720 1.934 1.796 1.961 1.945 1.057 - - - - -
    Ca 0.901 0.020 1.918 1.916 1.874 1.941 1.890 0.011 0.402 0.425 0.358 0.237 0.261
    Na 0.037 - 0.518 0.398 0.469 0.475 0.424 0.012 0.571 0.513 0.571 0.713 0.689
    K - - 0.261 0.251 0.236 0.241 0.250 0.929 - - 0.010 0.011 0.013
    x(矿物) 0.57 0.41 0.41 0.46 0.43 0.46 0.47 0.42 0.41 0.45 0.38 0.25 0.27
    y(矿物) 0.01 0.01 0.01 0.01 0.01
    注: x(Grt)=xGr=Ca/(Fe2++Mg+Ca+Mn);y(Grt)=xPy=Mg/(Fe2++Mg+Ca+Mn);x(Cpx)=Mg/(Fe2++Mg);x(Opx)=Mg/(Fe2++Mg);x(Amp)=Mg/(Fe2++Mg);x(Bt)=Mg/(Fe2++Mg+Mn);x(Pl)=xAn=Ca/(Ca+Na+K);y(Pl)=xOr=K/(Ca+Na+K)。后缀含义:-C,核部;-M,幔部;-R,边部;斜长石,-R1为内边、-R2为外边。矿物分子式采用AX程序计算。“-”指示该含量低于检测线。2~12行的单位为%,13~24行的单位为p.f.u.,25、26行的单位为%。
    下载: 导出CSV

    表  4  清原地体基性麻粒岩样品19DJ07的锆石U-Pb同位素数据

    Table  4.   U-Pb isotopic data for zircon of mafic granulite 19DJ07 from the Qingyuan terrane

    232Th/×10-6 238U/×10-6 Th/U 校正后的同位素比值 校正后的年龄/Ma
    207Pb/235Pb 1σ 206Pb/238U 1σ 207Pb/206U 1σ 207Pb/235Pb 1σ 206Pb/238U 1σ 207Pb/206U 1σ
    19DJ07-02 101.76 412.86 0.25 10.65807 0.13565 0.47126 0.00469 0.16398 0.00215 2494 12 2489 21 2497 10
    19DJ07-03 51.98 196.22 0.26 10.71738 0.13947 0.47578 0.00477 0.16333 0.00219 2499 12 2509 21 2490 10
    19DJ07-04 48.30 139.87 0.35 10.99687 0.14640 0.48107 0.00487 0.16575 0.00228 2523 12 2532 21 2515 10
    19DJ07-05 53.26 325.75 0.16 10.94539 0.14137 0.48217 0.00482 0.16459 0.00219 2519 12 2537 21 2503 10
    19DJ07-06 128.79 844.01 0.15 10.79254 0.13826 0.48447 0.00482 0.16152 0.00213 2505 12 2547 21 2472 10
    19DJ07-07 40.22 299.79 0.13 10.02721 0.13068 0.44111 0.00442 0.16482 0.00221 2437 12 2356 20 2506 10
    19DJ07-08 65.81 378.36 0.17 10.56486 0.13723 0.46878 0.00469 0.16341 0.00219 2486 12 2478 21 2491 10
    19DJ07-09 130.96 600.06 0.22 10.41049 0.13488 0.46489 0.00464 0.16237 0.00217 2472 12 2461 20 2480 10
    19DJ07-10 73.42 402.44 0.18 10.73260 0.14078 0.47718 0.00478 0.16308 0.00220 2500 12 2515 21 2488 10
    19DJ07-11 66.82 356.87 0.19 9.28255 0.13476 0.41464 0.00432 0.16232 0.00243 2366 13 2236 20 2480 12
    19DJ07-12 113.78 578.19 0.20 10.29161 0.13614 0.45722 0.00458 0.16320 0.00222 2461 12 2427 20 2489 10
    19DJ07-13 111.41 737.56 0.15 9.23818 0.12275 0.41160 0.00413 0.16274 0.00222 2362 12 2222 19 2484 11
    19DJ07-14 203.43 816.71 0.25 9.01265 0.12004 0.41360 0.00415 0.15799 0.00216 2339 12 2231 19 2434 11
    19DJ07-15 63.08 385.86 0.16 10.64258 0.14333 0.47371 0.00477 0.16289 0.00225 2492 13 2500 21 2486 11
    19DJ07-16 206.75 1201.80 0.17 10.52492 0.14108 0.47749 0.00479 0.15981 0.00220 2482 12 2516 21 2454 11
    19DJ07-17 72.53 658.48 0.11 10.17297 0.13737 0.45181 0.00454 0.16325 0.00226 2451 12 2403 20 2490 11
    19DJ07-18 64.62 505.23 0.13 9.92018 0.13627 0.43789 0.00443 0.16425 0.00232 2427 13 2341 20 2500 11
