留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘肃岷县浑水沟泥包砾成因机制及其灾害意义

渠敬凯 杨为民 申俊峰 万飞鹏 邱占林 马思琦 徐传成

渠敬凯, 杨为民, 申俊峰, 等, 2022. 甘肃岷县浑水沟泥包砾成因机制及其灾害意义. 地质力学学报, 28 (6): 1046-1058. DOI: 10.12090/j.issn.1006-6616.20222828
引用本文: 渠敬凯, 杨为民, 申俊峰, 等, 2022. 甘肃岷县浑水沟泥包砾成因机制及其灾害意义. 地质力学学报, 28 (6): 1046-1058. DOI: 10.12090/j.issn.1006-6616.20222828
QU Jingkai, YANG Weimin, SHEN Junfeng, et al., 2022. Genesis mechanism and disaster-causing significance of the mud-coated gravel in the Hunshui gully, Min County, Gansu Province. Journal of Geomechanics, 28 (6): 1046-1058. DOI: 10.12090/j.issn.1006-6616.20222828
Citation: QU Jingkai, YANG Weimin, SHEN Junfeng, et al., 2022. Genesis mechanism and disaster-causing significance of the mud-coated gravel in the Hunshui gully, Min County, Gansu Province. Journal of Geomechanics, 28 (6): 1046-1058. DOI: 10.12090/j.issn.1006-6616.20222828

甘肃岷县浑水沟泥包砾成因机制及其灾害意义

doi: 10.12090/j.issn.1006-6616.20222828
基金项目: 

第二次青藏高原综合科学考察研究项目 2019QZKK0902

详细信息
    作者简介:

    渠敬凯(1998—), 男, 在读硕士, 主要从事地质灾害、成因矿物学等方面研究。E-mail: qujingkai113@163.com

    通讯作者:

    杨为民(1965—), 男, 博士, 研究员, 主要从事地质灾害、工程地质、构造地质等方面科研。E-mail: snon_72@163.com

  • 中图分类号: P694;P642.5

Genesis mechanism and disaster-causing significance of the mud-coated gravel in the Hunshui gully, Min County, Gansu Province

Funds: 

the Second Comprehensive Scientific Investigation and Research Project on the Qinghai-Tibet Plateau 2019QZKK0902

  • 摘要:

    2020年8月, 甘东南地区持续降雨且伴随多个强降雨过程, 岷县梅川镇浑水沟暴发泥石流, 左岸方家山滑坡失稳下滑, 严重威胁沟口成兰铁路安全。基于野外调查、遥感解译和室内测试结果, 分析泥包砾的形态结构、矿物组成以及堆积特征, 研究泥包砾形成的地质环境和机制, 探讨泥包砾的灾害意义。研究结果表明: 泥包砾分布于浑水沟流通区下游及堆积区, 呈球形且具多层结构, 由石英、方解石、黏土矿物等组成, 其形成主要受控于流域第四系黄土和古近系泥岩中的黏土矿物, 而较缓的沟道、岸坡黄土滑坡和崩塌的发育以及适宜的水动力条件, 促进了泥包砾的形成和自生加大; 泥石流冲击力随着泥包砾粒径的增大而增大, 再起动所需临界泥石流流速相较于块石较小; 泥包砾是古近系泥岩与泥石流共同作用的结果, 具有加剧泥石流危害的作用, 因此亟需治理浑水沟泥石流以保证成兰铁路的安全运营。

     

  • 图  1  浑水沟流域及周边地质略图

    Figure  1.  Geological sketch of the Hunshui gully basin and its surroundings

    图  2  浑水沟泥石流流域崩滑流精细解译及泥包砾分布图

    Figure  2.  Fine interpretation of the collapses, landslides and debris flows in the Hunshui gully basin, showing the distribution of the mud-coated gravels

    图  3  浑水沟泥包砾分布堆积及形态结构

    Figure  3.  Distribution, accumulation and morphological structure of the mud-coated gravels in the Hunshui gully

    图  4  取样点位置及泥包砾样品图

    Figure  4.  Photos of the sampling locations and the mud-coated gravel samples

    图  5  泥包砾结构分层中各类矿物含量百分比

    Figure  5.  Content percentage of minerals in the structural layer of the mud-coated gravel

