留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯西缘牛首山—罗山地区裂变径迹年龄与中生代构造抬升

田朝阳 陈虹 刘新社 公王斌 赵伟波 康锐

田朝阳, 陈虹, 刘新社, 等, 2023. 鄂尔多斯西缘牛首山—罗山地区裂变径迹年龄与中生代构造抬升. 地质力学学报, 29 (5): 599-617. DOI: 10.12090/j.issn.1006-6616.2023030
引用本文: 田朝阳, 陈虹, 刘新社, 等, 2023. 鄂尔多斯西缘牛首山—罗山地区裂变径迹年龄与中生代构造抬升. 地质力学学报, 29 (5): 599-617. DOI: 10.12090/j.issn.1006-6616.2023030
TIAN Zhaoyang, CHEN Hong, LIU Xinshe, et al., 2023. Fission track ages and Mesozoic tectonic uplift in the Niushoushan-Luoshan area on the western edge of the Ordos Basin. Journal of Geomechanics, 29 (5): 599-617. DOI: 10.12090/j.issn.1006-6616.2023030
Citation: TIAN Zhaoyang, CHEN Hong, LIU Xinshe, et al., 2023. Fission track ages and Mesozoic tectonic uplift in the Niushoushan-Luoshan area on the western edge of the Ordos Basin. Journal of Geomechanics, 29 (5): 599-617. DOI: 10.12090/j.issn.1006-6616.2023030

鄂尔多斯西缘牛首山—罗山地区裂变径迹年龄与中生代构造抬升

doi: 10.12090/j.issn.1006-6616.2023030
基金项目: 

中国地质调查局地质调查项目 DD20221644

国家自然科学基金项目 41472195

中国石油前瞻性基础性科技项目 2021DJ2101

详细信息
    作者简介:

    田朝阳(1997-), 男, 在读硕士, 主要从事鄂尔多斯西缘及其邻区构造演化研究。E-mail: tianzhaoyang1@qq.com

    通讯作者:

    陈虹(1982-), 男, 博士, 副研究员, 主要从事区域构造、大陆变形与活动构造研究。E-mail: chhzxm8281@163.com

  • 中图分类号: P542

Fission track ages and Mesozoic tectonic uplift in the Niushoushan-Luoshan area on the western edge of the Ordos Basin

Funds: 

the Geological Survey Project of the China Geological Survey DD20221644

the Fund of the National Natural Science Foundation of China 41472195

the Prospective and Fundamental Science and Technology Project of PetoChina 2021DJ2101

  • 摘要:

    鄂尔多斯盆地西缘及其邻区经历了中—新生代复杂的构造演化过程, 其中生代以来的构造隆升和区域热演化历史研究仍需要进一步的年代学证据。牛首山—罗山地区紧邻鄂尔多斯盆地西缘的冲断带, 其中生代的隆升过程对于研究盆地西缘中生代构造事件具有非常重要的意义。文章通过磷灰石裂变径迹(AFT)分析及热史模拟限定牛首山—罗山地区中生代的隆升过程及其时限, 结果表明该地区中生代抬升主要发生在中侏罗世(170 Ma)—早白垩世末(110 Ma), 罗山地区的抬升(170 Ma)要略早于牛首山地区(160 Ma), 这期抬升主要与祁连造山带向北东方向挤出有关。综合分析已有研究成果表明, 鄂尔多斯盆地西缘及其邻区中生代抬升的启动时间为晚三叠世, 整体可分为两期: 第一期抬升发生在晚三叠世(220 Ma)—早侏罗世末期(185 Ma); 第二期抬升发生于中侏罗世(175 Ma)—早白垩世末(110 Ma), 牛首山—罗山地区的抬升则属于鄂尔多斯盆地西缘第二期抬升的一部分。鄂尔多斯盆地西缘中生代两期构造抬升分别显示出由南向北、由西南向东北方向传递的特征, 推测与晚三叠世华北、华南板块碰撞以及中—晚侏罗世拉萨地块向北东方向汇聚有关。

     

  • 图  1  牛首山—罗山地区区域地质简图及构造地貌特征(据陈虹等,2013修改)

    Figure  1.  Sketch geological map of the Niushoushan-Luoshan area and morphologic characteristics (revised from Chen et al., 2013)

    图  2  AFT采样位置图

    a—牛首山、罗山样品位置平面图;b—牛首山、罗山样品位置剖面图

    Figure  2.  AFT sampling locations

    (a) Plans of the sample locations in the Niushoushan and Luoshan areas; (b) Profiles of the sample locations in the Niushoushan and Luoshan area

    图  3  牛首山—罗山地区AFT长度分布图

    Figure  3.  AFT length distribution charts for the Niushoushan-Luoshan area

    图  4  牛首山—罗山地区AFT年龄组分分解图

    a—单颗粒年龄分布雷达图; b—单颗粒年龄分布直方图

    Figure  4.  Estimating age populations in a mixed distribution of AFT analysis in the Niushoushan-Luoshan area

    (a) Radar plot of single particle age distribution; (b) Single particle age distribution histogram

    图  5  牛首山—罗山地区样品裂变径迹年龄分布图

    Figure  5.  Distribution of fission track ages in the Niushoushan-Luoshan area

    图  6  牛首山—罗山地区AFT热史模拟图

    图中浅色区域为可接受的拟合路径区域,深色区域为拟合较好的路径区域,黑色实线表示最佳拟合路径;实测与模拟长度均为径迹长度,μm
    a—牛首山地区AFT热史模拟图;b—罗山地区AFT热史模拟图