    19DJ07-19 187.81 605.52 0.31 10.36092 0.14190 0.45673 0.00461 0.16447 0.00231 2468 13 2425 20 2502 11
    19DJ07-20 149.38 794.16 0.19 10.48069 0.14522 0.46511 0.00471 0.16338 0.00232 2478 13 2462 21 2491 11
    19DJ07-21 84.37 195.32 0.43 11.03961 0.15985 0.48406 0.00497 0.16535 0.00245 2526 13 2545 22 2511 12
    19DJ07-22 42.54 105.08 0.40 11.30560 0.16854 0.49434 0.00513 0.16581 0.00253 2549 14 2589 22 2516 12
    19DJ07-23 182.24 738.27 0.25 10.49468 0.14943 0.46203 0.00469 0.16468 0.00240 2479 13 2449 21 2504 12
    19DJ07-24 244.23 1085.32 0.23 10.65064 0.15172 0.47204 0.00479 0.16358 0.00239 2493 13 2493 21 2493 12
    19DJ07-25 64.29 368.52 0.17 11.16502 0.16189 0.49423 0.00505 0.16378 0.00243 2537 14 2589 22 2495 12
    19DJ07-26 23.78 90.03 0.26 10.84158 0.16602 0.47499 0.00496 0.16548 0.00260 2510 14 2505 22 2512 13
    19DJ07-27 118.49 469.57 0.25 10.82470 0.15872 0.47761 0.00488 0.16431 0.00246 2508 14 2517 21 2501 12
    19DJ07-28 189.31 415.74 0.46 10.75754 0.15893 0.47502 0.00486 0.16418 0.00248 2502 14 2506 21 2499 12
    19DJ07-30 110.41 481.92 0.23 11.37164 0.16921 0.50097 0.00513 0.16456 0.00250 2554 14 2618 22 2503 12
    19DJ07-31 61.79 367.00 0.17 10.98146 0.16769 0.48513 0.00500 0.16410 0.00256 2522 14 2550 22 2498 13
    19DJ07-32 67.73 402.17 0.17 10.84644 0.16660 0.47944 0.00495 0.16401 0.00257 2510 14 2525 22 2497 13
    19DJ07-33 67.66 392.51 0.17 10.09102 0.15580 0.45204 0.00467 0.16183 0.00255 2443 14 2404 21 2475 13
    19DJ07-34 65.52 378.32 0.17 10.81767 0.16843 0.47610 0.00493 0.16472 0.00262 2508 14 2510 22 2505 13
    19DJ07-35 84.03 436.80 0.19 10.84746 0.16919 0.47914 0.00496 0.16412 0.00261 2510 15 2524 22 2499 13
    19DJ07-36 34.40 165.27 0.21 11.82197 0.18984 0.52046 0.00545 0.16467 0.00270 2590 15 2701 23 2504 14
    19DJ07-37 93.49 513.01 0.18 10.45095 0.16536 0.46574 0.00483 0.16267 0.00262 2476 15 2465 21 2484 14
    19DJ07-38 236.83 533.72 0.44 11.00081 0.17540 0.48221 0.00501 0.16538 0.00269 2523 15 2537 22 2511 14
    19DJ07-39 62.63 397.06 0.16 10.76432 0.17279 0.47288 0.00492 0.16502 0.00270 2503 15 2496 22 2508 14
    19DJ07-40 133.93 631.49 0.21 10.78947 0.17337 0.47623 0.00495 0.16424 0.00269 2505 15 2511 22 2500 14
    19DJ07-41 119.66 453.45 0.26 9.96767 0.16727 0.43971 0.00462 0.16432 0.00281 2432 15 2349 21 2501 15
    19DJ07-42 38.24 322.60 0.12 8.54360 0.15262 0.39138 0.00420 0.15832 0.00330 2291 16 2129 19 2438 36
    19DJ07-43 109.38 638.11 0.17 9.70541 0.16596 0.42941 0.00454 0.16384 0.00285 2407 16 2303 20 2496 15
    19DJ07-44 54.78 318.28 0.17 11.09025 0.18957 0.48858 0.00516 0.16454 0.00286 2531 16 2565 22 2503 15
    19DJ07-45 166.15 718.67 0.23 10.62991 0.18102 0.47511 0.00499 0.16218 0.00281 2491 16 2506 22 2479 15
