Discussion on the magnitude or intensity limitation of paleoearthquake events
-
摘要:
震级是表征地震能量大小的重要参数, 但在古地震研究中, 由于难以精确给定与地震矩紧密相关的破裂参数, 故而无法直接计算事件的震级大小。研究者通常假定事件序列为震级相似的特征地震, 或基于震级已知的历史地震地表破裂参数获取经验关系来进行震级估算。但已有研究表明特征地震的假设过于简化, 而利用经验关系估算震级的方法也受限于各种误差, 因此亟需探索新方法以提升古地震事件震级或规模大小评估的合理性。近年来, 三维组合探槽的成功应用表明探槽内蕴含着丰富的事件变形信息, 进而证实了在探槽内评估事件规模大小的可行性。基于此, 文章以阿尔金断裂铜矿探槽为例, 利用探槽揭示的事件变形强度, 包括垂向位移量、变形带宽度和裂缝总拉张量, 来评估事件序列的规模。数据分析结果表明, 事件变形强度参数与震级相对大小具有一定的正相关性, 且各参数之间也呈现部分相关性。因此, 探槽中事件变形强度信息可以判断事件震级的相对大小, 充分挖掘探槽内的事件变形信息可为合理评估古地震事件的震级提供借鉴和参考, 在古地震研究中应加以重视。
Abstract:The magnitude is an important parameter that characterizes the size of earthquakes. However, in paleoearthquake studies, it is difficult to precisely determine the rupture parameters closely related to seismic moment, making it challenging to directly calculate the magnitude of events. Researchers often assume that event sequences consist of characteristic earthquakes with similar magnitudes or use empirical relationships based on known magnitudes of historical earthquakes to estimate magnitudes. However, previous studies have shown that the assumption of characteristic earthquakes is overly simplistic, and magnitude estimation based on empirical relationships is limited by various errors. Therefore, there is a pressing need to explore new methods to improve the reliability of magnitude assessments for ancient earthquake events. In recent years, the successful application of three-dimensional combination trenches has demonstrated that these trenches contain rich deformation information about events, confirming the feasibility of assessing event sizes within trenches. Using the example of the Copper Mine trench on the Altyn Tagh fault, this article utilizes the deformation intensity revealed within the trench, including vertical displacement, deformation zone width, and total tensile strain, to estimate the scale of the event sequence. Data analysis results indicate that the deformation intensity parameters have a certain positive correlation with the relative magnitude, and there is also some correlation among these parameters. Therefore, the information on deformation intensity within the trench can be used to assess the relative magnitude of events, and fully exploring the deformation information within trenches can provide valuable insights and references for the reasonable evaluation of the magnitude of paleoearthquake events. This underscores the importance of considering such information in paleoearthquake research.
-
图 1 矩震级(MW)与地表破裂长度、最大位错量和平均位错量之间的经验关系
a—矩震级(MW)与地表破裂长度(SRL)的经验关系(据Wells and Coppersmith, 1994修改);b—矩震级(MW)与最大位错量(MD)的经验关系(据Wells and Coppersmith, 1994修改);c—走滑历史地震的矩震级(MW)与地表破裂长度(SRL)的经验关系;d—走滑历史地震的矩震级(MW)与平均位错量(AD)的经验关系
Figure 1. The empirical relationship between moment magnitude (MW) and surface rupture length (SRL), maximum displacement (MD), and average displacement (AD)
(a) The empirical relationship between moment magnitude (MW) and surface rupture length (adapted from Wells and Coppersmith, 1994); (b) The empirical relationship between moment magnitude (MW) and maximum displacement (adapted from Wells and Coppersmith, 1994); (c) The empirical relationship between moment magnitude (MW) and surface rupture length of strike-slip earthquakes with known historical seismicity; (d) The empirical relationship between moment magnitude (MW) and average displacement of strike-slip earthquakes with known historical seismicity
图 2 阿尔金断裂中段古地震事件序列对比图(据袁兆德等,2020修改)
字母代表各探槽内不同期次的地震事件
Figure 2. Comparison of event sequences in the middle part of the Altyn Taugh fault (modified from Yuan et al., 2020)
The letter numbers represent different periods of paleoearthquake events in different trenches.