    Figure  6.  Thermal history based on AFT inverse modeling in the Niushoushan-Luoshan area

    (a) AFT thermal history simulation of the Niushoushan area; (b) AFT thermal history simulation of the Luoshan area
    The light area in the figure is the acceptable fitting path area, the dark area is the better fitting path area, and the black solid line represents the best fitting path. Both measured and simulated lengths are track lengths (μm)

    图  7  牛首山—罗山磷灰石裂变径迹年龄-高程图

    Figure  7.  Age and altitude of fission track samples in the Niushoushan-Luoshan area

    图  8  鄂尔多斯西缘及邻区中生代AFT样品年龄分布图

    图中数字为裂变径迹中值年龄/Ma

    Figure  8.  Age distribution of Mesozoic AFT samples from the western edge of Ordos and adjacent areas

    The numbers in the figure represent the median age (Ma) of the fission track.

    图  9  鄂尔多斯西缘南部及其邻区AFT热史模拟数据统计图

    灰色区域代表快速冷却的发生时限
    a—一期抬升;b—二期抬升

    Figure  9.  Statistical chart of the AFT thermal history simulation data in the southern part of the western edge of the Ordos Basin and its adjacent areas

    (a) Phase-Ⅰ uplift; (b) Phase-Ⅱ uplift
    The grey area represents the time limit for rapid cooling

    图  10  鄂尔多斯盆地西缘及其邻区中生代隆升模式图

    a—晚三叠世—早侏罗世;b—中侏罗世—早白垩世

    Figure  10.  Mesozoic uplift model of the west edge of the Ordos Basin and its adjacent areas

    (a) Late Triassic-Early Jurassic; (b) Middle Jurassic-Early Cretaceous

    表  1  牛首山—罗山地区AFT测试分析数据表

    Table  1.   AFT test analysis data table for the Niushoushan-Luoshan area

    样品号 采样坐标 高程/m 采样点 采样
    地层
    颗粒数/n ρs(Ns)/(105/cm2) ρi(Ni)/(105/cm2) ρd(Nd)/(105/cm2) P(χ2)/% 中值年龄
    ±1σ/Ma
    L(N)/μm
    EXC049 37°45′23″N
    105°59′08″E
    1365 牛首山 O2mb 28 7.072(942) 11.247(1498) 10.474(7312) 83.50 136±10 12.7±1.6(105)
    EXC050 37°45′19″N
    105°59′12″E
    1419 牛首山 O2mb 28 6.334(1366) 10.780(2325) 10.477(7312) 0.15 121±10 12.9±1.4(104)
    EXC052 37°45′54″N
    105°59′14″E
    1528 牛首山 O2mb 28 4.595(716) 6.835(1065) 10.330(7312) 48.00 141±12 12.8±1.4(114)
    EXC053 37°46′05″N
    105°59′15″E
    1635 牛首山 O2mb 28 6.068(1134) 11.859(2216) 10.481(7312) 8.30 111±8 12.7±1.3(103)
    EXC055 37°46′21″N
    105°59′05″E
    1762 牛首山 O2mb 28 4.680(1064) 8.629(1962) 10.179(7312) 34.40 114±8 12.5±1.7(106)
    EXC214 37°18′14″N
    106°16′55″E
    2610 罗山 O2mb 4 13.449(138) 19.555(204) 10.477(7312) 44.00 146±18
    EXC215 37°18′16″N
    106°17′02″E
    2564 罗山 O2mb 28 7.864(824) 12.950(1357) 10.475(7312) 45.80 131±10 12.3±1.8(107)
    EXC217 37°17′01″N
    106°16′56″E
    2435 罗山 O2mb 14 6.634(566) 9.939(848) 10.473(7312) 51.30 144±12 12.7±1.7(119)
    EXC219 37°15′46″N
    106°16′38″E
    2174 罗山 O2mb 28 5.775(1489) 8.680(2238) 10.470(7312) 10.20 143±11 12.6±2.5(103)
    备注:n为样品颗粒数;ρsρiρd分别为样品的自发裂变径迹密度、诱发裂变径迹密度和标准铀玻璃产生在白云母外探测器上的诱发裂变径迹密度;NsNiNd分别为与ρsρiρd相对应的径迹数目;P(χ2)为χ2统计值;N为所测径迹数目。
    下载: 导出CSV

    表  2  代表性样品磷灰石热史模拟检测K-S值与Age GOF值统计表

    Table  2.   Statistical of K-S value and Age GOF value of the thermal history simulation test for representative samples of apatite

    样品号 K-S值 模拟径迹长度/μm 实测径迹长度/μm Age GOF值 模拟年龄值/Ma 实测年龄值/Ma
    EXC049 0.45 12.95±1.43 12.67±1.56 0.95 136 136±10
    EXC050 0.39 13.15±1.40 12.93±1.37 1.00 127 127±9
    EXC052 0.54 12.92±1.40 12.81±1.38 1.00 143 143±11
    EXC055 0.56 12.56±1.85 12.48±1.71 0.99 114 114±8
    EXC215 0.42 12.81±1.64 12.33±1.82 0.99 141 140±10
    EXC217 0.35 12.91±1.65 12.68±1.74 0.98 143 144±12
    备注:K-S值表示径迹长度与实测值的吻合程度;Age GOF值是模拟年龄值与测试年龄值的吻合程度;若K-S值、Age GOF值均大于0.05,表明结果比较可信,若二者均大于0.5,表明结果可信。
    下载: 导出CSV