    19DJ07-46 41.68 224.75 0.19 10.17533 0.17866 0.45097 0.00480 0.16355 0.00292 2451 16 2400 21 2493 16
    19DJ07-47 80.44 469.36 0.17 11.09185 0.19323 0.48948 0.00518 0.16426 0.00291 2531 16 2568 22 2500 16
    19DJ07-48 59.47 356.07 0.17 10.89295 0.19184 0.47708 0.00507 0.16550 0.00296 2514 16 2515 22 2513 16
    19DJ07-49 193.31 1136.34 0.17 11.10746 0.19455 0.48858 0.00516 0.16479 0.00293 2532 16 2565 22 2505 16
    19DJ07-50 75.63 196.47 0.38 10.99443 0.19778 0.47885 0.00513 0.16642 0.00304 2523 17 2522 22 2522 16
    19DJ07-51 77.89 429.49 0.18 10.69287 0.19419 0.47206 0.00504 0.16418 0.00302 2497 17 2493 22 2499 17
    19DJ07-52 217.58 772.49 0.28 10.96441 0.19950 0.48128 0.00513 0.16513 0.00304 2520 17 2533 22 2509 17
    19DJ07-53 85.53 491.85 0.17 11.16913 0.20522 0.48972 0.00524 0.16531 0.00308 2537 17 2569 23 2511 17
    19DJ07-54 47.44 259.81 0.18 9.94901 0.18611 0.44208 0.00473 0.16322 0.00352 2430 17 2360 21 2489 37
    19DJ07-55 70.21 391.66 0.18 10.15480 0.18917 0.45024 0.00479 0.16358 0.00351 2449 17 2396 21 2493 37
    19DJ07-56 41.09 112.69 0.36 10.93995 0.21216 0.48010 0.00528 0.16515 0.00325 2518 18 2528 23 2509 18
    19DJ07-57 16.18 52.24 0.31 11.38073 0.22959 0.49261 0.00555 0.16745 0.00343 2555 19 2582 24 2532 19
    19DJ07-59 94.50 524.18 0.18 10.73346 0.20448 0.47358 0.00511 0.16427 0.00317 2500 18 2499 22 2500 18
    19DJ07-60 123.63 631.05 0.20 11.23814 0.21513 0.49341 0.00533 0.16508 0.00320 2543 18 2585 23 2508 18
    下载: 导出CSV
  • ANHAEUSSER C R, 2014. Archaean greenstone belts and associated granitic rocks-a review[J]. Journal of African Earth Sciences, 100: 684-732. doi: 10.1016/j.jafrearsci.2014.07.019
    BAI X, LIU S W, YAN M, et al., 2014. Geological event series of Early Precambrian metamorphic complex in South Fushun area, Liaoning province[J]. Acta Petrologica Sinica, 30(10): 2905-2924. (in Chinese with English abstract)
    BROWN M, 2007. Metamorphic conditions in orogenic belts: a record of secular change[J]. International Geology Review, 49(3): 193-234. doi: 10.2747/0020-6814.49.3.193
    BROWN M, JOHNSON T, 2018. Secular change in metamorphism and the onset of global plate tectonics[J]. American Mineralogist, 103(2): 181-196. doi: 10.2138/am-2018-6166
    CAO Y, SONG S G, NIU Y L, et al., 2011. Variation of mineral composition, fabric and oxygen fugacity from massive to foliated eclogites during exhumation of subducted ocean crust in the North Qilian suture zone, NW China[J]. Journal of Metamorphic Geology, 29(7): 699-720. doi: 10.1111/j.1525-1314.2011.00937.x
    COLLINS W J, VAN KRANENDONK M J, TEYSSIER C, 1998. Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications[J]. Journal of Structural Geology, 20(9-10): 1405-1424. doi: 10.1016/S0191-8141(98)00073-X
    CONDIE K C, 1981. Archean greenstone belts[M]. Amsterdam: Elsevier.