图 3 加利福利亚州华莱士溪附近探槽揭露的同震位移量(据Liu et al., 2004修改)
a—探槽开挖布设及所揭露出的断层两侧的对应冲沟,颜色指示对应关系,灰黑色点线表示断层对盘没有对应冲沟;b—断层东北盘揭露的多期冲沟;c—冲沟揭示的水平和垂向位错量,矩形框内的字母-数字序号对应断层两侧相应冲沟
Figure 3. The coseismic displacement revealed by the trench of the Wallace Creek area in California (modified from Liu et al., 2004)
(a) Map views of buried channels at site (Colors indicate correlations across fault, and Gray and black dot lines are channels with no known correlatives across fault.); (b) Multiple incised channels exposed on the northeastern side of the fault block; (c) Horizontal and vertical offsets revealed by the incised channels (Letter-number pairs in boxes are correlated channels.)
图 4 多期地震造成的地层位错(据Liu-Zeng et al., 2007修改)
Figure 4. The effects of multiple earthquake events on stratigraphic faulting (modified from Liu-Zeng et al., 2007)
图 5 铜矿探槽古地震事件层位事件证据评分统计图(据Yuan et al., 2018修改)
Figure 5. Histograms of event indicators of Copper Mine Trench (adapted from Yuan et al., 2018)
图 6 铜矿探槽内的拉张裂缝(据Yuan et al., 2018修改)
a—事件A在T1SW造成的拉张裂缝;b—事件F在T1SW造成的疑似拉张裂缝;c—事件I在T1SW造成的拉张裂缝
Figure 6. Tensional fractures of the Copper Mine Trench (modified from Yuan et al., 2018)
(a) Tensional fractures caused by Event A in T1SW; (b) Tensional fractures caused by Event B in T1SW; (c) Tensional fractures caused by Event I in T1SW
表 1 铜矿探槽各事件的震级估算大小
Table 1. Estimation of magnitude for each event in the copper mine trench
古地震事件 A B C D E F G H I 同震位错/m ~5 ~5 ~7 ~6.5 - - - - - 破裂长度/km >350 >350 ~300 ~200 ~200 ~200 ~300 ~200 ~300 矩震级(MW) 7.8~8.1 7.8~8.1 7.8~7.9 7.7 7.7 7.7 7.9 7.7 7.9 注:引自袁兆德,2018 表 2 不同探槽壁各事件垂向位移量值
Table 2. Vertical displacement values for each events on different trench wall
古地震事件 1号探槽 2号探槽 T1NE T1SW T2NE T2SW 垂向位移量/cm A 28.6 11.1 6.3 18.7 B 26.4 25.8 10.3 19.4 C 42.6 59.6 D 18.2 22 E 0.4 - F - - - - G - 56.7 39.4 21.9 H 4.5 3.6 7.2 7.9 I - - - - 注:“空白”指无法测量其垂向位移量值 表 3 不同探槽壁各事件变形带宽度范围
Table 3. Width of the deformation zone for each event on different trench walls
古地震事件 1号探槽 2号探槽 T1NE T1SW T2NE T2SW 变形带宽度范围/m A 13.0 13.0 11.7 11.2 B 24.1 24.8 15.0 11.2 C 7.0 5.7 - - D 2.6 1.6 - - E 1.3 1.4 1.9 2.4 F - 2.5 2.7 2.3 G 16.3 18.0 11.5 11.9 H 2.7 0.5 - 2.9 I 0.9 1.5 - - 注:“空白”指无法测量其变形带宽度范围 表 4 不同探槽壁各事件裂缝总拉张量
Table 4. Total fracture tension tensor for each event on different trench walls
古地震事件 1号探槽 2号探槽 T1NE T1SW T2NE T2SW 裂缝总拉张量/m A 2.20±0.12 2.12±0.10 0.42±0.31 0.97±0.11 B 2.59±0.12 2.12±0.11 1.02±0.80 2.03±0.76 C 0.49±0.08 0.95±0.07 - - D - - - - E 0.13±0.06 - 0.18±0.02 - F - 0.19±0.01 - - G 0.90±0.07 0.25±0.08 0.03±0.03 1.15±0.10 H - - - - I - 1.56±0.10 - - 注:“空白”指无法测量其裂缝总拉张量 -
ADAMS J, 1981. Earthquake-dammed lakes in New Zealand[J]. Geology, 9(5): 215-219. doi: 10.1130/0091-7613(1981)9<215:ELINZ>2.0.CO;2 AGNEW D C, ALLEN C R, CLUFF L S, et al., 1988. Probabilities of large earthquakes occurring in California on the San Andreas fault[R]. Menlo Park: U.S. Geological Survey. BAKUN W H, WENTWORTH C M, 1997. Estimating earthquake location and magnitude from seismic intensity data[J]. Bulletin of the Seismological Society of America, 87(6): 1502-1521. doi: 10.1785/BSSA0870061502 BERRYMAN K R, COCHRAN U A, CLARK K J, et al., 2012. Major earthquakes occur regularly on an isolated plate boundary fault[J]. Science, 336(6089): 1690-1693. doi: 10.1126/science.1218959 BONILLA M G, MARK R K, LIENKAEMPER J J, 1984. