留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强降雨条件下碎屑岩滑坡远程运动模拟分析——以牛儿湾滑坡为例

吴伟乐 贺凯 高杨 李滨 刘朋飞

吴伟乐, 贺凯, 高杨, 等, 2022. 强降雨条件下碎屑岩滑坡远程运动模拟分析——以牛儿湾滑坡为例. 地质力学学报, 28 (6): 1115-1126. DOI: 10.12090/j.issn.1006-6616.20222833
引用本文: 吴伟乐, 贺凯, 高杨, 等, 2022. 强降雨条件下碎屑岩滑坡远程运动模拟分析——以牛儿湾滑坡为例. 地质力学学报, 28 (6): 1115-1126. DOI: 10.12090/j.issn.1006-6616.20222833
WU Weile, HE Kai, GAO Yang, et al., 2022. Long-runout fluidization disaster simulation analysis of clastic landslide under heavy rainfall: A case study of the Niuerwan landslide. Journal of Geomechanics, 28 (6): 1115-1126. DOI: 10.12090/j.issn.1006-6616.20222833
Citation: WU Weile, HE Kai, GAO Yang, et al., 2022. Long-runout fluidization disaster simulation analysis of clastic landslide under heavy rainfall: A case study of the Niuerwan landslide. Journal of Geomechanics, 28 (6): 1115-1126. DOI: 10.12090/j.issn.1006-6616.20222833

强降雨条件下碎屑岩滑坡远程运动模拟分析——以牛儿湾滑坡为例

doi: 10.12090/j.issn.1006-6616.20222833
基金项目: 

国家自然科学基金面上基金项目 42177172

国家自然科学基金青年基金项目 41907257

详细信息
    作者简介:

    吴伟乐(1998—), 男, 在读硕士, 主要从事地质灾害研究工作。E-mail: 875971509@qq.com

    通讯作者:

    贺凯(1986—), 男, 副研究员, 主要从事地质灾害防治研究工作。E-mail: 492644728@qq.com

  • 中图分类号: P642.22

Long-runout fluidization disaster simulation analysis of clastic landslide under heavy rainfall: A case study of the Niuerwan landslide

Funds: 

the National Natural Science Foundation of China 42177172

the National Natural Science Foundation for Young Scientists of China 41907257

  • 摘要:

    中国西南砂泥岩地层山区在强降雨条件下频发远程滑坡灾害, 是防灾减灾领域亟待解决的关键问题。以2020年7月13日重庆武隆牛儿湾滑坡为例, 通过无人机航飞、野外调查和地质条件分析等手段, 运用PFC3D模拟, 对中国西南砂泥岩地层山区强降雨条件下流化滑坡远程运动成灾模式开展研究。研究结果显示: 独特的地层结构(上部为第四系残坡积土, 下部为砂泥岩)是导致滑坡顺层失稳, 并远程流化运动的根本原因; 强降雨条件是导致滑坡深层失稳、整体下滑, 同时使表层残破积土层饱水流化远程运动的关键影响因素; 顺层滑坡远程流化成灾模式主要表现出下层整体滑移、中层粗细颗粒混合和上层饱水流化的特征, 流化过程可分为整体高位失稳—混合加速—运动流化堆积三个阶段。基于以上研究, 认为砂泥岩地层山区的远程流化滑坡风险调查与预测过程应当充分基于滑体远程流化运动的成灾特点进行调查与评价, 以此为防灾减灾提供定量化科学依据。

     

  • 图  1  研究区地理位置图

    Figure  1.  Geographical location of the study area

    图  2  牛儿湾滑坡遥感影像图及现场照片

    a—滑前遥感影像;b—滑坡现场照片;c—滑后遥感影像;d—滑坡后缘房屋拉张裂缝

    Figure  2.  Remote sensing images and pictures of the Niuerwan landslide

    (a) Remote sensing image before the failure; (b) Scene of the landslide; (c) Remote sensing image after the failure; (d) Tensile fracture

    图  3  研究区区域地质图

    Figure  3.  Regional geological map of the study area

    图  4  滑坡岩体赤平投影及出露基岩

    Figure  4.  Stereographic projection of the rock mass and outcropping of the bedrock