    CORFU F, HANCHAR J M, HOSKIN P W O, et al., 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469
    DOS SANTOS T M B, MUNHÁ J M U, TASSINARI C C G, et al., 2011. P-T-fluid evolution and graphite deposition during retrograde metamorphism in Ribeira fold belt, SE Brazil: oxygen fugacity, fluid inclusions and C-O-H isotopic evidence[J]. Journal of South American Earth Sciences, 31(1): 93-109. doi: 10.1016/j.jsames.2010.02.002
    DUAN Z Z, WEI C J, REHMAN H U, 2017. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North China Craton: insights into the regional Archean P-T-t history[J]. Precambrian Research, 292: 240-257. doi: 10.1016/j.precamres.2017.02.008
    DUAN Z Z, WEI C J, LI Z, 2019. Metamorphic P-T paths and zircon u-pb ages of Paleoproterozoic metabasic dykes in eastern Hebei and northern Liaoning: Implications for the tectonic evolution of the North China Craton[J]. Precambrian Research, 326: 124-141. doi: 10.1016/j.precamres.2017.11.001
    FRANÇOIS C, PHILIPPOT P, REY P, et al., 2014. Burial and exhumation during Archean sagduction in the East Pilbara granite-greenstone terrane[J]. Earth and Planetary Science Letters, 396: 235-251. doi: 10.1016/j.epsl.2014.04.025
    GENG Y S, LIU F L, YANG C H, 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication[J]. Acta Geologica Sinica, 80(6): 819-833. doi: 10.1111/j.1755-6724.2006.tb00305.x
    GREEN E C R, WHITE R W, DIENER J F A, et al., 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks[J]. Journal of Metamorphic Geology, 34(9): 845-869. doi: 10.1111/jmg.12211
    HAWTHORNE F C, OBERTI R, HARLOW G E, et al., 2012. Nomenclature of the amphibole supergroup[J]. American Mineralogist, 97(11-12): 2031-2048. doi: 10.2138/am.2012.4276
    HICKMAN A H, 2004. Two contrasting granite- greenstone terranes in the Pilbara Craton, Australia: evidence for vertical and horizontal tectonic regimes prior to 2900 Ma[J]. Precambrian Research, 131(3-4): 153-172. doi: 10.1016/j.precamres.2003.12.009
    HOLLAND T, POWELL R, 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 145(4): 492-501. doi: 10.1007/s00410-003-0464-z
    HOLLAND T J B, POWELL R, 1998. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 16(3): 309-343. doi: 10.1111/j.1525-1314.1998.00140.x
    HOLLAND T J B, POWELL R, 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 29(3): 333-383. doi: 10.1111/j.1525-1314.2010.00923.x
    JAYANANDA M, BANERJEE M, PANT NC, et al., 2012. 2.62 Ga high-temperature metamorphism in the central part of the Eastern Dharwar Craton: implications for late Archaean tectonothermal history[J]. Geological Journal, 47(2-3): 213-236. doi: 10.1002/gj.1308
    KELSEY D E, POWELL R, 2011. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: A thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system[J]. Journal of Metamorphic Geology, 29(1): 151-166. doi: 10.1111/j.1525-1314.2010.00910.x
    KORHONEN F J, POWELL R, STOUT J H, 2012. Stability of sapphirine + quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO[J]. Journal of Metamorphic Geology, 30(1): 21-36. doi: 10.1111/j.1525-1314.2011.00954.x
    KORHONEN F J, BROWN M, CLARK C, et al., 2013. Osumilite-melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Province, India[J]. Journal of Metamorphic Geology, 31(8): 881-907. doi: 10.1111/jmg.12049
    KUSKY T M, LI J H, 2003. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 22(4): 383-397. doi: 10.1016/S1367-9120(03)00071-3