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement[J]. Bulletin of the Seismological Society of America, 74(6): 2379-2411. BORMANN P, 2002. New manual of seismological observatory practice (NMSOP-2)[R]. Potsdam: Deutsches GeoForschungszentrum GFZ. BURGETTE R J, HANSON A M, SCHARER K M, et al., 2020. Late Quaternary slip rate of the Central Sierra Madre fault, southern California: implications for slip partitioning and earthquake hazard[J]. Earth and Planetary Science Letters, 530: 115907. doi: 10.1016/j.epsl.2019.115907 CHEN L C, RAN Y K, WANG H, et al., 2013. Paleoseismology and kinematic characteristics of the Xiaoyudong rupture, a short but significant strange segment characterized by the May 12, 2008, Mw 7.9 earthquake in Sichuan, China[J]. Tectonophysics, 584: 91-101. doi: 10.1016/j.tecto.2012.08.030 CHEN Y T, LIU R F, 2004. Earthquake magnitude[J]. Seismological and Geomagnetic Observation and Research, 25(6): 1-12. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-3246.2004.06.001 DAËRON M, KLINGER Y, TAPPONNIER P, et al., 2007. 12, 000-year-long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon[J]. Bulletin of the seismological society of America, 97(3): 749-771. doi: 10.1785/0120060106 DUFFY B, QUIGLEY M, BARRELL D J A, et al., 2013. Fault kinematics and surface deformation across a releasing bend during the 2010 MW 7.1 Darfield, New Zealand, earthquake revealed by differential LiDAR and cadastral surveying[J]. GSA Bulletin, 125(3-4): 420-431. doi: 10.1130/B30753.1 ELLIOTT A J, OSKIN M E, LIU-ZENG J, et al., 2015. Rupture termination at restraining bends: the last great earthquake on the Altyn Tagh Fault[J]. Geophysical Research Letters, 42(7): 2164-2170. doi: 10.1002/2015GL063107 FUMAL T E, SCHWARTZ D P, PEZZOPANE S K, et al., 1993. A 100-year average recurrence interval for the san Andreas fault at Wrightwood, California[J]. Science, 259(5092): 199-203. doi: 10.1126/science.259.5092.199 GOLD R D, DUROSS C B, DELANO J E, et al., 2019. Four major Holocene earthquakes on the Reelfoot fault recorded by Sackungen in the New Madrid seismic zone, USA[J]. Journal of Geophysical Research: Solid Earth, 124(3): 3105-3126. doi: 10.1029/2018JB016806 GRANT L B, SIEH K, 1994. Paleoseismic evidence of clustered earthquakes on the San Andreas Fault in the Carrizo Plain, California[J]. Journal of Geophysical Research: Solid Earth, 99(B4): 6819-6841. doi: 10.1029/94JB00125 GREEN R A, OBERMEIER S F, OLSON S M, 2005. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: field examples[J]. Engineering Geology, 76(3-4): 263-293. doi: 10.1016/j.enggeo.2004.07.026 GÜRPINAR A, 2005. The importance of paleoseismology in seismic hazard studies for critical facilities[J]. Tectonophysics, 408(1-4): 23-28. doi: 10.1016/j.tecto.2005.05.042 HADDAD D E, AKÇIZ S O, ARROWSMITH J R, et al., 2012. Applications of airborne and terrestrial laser scanning to paleoseismology[J]. Geosphere, 8(4): 771-786. doi: 10.1130/GES00701.1 HANKS T C, KANAMORI H, 1979. A moment magnitude scale[J]. Journal of Geophysical Research: Solid Earth, 84(B5): 2348-2350. doi: 10.1029/JB084iB05p02348 HANKS T C, BAKUN W H, 2002. A bilinear source-scaling model for M-log a observations of continental earthquakes[J]. Bulletin of the Seismological Society of America, 92(5): 1841-1846. doi: 10.1785/0120010148 HEATON T H, TAJIMA F, MORI A W, 1986. Estimating ground motions using recorded accelerograms[J]. Surveys in Geophysics, 8(1): 25-83. doi: 10.1007/BF01904051 HOLZER T L, GALLOWAY D L, 2005. Impacts of land subsidence caused by withdrawal of underground fluids in the United States[M]//EHLEN J, HANEBERG W C, LARSON R A. Humans as geologic agents. Boulder: Geological Society of America, 87-99. JIA J P, 2012. Statistics[M]. 