    表  3  鄂尔多斯西缘南部已有AFT热史模拟样品数据

    Table  3.   AFT thermal history simulation sample data in the southern part of the western edge of the Ordos Basin

    采样区域 样品号 采样地层 岩性 年龄/Ma 径迹长度/μm P(χ2)/% 文献来源
    海原 9-4 Pz 花岗岩 130±7 12.2±2.0 20.00 Lin et al., 2011
    海原 HFE11 Pz 花岗岩 132.7±7.2 12.28±0.2 - Duvall et al., 2013
    石沟驿 SG16 T 砂岩 89±6 12.6±2.0 0.10 马静辉和何登发, 2019
    SG24 T 砂岩 79±5 12.8±2.1 0.90
    CS40 T 砂岩 91±6 12.7±2.0 0.00
    MS44 K 砂岩 72±5 13.1±1.6 5.60
    罗山 LS88 T 砂岩 72±4 12.8±2.1 75.90
    海原 HY-1 T 砂岩 116.6±5.2 13.65±1.05 97.43
    HY-2 T 砂岩 110.1±4.9 13.51±1.00 85.78
    HY-3 J 砂岩 117.6±4.4 13.55±1.11 24.12
    平凉 XY-1 T 砂岩 158.5±12.1 13.79±1.16 18.76 彭恒, 2020
    XY-2 T 砂岩 157.1±9.3 13.68±1.2 71.03
    XY-3 T 砂岩 168.7±10.4 13.45±0.94 94.48
    月亮山 HSZ-1 Pz 花岗岩 158.4±8.9 13.13±1.09 91.69
    HSZ-2 Pz 花岗岩 145±11.2 12.67±1.07 36.76
    平凉 XY3 T 砂岩 168.7±10.4 12.24±0.16 94.48 王建强等, 2020
    鄂尔多斯南缘 WB5 T 砂岩 172.9±7.6 11.9±0.2 15.93 Zhang et al., 2018
    WB6 T 砂岩 185.6±7.9 12.3±0.4 24.05
    备注:表中采样区域按图 8中出现的地名进行划分,具体采样地点见样品对应的参考文献
    下载: 导出CSV
  • BAI D L, 2021. Characteristics and genetic mechanisms of intraplate tectonic deformation in the western Ordos Basin[D]. Beijing: China University of Petroleum. (in Chinese with English abstract)
    CHEN G, SUN J B, ZHOU L F, et al., 2007. Fission-track-age records of the Mesozoic tectonic-events in the southwest margin of the Ordos Basin, China[J]. Science in China Series D: Earth Sciences, 50(S2): 133-143. doi: 10.1007/s11430-007-6025-y
    CHEN H, HU J M, GONG W B, et al., 2013. Cenozoic deformation and evolution of the Niushou Shan-Luo Shan fault zone in the northeast margin of the Tibet Plateau[J]. Earth Science Frontiers, 20(4): 18-35. (in Chinese with English abstract)
    CHEN H, HU J M, GONG W B, et al., 2015. Characteristics and transition mechanism of late Cenozoic structural deformation within the Niushoushan-Luoshan fault zone at the northeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 114: 73-88. doi: 10.1016/j.jseaes.2015.06.034
    CHENG L Y, TANG X Y, LI Y, 2021. Research progress of factors affecting apatite fission track annealing[J]. Journal of Geomechanics, 27(1): 127-134. (in Chinese with English abstract)
    DARBY B J, RITTS B D, 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold-thrust belt, China[J]. Earth and Planetary Science Letters, 205(1-2): 13-24. doi: 10.1016/S0012-821X(02)01026-9
    DONG S W, ZHANG Y Q, LONG C X, et al., 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 81(11): 1449-1461. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2007.11.001
    DONG S W, ZHANG Y Q, CHEN X H, et al., 2008. The formation and deformational characteristics of East Asia multi-direction convergent tectonic system in Late Jurassic[J]. Acta Geoscientica Sinica, 29(3): 306-317. (in Chinese with English abstract)
    DONG S W, ZHANG Y Q, LI H L, et al., 2019. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia: Commemorating 90th years of the "Yanshan Orogeny"[J]. Science China Earth Sciences, 61(12): 1888-1909.
    DONG Y P, LIU X M, ZHANG G W, et al., 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 47: 123-142. doi: 10.1016/j.jseaes.2011.06.005
    DUVALL A R, CLARK M K, KIRBY E, et al., 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 32(5): 1190-1211. doi: 10.1002/tect.20072
    GALLAGHER K, 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research: Solid Earth, 117(B2): B02408.
    GAO F, WANG Y J, LIU S S, et al., 2000. Thermal history study in the west of the Ordos Basin using Apatite Fission Track analysis[J]. Geotectonica Et Metallogenia, 24(1): 87-91. (in Chinese with English abstract)
    GAO S H, 2014. Mesozoic and Cenozoic tectonic evolution of the transverse structure in the middle of west margin of Ordos Basin and its significance to oil and gas accumulation[D]. Xi'an: Northwest University. (in Chinese with English abstract)
    GE X H, 1989. The history of formation of intraplate orogenic belts in the north China paleoplate[J]. Geological Review, 35(3): 254-261. (in Chinese with English abstract)
    GONG W B, SHI W, CHEN H, et al., 2016. Quaternary active characteristics of the Liumugao fault in the northern segment of the Niushoushan-Luoshan fault[J]. Journal of Geomechanics, 22(4): 1004-1014. (in Chinese with English abstract)