    KUSKY T M, POLAT A, WINDLEY B F, et al., 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 162: 387-432. doi: 10.1016/j.earscirev.2016.09.002
    KWAN L C J, ZHAO G C, YIN C Q, et al., 2016. Metamorphic P-T path of mafic granulites from Eastern Hebei: implications for the Neoarchean tectonics of the Eastern Block, North China Craton[J]. Gondwana Research, 37: 20-38. doi: 10.1016/j.gr.2016.05.004
    LAMBERT I B, WYLLIE P J, 1972. Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications[J]. The Journal of Geology, 80(6): 693-708. doi: 10.1086/627795
    LI Z, WEI C J, 2017. Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: petrogenesis and tectonic implications[J]. Precambrian Research, 292: 175-193. doi: 10.1016/j.precamres.2017.01.014
    LI Z, WEI C J, CHEN B, et al., 2020. Late Neoarchean reworking of the Mesoarchean crustal remnant in northern Liaoning, North China Craton: a U-Pb-Hf-O-Nd perspective[J]. Gondwana Research, 80: 350-369. doi: 10.1016/j.gr.2019.10.020
    LIN S F, BEAKHOUSE G P, 2013. Synchronous vertical and horizontal tectonism at late stages of Archean cratonization and genesis of Hemlo gold deposit, Superior craton, Ontario, Canada[J]. Geology, 41(3): 359-362. doi: 10.1130/G33887.1
    LIU J, BOHLEN S R, ERNST W G, 1996. Stability of hydrous phases in subducting oceanic crust[J]. Earth and Planetary Science Letters, 143(1-4): 161-171. doi: 10.1016/0012-821X(96)00130-6
    LIU T, WEI C J, 2018. Metamorphic evolution of Archean ultrahigh-temperature mafic granulites from the western margin of Qian'an gneiss dome, eastern Hebei Province, North China Craton: insights into the Archean tectonic regime[J]. Precambrian Research, 318: 170-187. doi: 10.1016/j.precamres.2018.10.007
    LIU T, WEI C J, 2020. Metamorphic P-T paths and Zircon U-Pb ages of Archean ultra-high temperature paragneisses from the Qian'an gneiss dome, East Hebei terrane, North China Craton[J]. Journal of Metamorphic Geology, 38(4): 329-356. doi: 10.1111/jmg.12524
    LIU T, WEI C J, KRÖNER A, et al., 2020. Metamorphic P-T paths for the Archean Caozhuang supracrustal sequence, eastern Hebei Province, North China Craton: implications for a sagduction regime[J]. Precambrian Research, 340: 105346. doi: 10.1016/j.precamres.2019.105346
    LIU T, WEI C J, JOHNSON T E, et al., 2022a. Newly-discovered ultra-high temperature granulites from the East Hebei terrane, North China Craton[J]. Science Bulletin, 67(7): 670-673. doi: 10.1016/j.scib.2021.12.023
    LIU T, LI Z, WEI C J, 2022b. Metamorphic evolution of the archean supracrustal rocks from the Qingyuan Area of the Northern Liaoning Terrane, North China Craton: constrained using phase equilibrium modeling and monazite dating[J]. Minerals, 12(9): 1079. doi: 10.3390/min12091079
    LU H S, WEI C J, 2020. Late Neoarchean or late Paleoproterozoic high-pressure granulite facies metamorphism from the East Hebei terrane, North China Craton? [J]. Journal of Asian Earth Sciences, 190: 104195. doi: 10.1016/j.jseaes.2019.104195
    MEZGER K, BOHLEN S R, HANSON G N, 1990. Metamorphic history of the Archean Pikwitonei granulite domain and the Cross Lake Subprovince, Superior Province, Manitoba, Canada[J]. Journal of Petrology, 31(2): 483-517. doi: 10.1093/petrology/31.2.483
    MORIMOTO N, 1988. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 39(1): 55-76. doi: 10.1007/BF01226262