5th ed. Beijing: China Renmin University Press. (in Chinese) KANAMORI H, 1977. The energy release in great earthquakes[J]. Journal of Geophysical Research, 82(20): 2981-2987. doi: 10.1029/JB082i020p02981 KEEFER D K, 1984. Landslides caused by earthquakes[J]. GSA Bulletin, 95(4): 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2 KHROMOVSKIKH V S, 1989. Determination of magnitudes of ancient earthquakes from dimensions of observed seismodislocations[J]. Tectonophysics, 166(1-3): 269-280. doi: 10.1016/0040-1951(89)90219-9 KLINGER Y, ETCHEBES M, TAPPONNIER P, et al., 2011. Characteristic slip for five great earthquakes along the Fuyun Fault in China[J]. Nature Geoscience, 4(6): 389-392. doi: 10.1038/ngeo1158 KONDO H, ÖZAKSOY V, YILDIRIM C, 2010. Slip history of the 1944 Bolu-Gerede earthquake rupture along the North Anatolian fault system: implications for recurrence behavior of multisegment earthquakes[J]. Journal of Geophysical Research: Solid Earth, 115(B4): B04316. LIN Z, LIU-ZENG J, WELDON R J, et al., 2020. Modeling repeated coseismic slip to identify and characterize individual earthquakes from geomorphic offsets on strike-slip faults[J]. Earth and Planetary Science Letters, 545: 116313. doi: 10.1016/j.epsl.2020.116313 LIU J, KLINGER Y, SIEH K, et al., 2004. Six similar sequential ruptures of the San Andreas fault, Carrizo Plain, California[J]. Geology, 32(8): 649-652. doi: 10.1130/G20478.1 LIU J, YUAN Z D, XU Y R, et al., 2021. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontiers, 28(2): 211-231. (in Chinese with English abstract) LIU J, XU J, OU Q, et al., 2023. Discussion on the overestimated magnitude of the 1920 Haiyuan earthquake[J]. Acta Seismologica Sinica, 45(4): 579-596. (in Chinese with English abstract) LIU-ZENG J, KLINGER Y, XU X, et al., 2007. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China[J]. Bulletin of the Seismological Society of America, 97(1B): 14-34. doi: 10.1785/0120050118 LIU-ZENG J, SHAO Y X, KLINGER Y, et al., 2015. Variability in magnitude of paleoearthquakes revealed by trenching and historical records, along the Haiyuan Fault, China[J]. Journal of Geophysical Research: Solid Earth, 120(12): 8304-8333. doi: 10.1002/2015JB012163 LUDWIG L G, AKÇIZ S O, NORIEGA G R, et al., 2010. Climate-modulated channel incision and rupture history of the San Andreas fault in the Carrizo Plain[J]. Science, 327(5969): 1117-1119. doi: 10.1126/science.1182837 MASON D B, 1996. Earthquake magnitude potential of the Intermountain Seismic Belt, USA, from surface-parameter scaling of late Quaternary faults[J]. Bulletin of the Seismological Society of America, 86(5): 1487-1506. doi: 10.1785/BSSA0860051487 MCCALPIN J P, SLEMMONS D B, 1998. Statistics of paleoseismic data[R]. Estes Park: U.S. Geological Survey. MCCALPIN J P, 2009. Paleoseismology[M]. 2nd ed. Burlington: Academic Press: 615. MCGILL S F, SIEH K, 1991. Surficial offsets on the Central and Eastern Garlock Fault associated with prehistoric earthquakes[J]. Journal of Geophysical Research: Solid Earth, 96(B13): 21597-21621. doi: 10.1029/91JB02030 MCGILL S F, RUBIN C M, 1999. Surficial slip distribution on the central Emerson fault during the June 28, 1992, Landers earthquake, California[J]. Journal of Geophysical Research: Solid Earth, 104(B3): 4811-4833. doi: 10.1029/98JB01556 MILLINER C W D, DOLAN J F, HOLLINGSWORTH J, et al., 2015. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake[J]. Geochemistry, Geophysics, Geosystems, 16(5): 1577-1598. doi: 10.1002/2014GC005693 MUNSON P J, OBERMEIER S F, MUNSON C A, et al., 1997. Liquefaction evidence for Holocene and latest Pleistocene seismicity in the southern halves of Indiana and Illinois: a preliminary overview[J]. Seismological Research Letters, 68(4): 521-536. doi: 10.1785/gssrl.68.4.521 OSKIN M E, ARROWSMITH J R, CORONA A H, et al., 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR[J]. Science, 335(6069): 702-705. doi: 10.1126/science.1213778 PAMPEYAN E H, HOLZER T L, CLARK M M, 1988. Modern ground failure in the Garlock fault zone, Fremont Valley, California[J]. GSA Bulletin, 100(5): 677-691. doi: 10.1130/0016-7606(1988)100<0677:MGFITG>2.3.CO;2 PAN J W, BAI M K, LI C, et al., 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.06.001 RAN Y K, DENG Q D, 1999. History, status and trend about the research of paleoseismology[J]. Chinese Science Bulletin, 44(10): 880-889. doi: 10.1007/BF02885057 REITMAN N G, MUELLER K J, TUCKER G E, et al., 2019. Offset channels may not accurately record strike-slip fault displacement: evidence from landscape evolution models[J]. Journal of Geophysical Research: Solid Earth, 124(12): 13427-13451. doi: 10.1029/2019JB018596 REN Z K, ZHANG Z Q, CHEN T, et al., 2016. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes[J]. GSA Bulletin, 128(1-2): 3-18. ROCKWELL T K, DAWSON T E, YOUNG BEN-HORIN J, et al., 2015. A 21-event, 4, 000-year history of surface ruptures in the Anza seismic gap, San Jacinto Fault, and implications for long-term earthquake production on a major plate boundary fault[J]. Pure and Applied Geophysics, 172(5): 1143-1165. doi: 10.1007/s00024-014-0955-z RUBIN C M, 1996. Systematic underestimation of earthquake magnitudes from large intracontinental reverse faults: historical ruptures break across segment boundaries[J]. Geology, 24(11): 989-992. doi: 10.1130/0091-7613(1996)024<0989:SUOEMF>2.3.CO;2 SCHARER K, WELDON II R, STREIG A, et al., 2014. Paleoearthquakes at Frazier Mountain, California delimit extent and frequency of past San Andreas Fault ruptures along 1857 trace[J]. Geophysical Research Letters, 41(13): 4527-4534. doi: 10.1002/2014GL060318 SCHARER K M, WELDON R J, FUMAL T E, et al., 2007. Paleoearthquakes on the southern san Andreas fault, Wrightwood, California, 3000 to 1500 B.C. : a new method for evaluating paleoseismic evidence and earthquake horizons[J]. Bulletin of the Seismological Society of America, 97(4): 1054-1093. doi: 10.1785/0120060137 SCHOLZ C H, 2019. The mechanics of earthquakes and faulting[M]. 3rd ed. Cambridge: Cambridge University Press. SCHUSTER R L, LOGAN R L, PRINGLE P T, 1992. Prehistoric rock avalanches in the Olympic Mountains, Washington[J]. Science, 258(5088): 1620-1621. doi: 10.1126/science.258.5088.1620 SCHWARTZ D P, COPPERSMITH K J, 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5681-5698. doi: 10.1029/JB089iB07p05681 SCOTT C P, DELONG S B, ARROWSMITH J R, 2020. Distribution of aseismic deformation along the Central San Andreas and Calaveras faults from differencing repeat airborne lidar[J]. Geophysical Research Letters, 47(22): e2020GL090628. doi: 10.1029/2020GL090628 SHAO Y X, LIU-ZENG J, OSKIN M E, et al., 2018. Paleoseismic investigation of the Aksay restraining double bend, Altyn Tagh fault, and its implication for barrier-breaching ruptures[J]. Journal of Geophysical Research: Solid Earth, 123(5): 4307-4330. doi: 10.1029/2017JB015397 SIEH K, STUIVER M, BRILLINGER D, 1989. A more precise chronology of earthquakes produced by the San Andreas Fault in southern California[J]. Journal of Geophysical Research: Solid Earth, 94(B1): 603-623. doi: 10.1029/JB094iB01p00603 SIEH K, NATAWIDJAJA D H, MELTZNER A J, et al., 2008. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra[J]. Science, 322(5908): 1674-1678. doi: 10.1126/science.1163589 SIEH K E, 1978. Slip along the San Andreas fault associated with the great 1857 earthquake[J]. Bulletin of the Seismological Society of America, 68(5): 1421-1448. SIEH K E, 1984. Lateral offsets and revised dates of large prehistoric earthquakes at Pallett Creek, southern California[J]. Journal of Geophysical Research: Solid Earth, 89(B9): 7641-7670. doi: 10.1029/JB089iB09p07641 SLEMMONS D B, 1982. Determination of design earthquake magnitude for microzonation[C]. s. n. //Proceedings of the 3rd international earthquake microzonation conference. Earthquake Society: 119-130. STIRLING M, RHOADES D, BERRYMAN K, 2002. Comparison of earthquake scaling relations derived from data of the instrumental and preinstrumental era[J]. Bulletin of the Seismological Society of America, 92(2): 812-830. doi: 10.1785/0120000221 STREIG A R, DAWSON T E, WELDON II R J, 2014. Paleoseismic evidence of the 1890 and 1838 earthquakes on the Santa Cruz mountains section of the san Andreas fault, near Corralitos, californiapaleoseismic evidence of the 1890 and 1838 earthquakes on the SAS of the San Andreas Fault, near Corralitos[J]. Bulletin of the Seismological Society of America, 104(1): 285-300. doi: 10.1785/0120130009 TANG M Y, LIU J, SHAO Y X, et al., 2015. Analysis about the minimum magnitude earthquake associated with surface ruptures[J]. Seismology and Geology, 37(4): 1193-1214. (in Chinese with English abstract) WALLACE R E, 1981. Active faults, paleoseismology, and earthquake hazards in the western United States[M]//SIMPSON D W, RICHARDS P G. Earthquake prediction: an international review. Washington: American Geophysical Union: 209-216. WASHBURN Z, DUPONT-NIVET G, WANG X F, et al., 2003. Paleoseismology of the Xorxol segment of the central Altyn Tagh fault, Xinjiang, China[J]. Annals of Geophysics, 46(5): 1015-1034. WECHSLER N, ROCKWELL T K, KLINGER Y, 2018. Variable slip-rate and slip-per-event on a plate boundary fault: the Dead Sea fault in northern Israel[J]. Tectonophysics, 722: 210-226. doi: 10.1016/j.tecto.2017.10.017 WELDON II R J, FUMAL T E, POWERS T J, et al., 2002. Structure and earthquake offsets on the San Andreas fault at the Wrightwood, California, paleoseismic site[J]. Bulletin of the Seismological Society of America, 92(7): 2704-2725. doi: 10.1785/0120000612 WELDON II R J, BIASI G P, 2013. Appendix I: Probability of detection of ground rupture at paleoseismic sites[R]. U.S. Geological Survey Open-File Report 2013-1165-I, and California Geological Survey Special Report. 