    图  5  研究区多年月均降雨量图

    Figure  5.  Monthly rainfall in the study area

    图  6  牛儿湾滑坡平面图

    Figure  6.  Plan map of the Niuerwan landslide

    图  7  牛儿湾滑坡剖面图

    Figure  7.  Profile map of the Niuerwan landslide

    图  8  牛儿湾滑坡PFC3D模型

    Figure  8.  PFC3D model of the Niuerwan landslide

    图  9  PFC3D三轴压缩试验

    Figure  9.  Virtual triaxial compression test using the PFC3D software

    图  10  牛儿湾滑坡滑体分组运动情况图

    Figure  10.  Diagrams showing the movement of the upper and lower layers of the sliding body in different time periods

    图  11  牛儿湾滑坡滑体速度分布图

    Figure  11.  Velocity of the sliding body

    图  12  监测颗粒运动轨迹图

    Figure  12.  Trajectory of specific particles

    图  13  监测颗粒运动速度曲线图

    a—监测颗粒平均速度曲线;b—前部颗粒速度曲线;c—中部颗粒速度曲线;d—后部颗粒速度曲线

    Figure  13.  Velocity curves of the monitoring particles

    (a) Average velocity curves; (b) Velocity curves of the front particles; (c) Velocity curves of the middle particles; (d) Velocity curves of the rear particles

    图  14  牛儿湾滑坡远程运动模式概化图

    Figure  14.  Generalized model for the long-runout movement of the Niuerwan landslide