    NEMCHIN A A, GIANNINI L M, BODORKOS S, et al., 2001. Ostwald ripening as a possible mechanism for zircon overgrowth formation during anatexis: theoretical constraints, a numerical model, and its application to pelitic migmatites of the Tickalara Metamorphics, northwestern Australia[J]. Geochimica et Cosmochimica Acta, 65(16): 2771-2788. doi: 10.1016/S0016-7037(01)00622-6
    PENG P, WANG C, WANG X P, et al., 2015. Qingyuan high-grade granite-greenstone terrain in the eastern North China Craton: root of a Neoarchaean arc[J]. Tectonophysics, 662: 7-21. doi: 10.1016/j.tecto.2015.04.013
    ROBERTS M P, FINGER F, 1997. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? [J]. Geology, 25(4): 319-322. doi: 10.1130/0091-7613(1997)025<0319:DUPZAF>2.3.CO;2
    RUBATTO D, 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2
    SAJEEV K, OSANAI Y, KON Y, et al., 2009. Stability of pargasite during ultrahigh-temperature metamorphism: A consequence of titanium and REE partitioning? [J]. American Mineralogist, 94(4): 535-545. doi: 10.2138/am.2009.2815
    SEN C, DUNN T, 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 117(4): 394-409. doi: 10.1007/BF00307273
    SLÁMA J, KOŠLER J, CONDON D J, et al., 2008. Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    VAVRA G, SCHMID R, GEBAUER D, 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 134(4): 380-404. doi: 10.1007/s004100050492
    WAN Y S, SONG B, GENG Y S, et al., 2005a. Geochemical characteristics of Archaean basement in the Fushun-Qingyuan area, Northern Liaoning Province and its geological significance[J]. Geological Review, 51(2): 128-137. (in Chinese with English abstract)
    WAN Y S, SONG B, YANG C, et al., 2005b. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance[J]. Acta Geologica Sinica, 79(1): 78-87. (in Chinese with English abstract)
    WAN Y S, DONG C Y, XIE H Q, et al., 2022. Huge growth of the late Mesoarchean-early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: a review[J]. Journal of Geomechanics, 28(5): 866-906, doi: 10.12090/j.issn.1006-6616.20222817. (in Chinese with English abstract)
    WANG K, LIU S W, WANG M J, et al., 2018. Formation ages, petrogenesis and geological implications of the archean granitoid rocks in the Xinbin-Weiziyu Area, northern Liaoning province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 54(1): 61-79. (in Chinese with English abstract)
    WANG M J, LIU S W, WANG W, et al., 2016a. Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China[J]. Journal of Asian Earth Sciences, 131: 12-39. doi: 10.1016/j.jseaes.2016.09.012
    WANG W, LIU S W, CAWOOD P A, et al., 2016b. Late Neoarchean subduction-related crustal growth in the Northern Liaoning region of the North China Craton: evidence from ~2.55 to 2.50 Ga granitoid gneisses[J]. Precambrian Research, 281: 200-223. doi: 10.1016/j.precamres.2016.05.018
    WARR L N, 2021. IMA-CNMNC approved mineral symbols[J]. Mineralogical Magazine, 85(3): 291-320. doi: 10.1180/mgm.2021.43
    WATSON E B, HARRISON T M, 1984. Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches[J]. Physics of the Earth and Planetary Interiors, 35(1-3): 19-30. doi: 10.1016/0031-9201(84)90031-1
    WEI C J, QIAN J H, ZHOU X W, 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China craton[J]. Geoscience Frontiers, 5(4): 485-497. doi: 10.1016/j.gsf.2014.02.008
    WEI C J, GUAN X, DONG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381-1404. (in Chinese with English abstract)
    WHITE R W, POWELL R, HOLLAND T J B, et al., 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3[J]. Journal of Metamorphic Geology, 18(5): 497-511. doi: 10.1046/j.1525-1314.2000.00269.x