228-I. WELLS D L, COPPERSMITH K J, 1993. Likelihood of surface rupture as a function of magnitude[J]. Seismological Research Letters, 64(1): 54. WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974 WEN X Z, 1993. Fracture segmentation and earthquake potential probability estimation of Xiaojiang fault zone[J]. Acta Seismologica Sinica, 15(5): 322-330. (in Chinese) WEN X Z, FAN J, YI G X, et al., 2008. A seismic gap on the Anninghe fault in western Sichuan, China[J]. Science in China Series D: Earth Sciences, 51(10): 1375-1387. doi: 10.1007/s11430-008-0114-4 WEN X Z, MA S L, XU X W, et al., 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. doi: 10.1016/j.pepi.2008.04.013 XU X W, YU G H, KLINGER Y, et al., 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05316. XU Y R, LIU-ZENG J, ALLEN M B, et al., 2022. Understanding historical earthquakes by mapping coseismic landslides in the Loess Plateau, northwest China[J]. Earth Surface Processes and Landforms, 47(9): 2266-2282. doi: 10.1002/esp.5375 YAO W Q, WANG Z J, LIU J, et al., 2022. Discussion on coseismic surface rupture length of the 2021 MW7.4 MadoiEarthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 541-559. (in Chinese with English abstract) YEATS R S, SIEH K, ALLEN C R, 1997. The geology of earthquakes[M]. New York: Oxford University Press: 568. YUAN Z D, 2018. Long paleoseismic record on the Wuzunxiaoer-Xorkoli section of the central Altyn Tagh fault[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract) YUAN Z D, LIU-ZENG J, WANG W, et al., 2018. A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh fault, China[J]. Earth and Planetary Science Letters, 497: 193-203. doi: 10.1016/j.epsl.2018.06.008 YUAN Z D, LIU-ZENG J, ZHOU Y, et al., 2020. Paleoseismologic record of earthquakes along the Wuzunxiaoer section of the Altyn Tagh fault and its implication for cascade rupture behavior[J]. Science China Earth Sciences, 63(1): 93-107. doi: 10.1007/s11430-019-9376-8 ZACHARIASEN J, SIEH K, TAYLOR F W, et al., 1999. Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls[J]. Journal of Geophysical Research: Solid Earth, 104(B1): 895-919. doi: 10.1029/1998JB900050 ZIELKE O, ARROWSMITH J R, LUDWIG L G, et al., 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas fault[J]. Science, 327(5969): 1119-1122. doi: 10.1126/science.1182781 ZIELKE O, KLINGER Y, ARROWSMITH J R, 2015. Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data[J]. Tectonophysics, 638: 43-62. doi: 10.1016/j.tecto.2014.11.004 陈运泰, 刘瑞丰, 2004. 地震的震级[J]. 地震地磁观测与研究, 25(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ202001001.htm 贾俊平, 2012. 统计学[M]. 5版. 北京: 中国人民大学出版社. 刘静, 袁兆德, 徐岳仁, 等, 2021. 古地震学: 活动断裂强震复发规律的研究[J]. 地学前缘, 28(2): 211-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102016.htm 刘静, 徐晶, 偶奇, 等, 2023. 关于1920年海原大地震震级高估的讨论[J]. 地震学报, 45(4): 579-596. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202304001.htm 潘家伟, 白明坤, 李超, 等, 2021. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106001.htm 冉勇康, 邓起东, 1999. 古地震学研究的历史、现状和发展趋势[J]. 科学通报, 44(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199901002.htm 唐茂云, 刘静, 邵延秀, 等, 2015. 中小震级事件产生地表破裂的震例分析[J]. 地震地质, 37(4): 1193-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201504020.htm 闻学泽, 1993. 小江断裂带的破裂分段与地震潜势概率估计[J]. 地震学报, 15(3): 322-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199303009.htm 闻学泽, 范军, 易桂喜, 等, 2008. 川西安宁河断裂上的地震空区[J]. 中国科学D辑: 地球科学, 38(7): 797-807. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200807002.htm 姚文倩, 王子君, 刘静, 等, 2022. 2021年青海玛多MW7.4地震同震地表破裂长度的讨论[J]. 地震地质, 44(2): 541-559. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202202016.htm 袁兆德, 2018. 阿尔金断裂中段乌尊硝尔-索尔库里段长序列古地震记录[D]. 北京: 中国地震局地质研究所. 袁兆德, 刘静, 周游, 等, 2020. 阿尔金断裂中段乌尊硝尔段古地震记录与级联破裂行为[J]. 中国科学: 地球科学, 50(1): 50-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202001003.htm