    表  1  PFC3D模型微观参数表

    Table  1.   Micro-parameters for the PFC3D model

    上层土体微观参数 颗粒最小半径
    Rmin/m
    颗粒半径比
    Rmax/Rmin
    密度ρ/
    kg·m-3
    接触模量/
    MPa
    摩擦系数 下层基岩微观参数 颗粒最小半径
    Rmin/m
    颗粒半径比
    Rmax/Rmin
    密度ρ/
    kg·m-3
    接触模量/
    MPa
    摩擦系数
    1.2 1.67 2300 1000 0.2 2 1 2300 1000 0.5
    平行黏结模量/MPa 平行黏结刚度比K 法向黏结强度/MPa 切向黏结强度/MPa 阻尼系数 平行黏结模量/MPa 平行黏结刚度比K 法向黏结强度/MPa 切向黏结强度/MPa 阻尼系数
    0 0 0 0 0.37 1256 1 100 100 0.37
    下载: 导出CSV
  • BUSS E, HEIM A, BECKER F, et al., 1881. Der Bergsturz von elm den 11. September 1881. Denkschrift[M]. Zürich J Wurtster & Cie, 1881.
    DAVIES T R, MCSAVENEY M J, HODGSON K A, 1999. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 36(6): 1096-1110. doi: 10.1139/t99-067
    DE BLASIO F V, CROSTA G B, 2015. Fragmentation and boosting of rock falls and rock avalanches[J]. Geophysical Research Letters, 42(20): 8463-8470. doi: 10.1002/2015GL064723
    EVANS S G, HUNGR O, CLAGUE J J, 2001. Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes[J]. Engineering Geology, 61(1): 29-51. doi: 10.1016/S0013-7952(00)00118-6
    GAO H Y, GAO Y, HE K, et al., 2020. Impact and scraping effects of the high-elevation, long-runout "7.23" landslide in Shuicheng, Guizhou[J]. Carsologica Sinica, 39(4): 535-546. (in Chinese with English abstract)
    GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract)
    GAO Y, YIN Y P, LI B, et al., 2017. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan Ms8.0 earthquake[J]. Landslides, 14(4): 1361-1374. doi: 10.1007/s10346-016-0793-4
    GAO Y, YIN Y P, LI B, et al., 2019. Post-failure behavior analysis of the Shenzhen "12.20" CDW landfill landslide[J]. Waste Management, 83: 171-183. doi: 10.1016/j.wasman.2018.11.015
    GAO Y, HE K, LI Z, et al., 2020. An analysis of disaster types and dynamics of landslides in the southwest karst mountain areas[J]. Hydrogeology & Engineering Geology, 47(4): 14-23. (in Chinese with English abstract)
    GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng "7.23" landslide in Guizhou, China[J]. Landslides, 17(7): 1663-1677. doi: 10.1007/s10346-020-01377-8
    GAO Y, YIN Y P, LI B, et al., 2022. The role of fluid drag force in the dynamic process of two-phase flow-like landslides[J]. Landslides, 19(7): 1791-1805. doi: 10.1007/s10346-022-01858-y
    GAO Y, YIN Y P, LI Z, et al., 2022. Study on the dynamic disintegration effect of high position and long runout rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 41(10): 1958-1970. (in Chinese with English abstract)
    HU L, XIN P, WANG T, et al., 2021. Centrifuge model tests on the near-horizontal slide of hard soil-soft rock landslides [J]. Journal of Geomechanics, 27 (1): 73-82.
    HUNGR O, 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 32(4): 610-623. doi: 10.1139/t95-063
    KENT P E, 1966. The transport mechanism in catastrophic rock falls[J]. The Journal of Geology, 74(1): 79-83. doi: 10.1086/627142
    LAI Z Q, VALLEJO L E, ZHOU W, et al., 2017. Collapse of granular columns with fractal particle size distribution: implications for understanding the role of small particles in granular flows[J]. Geophysical Research Letters, 44(24): 12181-12189.
    LI B, GAO Y, YIN Y P, et al., 2022. Rainstorm-induced large-scale landslides in Northeastern Chongqing, China, August 31 to September 2, 2014[J]. Bulletin of Engineering Geology and the Environment, 81(7): 271. doi: 10.1007/s10064-022-02763-3
    LI Z, GAO Y, HE K, et al., 2020. Analysis of the fluidization process of the high position and longrunout landslide in Shuicheng, Liupanshui, Guizhou Province[J]. Journal of Geomechanics, 26(4): 520-532. (in Chinese with English abstract)
    LONG J H, REN J, ZENG F G, et al., 2019. Sliding mode and deformation law of double weak interlayer rock landslide[J]. Journal of China Coal Society, 44(10): 3031-3040. (in Chinese with English abstract)
    MENG H Y, ZHAN J W, LU Q Z, et al., 2022. Kinematics characteristics and numerical simulation analysis of "8.12" giant landslide in Shanyang county, Shaanxi province[J/OL]. Journal of Engineering Geology: 1-18[2022-06-09]. (in Chinese with English abstract)
    SASSA K, 1989. Geotechnical model for the motion of landslides (Special lecture)[C]//Proceedings of the 5th international symposium on landslides. Publ Rotterdam: A A Balkema: 37-56.
    SASSA K, WANG G H, FUKUOKA H, et al., 2004. Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas[J]. Landslides, 1(3): 221-235. doi: 10.1007/s10346-004-0028-y
    SASSA K, NAGAI O, SOLIDUM R, et al., 2010. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides, 7(3): 219-236. doi: 10.1007/s10346-010-0230-z