    WHITE R W, POWELL R, HOLLAND T J B, 2007. Progress relating to calculation of partial melting equilibria for metapelites[J]. Journal of Metamorphic Geology, 25(5): 511-527. doi: 10.1111/j.1525-1314.2007.00711.x
    WHITE R W, POWELL R, HOLLAND T J B, et al., 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 32(3): 261-286. doi: 10.1111/jmg.12071
    WHITNEY D L, EVANS B W, 2010. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 95(1): 185-187. doi: 10.2138/am.2010.3371
    WIEDENBECK M, ALLÉ P, CORFU F, et al., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
    WINTHER K T, NEWTON R C, 1991. Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons[J]. Bulletin of the Geological Society of Denmark, 39: 213-228. doi: 10.37570/bgsd-1991-39-10
    WU D, WEI C J, 2021. Metamorphic evolution of two types of garnet amphibolite from the Qingyuan terrane, North China Craton: insights from phase equilibria modelling and zircon dating[J]. Precambrian Research, 355: 106091. doi: 10.1016/j.precamres.2021.106091
    WU K K, ZHAO G C, SUN M, et al., 2013. Metamorphism of the northern Liaoning Complex: implications for the tectonic evolution of Neoarchean basement of the Eastern Block, North China Craton[J]. Geoscience Frontiers, 4(3): 305-320. doi: 10.1016/j.gsf.2012.11.005
    WU M L, LIN S F, WAN Y S, et al., 2016. Crustal evolution of the Eastern Block in the North China Craton: constraints from zircon U-Pb geochronology and Lu-Hf isotopes of the northern Liaoning Complex[J]. Precambrian Research, 275: 35-47. doi: 10.1016/j.precamres.2015.12.013
    WYLLIE P J, WOLF M B, 1993. Amphibolite dehydration-melting: sorting out the solidus[J]. Geological Society, London, Special Publications, 76(1): 405-416. doi: 10.1144/GSL.SP.1993.076.01.20
    YANG C, WEI C J., 2017. Two phases of granulite facies metamorphism during Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: records from mafic granulites[J]. Precambrian Research, 2017(301).
    YAKYMCHUK C, BROWN M, 2014. Behaviour of zircon and monazite during crustal melting[J]. Journal of the Geological Society, 171(4): 465-479. doi: 10.1144/jgs2013-115
    YAKYMCHUK C, CLARK C, WHITE R W, 2017. Phase relations, reaction sequences and petrochronology[J]. Reviews in Mineralogy and Geochemistry, 83(1): 13-53. doi: 10.2138/rmg.2017.83.2
    YU C Y, YANG T, ZHANG J, et al., 2022. Coexisting diverse P-T-t paths during Neoarchean Sagduction: Insights from numerical modeling and applications to the eastern North China Craton[J]. Earth and Planetary Science Letters, 586: 117529. doi: 10.1016/j.epsl.2022.117529
    YUAN L L, LIU J, ZHANG X H, et al., 2020. Late Neoarchean magmatism and crustal growth in northern Liaoning: Evidence from zircon U-Pb geochronology and petro-geochemistry of the Qingyuan trondhjemites[J]. Acta Petrologica Sinica, 36(2): 333-355. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.02.02
    ZHAI M G, YANG R Y, LU W J, et al., 1985. Geochemistry and evolution of the Qingyuan Archaean granite-greenstone terrain, NE China[J]. Precambrian Research, 27(1-3): 37-62. doi: 10.1016/0301-9268(85)90005-1
    ZHAI M G, BIAN A G, ZHAO T P, 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic[J]. Science in China Series D: Earth Sciences, 43(1): 219-232.
    ZHAI M G, GUO J H, LIU W J, 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 24(5): 547-561. doi: 10.1016/j.jseaes.2004.01.018
    ZHAI M G, SANTOSH M, 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(10): 6-25.