    GREEN P F, 1986. On the thermo-tectonic evolution of northern England: evidence from fission track analysis[J]. Geological Magazine, 123(5): 493-506. doi: 10.1017/S0016756800035081
    GU Q C, 1996. Stratigraphy(Lithostratic) of Ningxia Hui autonomous region[M]. Wuhan: China University of Geosciences Press. (in Chinese with English abstract)
    GUO P, LIU C Y, WANG J Q, et al., 2018. Detrital-zircon geochronology of the Jurassic coal-bearing strata in the western Ordos Basin, North China: Evidences for multi-cycle sedimentation[J]. Geoscience Frontiers, 9(6): 1725-1743. doi: 10.1016/j.gsf.2017.11.003
    GUO Q Y, 2010. Tectonic evolution at the western margin of Ordos Basin with respect to metallogenesis of sandstone type uranium deposits[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    GUO R H, LI S Z, SUO Y H, et al., 2017. Indentation of North China Block into Greater South China Block and Indosinian Orocline[J]. Earth Science Frontiers, 24(4): 171-184. (in Chinese with English abstract)
    HE P J, SONG C H, WANG Y D, et al., 2017. Cenozoic exhumation in the Qilian Shan, northeastern Tibetan Plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin[J]. Journal of Geophysical Research: Solid Earth, 122(8): 6910-6927. doi: 10.1002/2017JB014216
    HE Z J, LI J Y, NIU B G, et al., 1998. A Late Jurassic intense thrusting-uplifting event in the Yanshan-Yinshan area, Northern China, and its sedimentary response[J]. Geological Review, 44(4): 407-418. (in Chinese with English abstract)
    HURFORD A J, GREEN P F, 1982. A users' guide to fission track dating calibration[J]. Earth and Planetary Science Letters, 59(2): 343-354. doi: 10.1016/0012-821X(82)90136-4
    KETCHAM R A, 2005. Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in Mineralogy and Geochemistry, 58(1): 275-314. doi: 10.2138/rmg.2005.58.11
    KETCHAM R A, CARTER A, DONELICK R A, et al., 2007a. Improved measurement of fission-track annealing in apatite using c-axis projection[J]. American Mineralogist, 92(5-6): 789-798. doi: 10.2138/am.2007.2280
    KETCHAM R A, CARTER A, DONELICK R A, et al., 2007b. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 92(5-6): 799-810. doi: 10.2138/am.2007.2281
    KOHN B P, GREEN P F, 2002. Low temperature thermochronology: from tectonics to landscape evolution[J]. Tectonophysics, 349(1-4): 1-4. doi: 10.1016/S0040-1951(02)00042-2
    KOU L L, LI Z H, DONG X P, et al., 2021. The age sequence of the detrital zircons from the Guanyindian section in Longde, the northeastern margin of the Tibetan Plateau, and its geological significance[J]. Journal of Geomechanics, 27(6): 1051-1064. (in Chinese with English abstract)
    LEI Q Y, ZHANG P Z, ZHENG W J, et al., 2016. Dextral strike-slip of Sanguankou-Niushoushan fault zone and extension of arc tectonic belt in the northeastern margin of the Tibet Plateau[J]. Science China Earth Sciences, 59(5): 1025-1040. doi: 10.1007/s11430-016-5272-1
    LI B, 2019. Thrust structure and its effect on hydrocarbon in the western margin of Ordos Basin[D]. Xi'an: Northwest University. (in Chinese with English abstract)
    LI F Q, ZHANG S Z, LI J, et al., 2022. Definition of Mid-Late Jurassic Peripheral Foreland Basin in the northern margin of Lhasa Block[J]. Earth Science, 47(2): 387-404. (in Chinese with English abstract)
    LI S Z, SUO Y H, ZHOU J, et al., 2022. Tectonic evolution of the South China Ocean-Continent Connection Zone: Transition and mechanism of the Tethyan to the Pacific tectonic domains[J]. Journal of Geomechanics, 28(5): 683-704. (in Chinese with English abstract)
    LI Y H, DU X X, LI T X, 2022. Characterization of the Holocene extensional structures in the Wuwei Basin, northeastern margin of the Tibetan Plateau, and their formation mechanism[J]. Journal of Geomechanics, 28(3): 353-366. (in Chinese with English abstract)
    LIANG W T, ZHANG G W, LU R K, et al., 2013. Extrusion tectonics inferred from fabric study of the Guanzizhen ophiolitic mélange belt in the West Qinling orogen, Central China[J]. Journal of Asian Earth Sciences, 78: 345-357. doi: 10.1016/j.jseaes.2013.07.006