    XING A G, GAO G Y, CHEN L Z, et al., 2004. Study on hydrodynamics mechanism of large highspeed landslide in the set-out stage[J]. Chinese Journal of Rock Mechanics and Engineering, 23(4): 607-613. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.04.015
    XING A G, YIN Y P, 2009. Whole course analysis on hydrokinetics mechanism of Touzhai gully landslide[J]. Journal of Tongji University (Natural Science), 37(4): 481-485. (in Chinese with English abstract)
    XU Q, HUNAG R Q, YIN Y P, et al., 2009. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: characteristics and failure mechanism[J]. Journal of Engineering Geology, 17(4): 433-444. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.04.001
    XU Q, 2010. The 13 August 2010 catastrophic debris flows in Sichuan province: characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 18(5): 596-608. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.05.002
    YIN Y P, 2010. Mechanism of apparent dip slide of inclined bedding rockslide: a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2): 217-226. (in Chinese with English abstract)
    YIN Y P, WANG W P, ZHANG N, et al., 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 44(5): 827-841. (in Chinese with English abstract)
    YU F, CHEN S X, YU H P, 2005. Numerical simulation study on progressive destruction and failure mechanism of bedding rock slopes[J]. Rock and Soil Mechanics, 26(S2): 36-40, doi: 10.16285/j.rsm.2005.s2.036. (in Chinese with English abstract)
    ZHANG L, TANG H M, XIONG C R, et al., 2012. Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 31(S1): 2601-2611. (in Chinese with English abstract)
    ZHANG Y J, XING A G, ZHU J L, 2012. Dynamics analysis of Niujuangou rockslide-debris avalanche triggered by the Wenchuan earthquake[J]. Journal of Shanghai Jiaotong University, 46(10): 1665-1670. (in Chinese with English abstract)
    ZHANG Y L, CHEN L, YAN J K, et al., 2021. Study on the catastrophic process of rapid and long run-out landslides based on DAN-W[J]. Northwestern Geology, 54(1): 204-211. (in Chinese with English abstract)
    ZOU Z X, TANG H M, XIONG C R, et al., 2012. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2222-2231. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.11.010
    高浩源, 高杨, 贺凯, 等, 2020. 贵州水城"7.23"高位远程滑坡冲击铲刮效应分析[J]. 中国岩溶, 39(4): 535-546. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202004009.htm
    高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 23(1): 65-77. doi: 10.3969/j.issn.1006-6616.2017.01.002
    高杨, 贺凯, 李壮, 等, 2020. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质, 47(4): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004003.htm
    高杨, 殷跃平, 李壮, 等, 2022. 高位远程岩质滑坡动力解体效应研究[J]. 岩石力学与工程学报, 41(10): 1958-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210002.htm
    胡乐, 辛鹏, 王涛, 等, 2021. 硬土软岩滑坡近水平滑移的离心机模型试验研究[J]. 地质力学学报, 27(1): 73-82. doi: 10.12090/j.issn.1006-6616.2021.27.01.008
    李壮, 高杨, 贺凯, 等, 2020. 贵州省六盘水水城高位远程滑坡流态化运动过程分析[J]. 地质力学学报, 26(4): 520-532. doi: 10.12090/j.issn.1006-6616.2020.26.04.045
    龙建辉, 任杰, 曾凡桂, 等, 2019. 双软弱夹层岩质滑坡的滑动模式及变形规律[J]. 煤炭学报, 44(10): 3031-3040. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201910010.htm
    孟桓羽, 占洁伟, 卢全中, 等, 2022. 陕西山阳"8.12"大型山体滑坡运动特征及数值模拟分析[J/OL]. 工程地质学报: 1-18[2022-06-09].
    邢爱国, 高广运, 陈龙珠, 等, 2004. 大型高速滑坡启程流体动力学机理研究[J]. 岩石力学与工程学报, 23(4): 607-613. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200404014.htm
    邢爱国, 殷跃平, 2009. 云南头寨滑坡全程流体动力学机理分析[J]. 同济大学学报(自然科学版), 37(4): 481-485. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200904015.htm
    许强, 黄润秋, 殷跃平, 等, 2009. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 17(4): 433-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200904002.htm
    许强, 2010. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 18(5): 596-608. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201005003.htm
    殷跃平, 2010. 斜倾厚层山体滑坡视向滑动机制研究: 以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报, 29(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002002.htm
    殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm
    余飞, 陈善雄, 余和平, 2005. 顺层岩质边坡渐进破坏及失稳机理的数值模拟研究[J]. 岩土力学, 26(S2): 36-40, doi: 10.16285/j. rsm. 2005. s2. 036.
    张龙, 唐辉明, 熊承仁, 等, 2012. 鸡尾山高速远程滑坡运动过程PFC3D模拟[J]. 岩石力学与工程学报, 31(S1): 2601-2611. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1001.htm
    张艳玲, 陈亮, 闫金凯, 等, 2021. 基于DAN-W模型的高速远程滑坡灾变过程分析[J]. 西北地质, 54(1): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202101018.htm
    张远娇, 邢爱国, 朱继良, 2012. 汶川地震触发牛圈沟高速远程滑坡-碎屑流动力学特性分析[J]. 上海交通大学学报, 46(10): 1665-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201210024.htm
    邹宗兴, 唐辉明, 熊承仁, 等, 2012. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报, 31(11): 2222-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  171
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-09-28

目录

    /

    返回文章
    返回