    ZHAI M G, SANTOSH M, 2013. Metallogeny of the North China Craton: link with secular changes in the evolving Earth[J]. Gondwana Research, 24(1): 275-297. doi: 10.1016/j.gr.2013.02.007
    ZHAI M G, 2019. Tectonic evolution of the north China craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract)
    ZHANG H C G, LIU J H, CHEN Y C, et al., 2019. Neoarchean metamorphic evolution and geochronology of the Miyun metamorphic complex, North China Craton[J]. Precambrian Research, 320: 78-92. doi: 10.1016/j.precamres.2018.10.015
    ZHANG Y H, WEI C J, TIAN W, et al., 2013. Reinterpretation of metamorphic age of the Hengshan complex, North China Craton[J]. Chinese Science Bulletin, 58(34): 4300-4307. doi: 10.1007/s11434-013-5993-x
    ZHANG Y Y, WEI C, CHU H, 2020. Paleoproterozoic oceanic subduction in the North China Craton: Insights from the metamorphic P-T-t paths of the Chicheng Mélange in the Hongqiyingzi Complex[J]. Precambrian Research, 342: 105671. doi: 10.1016/j.precamres.2020.105671
    ZHANG Y Y, WEI C J, CHU H, 2021. Multi-phase metamorphism in the northern margin of the North China Craton: Records from metapelite in the Hongqiyingzi Complex[J]. Gondwana Research, 98: 289-308. doi: 10.1016/j.gr.2021.06.012
    ZHAO G, 1995. Metamorphic P-T-t paths of the eastern Hebei, western Shandong, Fuping, Wutai and Hengshan domains, North China Craton[J]. Tectonothermal Evolution of the Basement Rocks in the North China Craton, 11-48.
    ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
    ZHAO G C, CAWOOD P A, LI S Z, et al., 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 222-223: 55-76.
    ZHENG J P, 2020. Internal and external factors in continental lithosphere mantle replacement in eastern China[J]. Journal of Geomechanics, 26(5): 742-758, doi: 10.12090/j.issn.1006-6616.2020.26.05.061. (in Chinese with English abstract)
    白翔, 刘树文, 阎明, 等, 2014. 抚顺南部早前寒武纪变质岩的地质事件序列[J]. 岩石学报, 30(10): 2905-2924.
    万渝生, 宋彪, 耿元生, 等, 2005a. 辽北抚顺—清原地区太古宙基底地球化学组成特征及其地质意义[J]. 地质论评, 51(2): 128-137. doi: 10.16509/j.georeview.2005.02.003
    万渝生, 宋彪, 杨淳, 等, 2005b. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U—Pb年代学及其地质意义[J]. 地质学报, 79(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501009.htm
    万渝生, 董春艳, 颉颃强, 等, 2022. 华北克拉通新太古代早期—中太古代晚期(2.6~3.0 Ga)巨量陆壳增生: 综述[J]. 地质力学学报, 28(5): 866-906, doi: 10.12090/j.issn.1006-6616.20222817.
    王康, 刘树文, 王茂江, 等, 2018. 辽北新宾-苇子峪地区太古宙花岗质岩石的形成年代、成因及其地质意义[J]. 北京大学学报(自然科学版), 54(1): 61-79. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201801007.htm
    魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705002.htm
    袁玲玲, 刘洁, 张晓晖, 等, 2020. 辽北新太古代晚期岩浆热事件与陆壳生长: 来自清原奥长花岗岩的锆石U-Pb年代学和岩石地球化学证据[J]. 岩石学报, 36(2): 333-355. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002002.htm
    翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
    郑建平, 2020. 中国东部大陆岩石圈地幔置换作用的内外原因[J]. 地质力学学报, 26(5): 742-758, doi: 10.12090/j.issn.1006-6616.2020.26.05.061.
  • 期刊类型引用(2)

    1. 徐强,郭佳丽,周喜文. 吉南夹皮沟地区变质侵入岩的锆石U-Pb定年、Lu-Hf同位素分析及其构造意义. 岩石学报. 2024(11): 3363-3378 . 百度学术
    2. 韩香巧,钱加慧,卢成森,尹常青,张健,高彭. 华北克拉通吉南夹皮沟新太古代石榴黑云斜长片麻岩的变质P-T-t演化及构造意义. 岩石学报. 2024(11): 3379-3397 . 百度学术

    其他类型引用(0)

  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  789
  • HTML全文浏览量:  297
  • PDF下载量:  84
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-05-16
  • 录用日期:  2023-05-18

目录

/

返回文章
返回