    LIN X B, CHEN H L, WYRWOLL K H, et al., 2011. The uplift history of the Haiyuan-Liupan Shan region northeast of the present Tibetan Plateau: Integrated constraint from stratigraphy and thermochronology[J]. The Journal of Geology, 119(4): 372-393. doi: 10.1086/660190
    LIU C Y, ZHAO H G, WANG F, et al., 2005. Attributes of the Mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica, 79(6): 737-747. (in Chinese with English abstract)
    LIU J H, 2009. Apatite Fission Track (AFT) Analysis of the Cenozoic Extensional Exhumation and Uplift of the Helan Shan and the Qinling Mountains, and Frictional Heating along Active Faults[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    MA J H, HE D F, 2019. Meso-Cenozoic tectonic events in the Helanshan Tectonic Belt and its adjacent areas: Constraints from unconformity and fission track data[J]. Acta Petrologica Sinica, 35(4): 1121-1142. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.04.10
    MA X H, XING L S, YANG Z Y, et al., 1993. Paleomagnetic study since Late Paleozoic in The Ordos Basin[J]. Acta Geophysica Sinica, 36(1): 68-79. (in Chinese with English abstract)
    MA Y S, 2003. The neotectonic activity and the evaluation of geological hazards risk in the upper reaches of the Yellow River[M]. Beijing: Geology Press, 1-278. (in Chinese with English abstract)
    MENG Q R, ZHANG G W, 1999. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 27(2): 123-126. doi: 10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2
    MIN W, CHAI Z Z, WANG P, et al., 1993. The study on the paleoearthquakes on the eastern piedmont fault of the Luoshan mountains in Holocene[J]. Plateau Earthquake Research, 5(4): 97-102. (in Chinese with English abstract)
    OUYANG Z J, CHEN H D, FENG J P, 2012. Structural characters and evolution of the mid-south section at the west margin of Ordos Basin[J]. Geoscience, 26(4): 691-695. (in Chinese with English abstract)
    PENG H, WANG J Q, ZATTIN M, et al., 2018. Late Triassic-Early Jurassic uplifting in Eastern Qilian Mountain and its geological significance: Evidence from apatite fission track thermochronology[J]. Earth Science, 43(6): 1983-1996. (in Chinese with English abstract)
    PENG H, WANG J Q, LIU C Y, et al., 2019. Thermochronological constraints on the Meso-Cenozoic tectonic evolution of the Haiyuan-Liupanshan region, northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 183: 103966. doi: 10.1016/j.jseaes.2019.103966
    PENG H, 2020. Fission-track thermochronological analysis and its geological significance in the southwestern Ordos Block and its surroundings[D]. Xi'an: Northwest University. (in Chinese with English abstract)
    PENG H, LIU X Y, LIU C Y, et al., 2022. Spatial-temporal evolution and the dynamic background of the translation of Mid-Late Mesozoic tectonic regimes of the southwest Ordos basin margin[J]. Acta Geologica Sinica, 96(2): 387-402. (in Chinese with English abstract)
    REN J S, JIANG C F, ZHANG Z K, et al., 1980. Geotectonic evolution of China[M]. Beijing: Science Press, 10-65. (in Chinese with English abstract)
    REN W J, ZHANG Q L, ZHANG J, et al., 1999. The plate tectonic formation of the Central Paleo Uplift in The Ordos Basin[J]. Geotectonica et Metallogenia, 23(2): 191-196. (in Chinese with English abstract)
    RUAN Z, LUO Z, YU B S, et al., 2021. Middle-Late Triassic basin prototype and tectonic paleographic response in the Ordos Basin[J]. Earth Science Frontiers, 28(1): 12-32. (in Chinese with English abstract)
    SONG L J, MU Q H, LI A R, et al., 2013. Fission-track thermal evolution history in the formation age of Yaoshan Formation[J]. Coal Geology & Exploration, 41(4): 1-4. (in Chinese with English abstract)
    SONG Y G, FANG X M, LI J J, et al., 2001. The Late Cenozoic uplift of the Liupan Shan, China[J]. Science in China Series D: Earth Sciences, 44(S1): 176-184. doi: 10.1007/BF02911985
    SONG Y G, QIAN L B, LI Y, 2013. Fission track evidence of tectonic uplift in Liupanshan area since cretaceous[C]//Proceedings of the First National Youth Geological Congress. Fuzhou: 121-124. (in Chinese)