    图  6  泥包砾结构分层中黏土矿物含量加权百分比

    Figure  6.  Weighted percentage of the clay mineral contents in the structural stratification of mud-coated gravel

    图  7  浑水沟流域坡度变化及沟道纵横剖面图

    Figure  7.  Map of slope gradient and diagrams of the longitudinal and cross-sectional profiles of the Hunshui gully

    图  8  梅川镇下文斗观测站2020年8月23日24小时降水量变化

    Figure  8.  24-hour precipitation change recorded by the Xiawendou observation station in Meichuan town on August 23, 2020

    图  9  浑水沟泥包砾形成演化图

    Figure  9.  Evolution of the mud-coated gravel formation in the Hunshui gully

    图  10  浑水沟沟口处泥石流泥位、泥包砾堆积及成兰铁路桥墩受力分析

    Figure  10.  Photos of the debris flow and mud-coated gravel accumulation at the mouth of the Hunshui gully and diagrams showing the force on the bridge pier of the Chengdu-Lanzhou Railway

    图  11  冲击压力随泥包砾直径变化关系图

    Figure  11.  Variation of impact pressure with diameter of mud-coated gravel

    图  12  卵石起动流速随卵石粒径、磨圆度变化关系图

    Figure  12.  Variation of pebble threshold velocity with pebble particle size and roundness

    表  1  泥包砾、滑坡体前缘及风化层矿物成分及黏土矿物含量测试结果表

    Table  1.   Test results of the mineral composition and clay mineral content in the mud-coated gravel, in the front of the landslide mass and in the weathered layer

    样品编号 矿物种类和含量/% 黏土矿物总量/% 黏土矿物相对含量/% 混层比S/%
    石英 钾长石 斜长石 方解石 伊蒙混层 伊利石 高岭石 绿泥石 伊蒙混层
    泥包砾1(外) 61.8 3.2 3.0 12.2 19.8 53.1 34.0 6.7 6.2 50.3
    泥包砾1(中) 46.4 0.2 1.1 26.6 25.7 58.9 31.4 5.0 4.7 49.8
    泥包砾1(内) 18.5 0.7 1.6 41.7 37.5 67.2 24.8 3.1 4.9 45.1
    泥包砾2(外) 57.0 2.6 2.1 19.3 19.0 39.4 44.3 6.6 9.7 50.0
    泥包砾2(中) 45.9 0.8 1.1 29.1 23.1 51.8 35.1 6.7 6.4 44.6
    泥包砾2(内) 34.4 0.7 1.3 33.3 30.3 57.9 28.7 7.5 5.9 45.1
    泥包砾3(外) 37.6 19.2 11.8 12.5 14.8 41.8 40.1 8.0 10.1 45.3
    泥包砾3(内) 19.0 1.8 2.6 20.8 29.6 37.6 47.2 4.0 11.0 50.1
    泥包砾4(外) 43.2 12.4 2.2 19.7 20.0 31.5 53.3 6.9 8.3 50.4
    泥包砾4(内) 35.8 1.0 4.6 19.6 39.0 44.7 41.2 5.9 8.2 50.2
    泥包砾5(外) 49.1 4.7 4.7 16.3 25.2 46.6 38.1 8.3 7.0 44.8
    泥包砾5(内) 48.5 4.0 2.2 16.3 29.0 52.7 36.4 5.6 5.3 45.2
    崩滑体前缘1 35.5 1.3 2.3 28.1 32.8 52.3 35.7 3.5 8.5 35.5
    崩滑体前缘2 40.3 1.7 2.6 24.3 31.1 50.5 37.4 4.8 7.3 40.3
    风化层1 54.3 1.7 3.3 13.3 27.4 47.3 34.6 8.5 9.6 54.3
    风化层2 52.9 1.3 2.7 18.5 24.6 42.5 42.8 6.9 7.8 52.9
    下载: 导出CSV

    表  2  浑水沟不同地层灾害发育面积及占比

    Table  2.   Proportion of landslide and collapse areas in different strata of the Hunshui gully