    TANG X Y, GUO Z M, 1992. The study and petroleum prospect of thrust nappe in the west margin of Shanxi-Gansu-Ningxia Basin[M]. Xi'an: Northwest University Press. (in Chinese with English abstract)
    WANG J Q, JIA N, LIU C Y, et al., 2011. Fabric analysis of Yijun gravels of Lower Cretaceous in the southwestern Ordos Basin[J]. Acta Sedimentologica Sinica, 29(2): 226-234. (in Chinese with English abstract)
    WANG J Q, LIU C Y, ZHAO H G, et al., 2020. Uplift and exhumation events and thermochronological constraints at the end of Triassic in southwestern Ordos Basin[J]. Acta Petrologica Sinica, 36(4): 1199-1212. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.04.14
    WANG Q, ZHANG P Z, FREYMUELLER J T, et al., 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294(5542): 574-577. doi: 10.1126/science.1063647
    WANG W T, ZHANG P Z, KIRBY E, et al., 2011. A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau[J]. Tectonophysics, 505(1-4): 100-114. doi: 10.1016/j.tecto.2011.04.006
    WANG W T, ZHANG P Z, LEI Q Y, 2013. Deformational characteristics of the Niushoushan-Luoshan fault zone and its tectonic implications[J]. Seismology and Geology, 35(2): 195-207. (in Chinese with English abstract)
    WANG W T, ZHANG P Z, ZHENG D W, et al., 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers, 21(4): 266-274. (in Chinese with English abstract)
    XU L Q, LI S Z, GUO L L, et al., 2016. Impaction of the Tan-Lu Fault Zone on uplift of the Luxi Rise: Constraints from apatite fission track thermochronology[J]. Acta Petrologica Sinica, 32(4): 1153-1170. (in Chinese with English abstract)
    YANG Z Y, BESSE J, 2000. Early Triassic paleomagnetic results from southern part of the Sichuan Basin and its tectonic implications[J]. Chinese Journal of Geology, 35(1): 77-82. (in Chinese with English abstract)
    YUAN W M, BAO Z K, DONG J Q, et al., 2007. Zircon and apatite fission track analyses on mineralization ages and tectonic activities of Tuwu-Yandong porphyry copper deposit in northern Xinjiang, China[J]. Science in China Series D: Earth Sciences, 50(12): 1787-1795. doi: 10.1007/s11430-007-0130-9
    ZHANG H, JIN X L, LI G H, et al., 2008. Original features and palaeogeographic evolution during the Jurassic-Cretaceous in Ordos Basin[J]. Journal of Palaeogeography, 10(1): 1-11. (in Chinese with English abstract)
    ZHANG J, MA Z J, REN W J, 2000. The mechanism of the difference between the northern part and the southern part of the fold and thrust belt on the Western edge of The Ordos Basin, China[J]. Geotectonica et Metallogenia, 24(2): 124-133. (in Chinese with English abstract)
    ZHANG J, MA Z J, REN W J, 2004. Tectonic characteristics of the western Ordos thrust-fold belt and the causes for its north-south segmentation[J]. Acta Geologica Sinica, 78(5): 600-611. (in Chinese with English abstract)
    ZHANG L, LIU C Y, HE X Y, 2019. Discovery of kilometer-scale uplift and exhumation related to the Late Indosinian movement in the northern Ordos Basin, North China[J]. Acta Geologica Sinica-English Edition, 93(1): 231-232. doi: 10.1111/1755-6724.13793
    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1
    ZHANG S H, LIU C Y, YANG M H, et al., 2018. Latest Triassic to Early Jurassic thrusting and exhumation in the southern Ordos Basin, North China: Evidence from LA-ICP-MS-based apatite fission track thermochronology[J]. Acta Geologica Sinica-English Edition, 92(4): 1334-1348. doi: 10.1111/1755-6724.13630
    ZHANG W J, MENG X X, HU J M, et al., 1994. Tectonic characteristics and orogenic process of the junction of the Qilian-North Qinling orogenic belt[M]. Xi'an: Northwest University Press, 1-150. (in Chinese t).
    ZHANG Y Q, LIAO C Z, 2006. Transition of the Late Mesozoic-Cenozoic tectonic regimes and modification of the Ordos basin[J]. Geology in China, 33(1): 28-40. (in Chinese with English abstract)
    ZHANG Z C, WANG X S, 2004. The issues of application for the fission track dating and its geological significance[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 40(6): 898-905. (in Chinese with English abstract)
    ZHAO H G, 2003. Structural characteristics and the evolution in western Ordos Basin[D]. Xi'an: Northwest University. (in Chinese with English abstract)
    ZHAO H G, LIU C Y, WANG F, et al., 2007a. Uplift and evolution of Helan Mountain[J]. Science in China Series D: Earth Sciences, 50(S2): 217-226. doi: 10.1007/s11430-007-6010-5
    ZHAO H G, LIU C Y, YAO Y M, et al., 2007b. Differential uplift in the west margin of Ordos Basin since Mesozoic from the fission track evidence[J]. Journal of Northwest University(Natural Science Edition), 37(3): 470-474. (in Chinese with English abstract)
    ZHAO X C, LIU C Y, WANG J Q, et al., 2016. Mesozoic-Cenozoic tectonic uplift events of Xiangshan Mountain in northern North-South Tectonic Belt, China[J]. Acta Petrologica Sinica, 32(7): 2124-2136. (in Chinese with English abstract)
    ZHAO X C, 2017. Mesozoic tectonic evolution and late reformation of the Northern North-South Tectonic Belt, China[D]. Xi'an: Northwest University. (in Chinese with English abstract)
    ZHAO Y, GAO H L, ZHANG S H, et al., 2022. A brief century review of the "Yanshan Movement" and its founder[J]. Acta Geologica Sinica, 96(5): 1510-1523. (in Chinese with English abstract)
    ZHENG D W, ZHANG P Z, WAN J L, et al., 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 248(1-2): 198-208. doi: 10.1016/j.epsl.2006.05.023
    ZHU G S, 2015. Analysis of Meso-Cenozic structural characteristics and prediction of favorable oil and gas zone in Liupanshan Basin[D]. Xi'an: Chang'an University. (in Chinese with English abstract)
    白东来, 2021. 鄂尔多斯盆地西缘板内构造变形特征及其成因机制[D]. 北京: 中国石油大学(北京).
    陈刚, 孙建博, 周立发, 等, 2007. 鄂尔多斯盆地西南缘中生代构造事件的裂变径迹年龄记录[J]. 中国科学(D辑: 地球科学), 37(S1): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1012.htm
    陈虹, 胡健民, 公王斌, 等, 2013. 青藏高原东北缘牛首山-罗山断裂带新生代构造变形与演化[J]. 地学前缘, 20(4): 18-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304004.htm
    程璐瑶, 唐晓音, 李毅, 2021. 磷灰石裂变径迹退火影响因素研究进展[J]. 地质力学学报, 27(1): 127-134. doi: 10.12090/j.issn.1006-6616.2021.27.01.013
    董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 81(11): 1449-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711002.htm
    董树文, 张岳桥, 陈宣华, 等, 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J]. 地球学报, 29(3): 306-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803006.htm
    董树文, 张岳桥, 李海龙, 等, 2019. "燕山运动"与东亚大陆晚中生代多板块汇聚构造: 纪念"燕山运动"90周年[J]. 中国科学: 地球科学, 49(6): 913-938. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201906002.htm
    高峰, 王岳军, 刘顺生, 等, 2000. 利用磷灰石裂变径迹研究鄂尔多斯盆地西缘热历史[J]. 大地构造与成矿学, 24(1): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200001013.htm
    高少华, 2014. 鄂尔多斯盆地西缘中部横向构造带中新生代演化改造及其油气意义[D]. 西安: 西北大学.
    葛肖虹, 1989. 华北板内造山带的形成史[J]. 地质论评, 35(3): 254-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198903008.htm
    公王斌, 施炜, 陈虹, 等, 2016. 牛首山-罗山断裂带北段柳木高断裂第四纪活动特征[J]. 地质力学学报, 22(4): 1004-1014. https://journal.geomech.ac.cn/article/id/8dea3d6b-54ac-4a27-91ec-21d1977070b7
    顾其昌, 1996. 宁夏回族自治区岩石地层[M]. 武汉: 中国地质大学出版社.
    郭庆银, 2010. 鄂尔多斯盆地西缘构造演化与砂岩型铀矿成矿作用[D]. 北京: 中国地质大学(北京).
    郭润华, 李三忠, 索艳慧, 等, 2017. 华北地块揳入大华南地块和印支期弯山构造[J]. 地学前缘, 24(4): 171-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704023.htm
    和政军, 李锦轶, 牛宝贵, 等, 1998. 燕山—阴山地区晚侏罗世强烈推覆—隆升事件及沉积响应[J]. 地质论评, 44(4): 407-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804009.htm
    寇琳琳, 李振宏, 董晓朋, 等, 2021. 青藏高原东北缘隆德观音店剖面碎屑锆石年龄序列及地质意义[J]. 地质力学学报, 27(6): 1051-1064. doi: 10.12090/j.issn.1006-6616.2021.27.06.085
    雷启云, 张培震, 郑文俊, 等, 2016. 青藏高原东北缘三关口-牛首山断裂的右旋走滑与弧形构造带扩展[J]. 中国科学: 地球科学, 46(5): 691-705. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201605007.htm
    李斌, 2019. 鄂尔多斯盆地西部冲断带构造与控油气因素研究[D]. 西安: 西北大学.
    李奋其, 张士贞, 李俊, 等, 2022. 拉萨地块北缘中晚侏罗世周缘前陆盆地的厘定[J]. 地球科学, 47(2): 387-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202001.htm
    李三忠, 索艳慧, 周洁, 等, 2022. 华南洋陆过渡带构造演化: 特提斯构造域向太平洋构造域的转换过程与机制[J]. 地质力学学报, 28(5): 683-704. doi: 10.12090/j.issn.1006-6616.20222809
    李艺豪, 杜星星, 李天秀, 2022. 青藏高原东北缘武威盆地内部全新世伸展构造特征及其成因机制[J]. 地质力学学报, 28(3): 353-366. doi: 10.12090/j.issn.1006-6616.2021151
    刘池洋, 赵红格, 王锋, 等, 2005. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报, 79(6): 737-747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200506006.htm
    刘建辉, 2009. 贺兰山、秦岭山脉新生代伸展隆升及断层摩擦生热磷灰石裂变径迹分析[D]. 北京: 中国地震局地质研究所.
    马静辉, 何登发, 2019. 贺兰山构造带及邻区中—新生代构造事件: 来自不整合面和裂变径迹的约束[J]. 岩石学报, 35(4): 1121-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904010.htm
    马醒华, 邢历生, 杨振宇, 等, 1993. 鄂尔多斯盆地晚古生代以来古地磁研究[J]. 地球物理学报, 36(1): 68-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199301008.htm
    马寅生, 2003. 黄河上游新构造活动与地质灾害风险评价[M]. 北京: 地质出版社, 1-278.
    闵伟, 柴炽章, 王萍, 等, 1993. 罗山东麓断裂全新世古地震研究[J]. 高原地震, 5(4): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDZ199304013.htm
    欧阳征健, 陈洪德, 冯娟萍, 2012. 鄂尔多斯盆地西缘中南段构造特征与演化[J]. 现代地质, 26(4): 691-695. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201204008.htm
    彭恒, 王建强, ZATTIN M, 等, 2018. 晚三叠世—早侏罗世祁连山东部隆升的裂变径迹年代学证据及地质意义[J]. 地球科学, 43(6): 1983-1996. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201806016.htm
    彭恒, 2020. 鄂尔多斯地块西南邻区裂变径迹热年代学分析及地质意义[D]. 西安: 西北大学.
    彭恒, 刘显阳, 刘池洋, 等, 2022. 鄂尔多斯盆地西南缘中生代中晚期构造体制转化过程及其动力学背景[J]. 地质学报, 96(2): 387-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202202004.htm
    任纪舜, 姜春发, 张正坤, 等, 1980. 中国大地构造及其演化[M]. 北京: 科学出版社, 10-65.
    任文军, 张庆龙, 张进, 等, 1999. 鄂尔多斯盆地中央古隆起板块构造成因初步研究[J]. 大地构造与成矿学, 23(2): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK902.013.htm
    阮壮, 罗忠, 于炳松, 等, 2021. 鄂尔多斯盆地中—晚三叠世盆地原型及构造古地理响应[J]. 地学前缘, 28(1): 12-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101003.htm
    宋立军, 牟秋环, 李爱荣, 等, 2013. 宁夏固原炭山窑山组形成时代的裂变径迹热史约束[J]. 煤田地质与勘探, 41(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201304000.htm
    宋友桂, 方小敏, 李吉均, 等, 2001. 晚新生代六盘山隆升过程初探[J]. 中国科学: D辑, 31(增刊): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1021.htm
    宋友桂, 千琳勃, 李云, 2013. 白垩纪以来六盘山地区构造隆升的裂变径迹证据[C]//第一届全国青年地质大会论文集. 福州: 121-124.
    汤锡元, 郭忠铭, 1992. 陕甘宁盆地西缘逆冲推覆构造及油气勘探[M]. 西安: 西北大学出版社.
    王建强, 贾楠, 刘池洋, 等, 2011. 鄂尔多斯盆地西南部下白垩统宜君组砾岩砾组分析及其意义[J]. 沉积学报, 29(2): 226-234. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201102004.htm
    王建强, 刘池洋, 赵红格, 等, 2020. 鄂尔多斯盆地西南部三叠纪末抬升剥蚀事件及热年代学记录[J]. 岩石学报, 36(4): 1199-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202004014.htm
    王伟涛, 张培震, 雷启云, 2013. 牛首山-罗山断裂带的变形特征及其构造意义[J]. 地震地质, 35(2): 195-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201302001.htm
    王伟涛, 张培震, 郑德文, 等, 2014. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 21(4): 266-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404034.htm
    许立青, 李三忠, 郭玲莉, 等, 2016. 郯庐断裂带对鲁西隆升过程的影响: 磷灰石裂变径迹证据[J]. 岩石学报, 32(4): 1153-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604015.htm
    杨振宇, BESSE J, 2000. 四川盆地南缘早三叠世古地磁结果及其构造意义[J]. 地质科学, 35(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200001008.htm
    袁万明, 保增宽, 董金泉, 等, 2007. 新疆土屋—延东斑岩铜矿区成矿时代与构造活动的裂变径迹分析[J]. 中国科学D辑: 地球科学, 37(10): 1330-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200710007.htm
    张泓, 晋香兰, 李贵红, 等, 2008. 鄂尔多斯盆地侏罗纪—白垩纪原始面貌与古地理演化[J]. 古地理学报, 10(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200801003.htm
    张进, 马宗晋, 任文军, 2000. 鄂尔多斯盆地西缘逆冲带南北差异的形成机制[J]. 大地构造与成矿学, 24(2): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200002003.htm
    张进, 马宗晋, 任文军, 2004. 鄂尔多斯西缘逆冲褶皱带构造特征及其南北差异的形成机制[J]. 地质学报, 78(5): 600-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200405003.htm
    张维吉, 孟宪恂, 胡建民, 等, 1994. 祁连山-北秦岭造山带接合部位构造特征与造山过程[M]. 西安: 西北大学出版社, 1-150.
    张岳桥, 廖昌珍, 2006. 晚中生代—新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质, 33(1): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601002.htm
    张志诚, 王雪松, 2004. 裂变径迹定年资料应用中的问题及其地质意义[J]. 北京大学学报(自然科学版), 40(6): 898-905. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200406007.htm
    赵红格, 2003. 鄂尔多斯盆地西部构造特征及演化[D]. 西安: 西北大学.
    赵红格, 刘池洋, 王锋, 等, 2007a. 贺兰山隆升时限及其演化[J]. 中国科学D辑: 地球科学, 37(S1): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1020.htm
    赵红格, 刘池洋, 姚亚明, 等, 2007b. 鄂尔多斯盆地西缘差异抬升的裂变径迹证据[J]. 西北大学学报(自然科学版), 37(3): 470-474. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200703029.htm
    赵晓辰, 刘池洋, 王建强, 等, 2016. 南北构造带北部香山地区中—新生代构造抬升事件[J]. 岩石学报, 32(7): 2124-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201607014.htm
    赵晓辰, 2017. 中国南北构造带北部中生代构造演化与后期改造[D]. 西安: 西北大学.
    赵越, 高海龙, 张拴宏, 等, 2022. 回眸燕山运动: 致敬"燕山运动"的创建者和中国地质学会的奠基人翁文灏[J]. 地质学报, 96(5): 1510-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202205002.htm
    朱国胜, 2015. 六盘山盆地中新生代构造特征分析及有利油气区预测[D]. 西安: 长安大学.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  686
  • HTML全文浏览量:  221
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 修回日期:  2023-06-21
  • 录用日期:  2023-06-26

目录

    /

    返回文章
    返回