    灾害类型 灾害总面积/m2 古近系(E) 泥盆系(D)
    发育面积/m2 占比/% 发育面积/m2 占比/%
    滑坡 2530 2530 100 0 0
    崩塌 1320 1200 90.9 120 9.1
    下载: 导出CSV
  • CHEN C Y, REN J W, MENG G J, et al., 2013. Division, deformation and tectonic implication of active blocks in the eastern segment of Bayan Hlar block[J]. Chinese Journal of Geophysics, 56(12): 4125-4141. (in Chinese with English abstract) doi: 10.6038/cjg20131217
    CUI L, LEI X F, ZHAO F H, et al., 2011. Study on stability evaluation of surrounding rock based on weighted average method[J]. Coal Engineering(6): 77-78, 81. (in Chinese) doi: 10.3969/j.issn.1671-0959.2011.06.031
    DENG H, CHEN N S, HU G S, et al., 2011. Calculation of dynamics parameters of Sanyanyu gully in Zhouqu, Gansu[J]. Journal of Chongqing Jiaotong University (Natural Science), 30(4): 833-838. (in Chinese with English abstract)
    DING X L, LIU S M, 2006. Distribution law and prevention measures of geological disasters in Minxian county[J]. Scientific & Technical Information of Gansu, 35(5): 46-47. (in Chinese)
    GE W P, 2013. Discussion on the relationship between regional landform and seismogenic structure of the Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal, 35(4): 840-847. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2013.04.840
    HE W G, ZHENG W J, WANG A G, et al., 2013. New activities of Lintan-Dangchang fault and its relations to Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal, 35(4): 751-760. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2013.04.751
    HE W S, FANG D, LIU X N, et al., 2003. Critical condition for starting motion of gravel[J]. Sichuan Water Power, 22(1): 64-65, 69. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-2184.2003.01.023
    HE X Y, 2014. Experimental study on the shock characteristics of debris flow considering different slurry viscosity and gradation particles[D]. Chongqing: Chongqing Jiaotong University. (in Chinese with English abstract)
    HE X Y, CHEN H K, TANG H M, 2016. Experimental study on the energy distribution characteristics of impacting signals of debris flow considering the slurry viscosity and particle collision[J]. Journal of Vibration and Shock, 35(6): 64-69. (in Chinese with English abstract)
    HU G S, CHEN N S, DENG M F, et al., 2011. Analysis of the characteristics of impact force of massive stones of the Sanyanyu debris flow gully in Zhouqu, Gansu Province[J]. Earth and Environment, 39(4): 478-484. (in Chinese with English abstract)
    HU L, XIN P, WANG T, et al., 2021. Centrifuge model tests on the near-horizontal slide of hard soil-soft rock landslides[J]. Journal of Geomechanics, 27(1): 73-82. (in Chinese with English abstract)
    LI C Y, FU H L, CAI H L, et al., 2009. Water character of flowering sheet stone[J]. Journal of Railway Science and Engineering, 6(1): 74-77. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7029.2009.01.015
    LI J F, 2021. Comparative study on formulas of pebble starting velocity[J]. Yangtze River, 52(11): 201-206, 218. (in Chinese with English abstract)
    LI P Z, GAO Y, GUO M J, 2015. Research status and development trend of debris-flow impact Force[J]. Structural Engineers, 31(1): 200-206. (in Chinese with English abstract)
    LI X B, XU G B, 1985. Characteristics of sediments of quaternary period Glaice in Pan Ji coal Mine Area[J]. Journal of Huainan Institute of Mining(1): 1-11. (in Chinese with English abstract)
    LI X B, LIU H Q, ZHANG Z Y, et al., 2014. "Argillaceous parcel" Structure: A direct evidence of debris flow origin of deep-water massive sandstone of Yanchang Formation, Upper Triassic, the Ordos Basin[J]. Acta Sedimentologica Sinica, 32(4): 611-622. (in Chinese with English abstract)
    LIAO J B, LI X B, ZHAO H Z, et al., 2017. Genetic mechanism of mud-coated intraclasts within deep-water massive sandstone in Yanchang Formation, Ordos Basin[J]. Journal of China University of Petroleum, 41(4): 46-53. (in Chinese with English abstract)
    LIU D C, YOU Y, DU J, et al., 2019. Spatio-temporal distribution of the impact force of debris flow[J]. Advanced Engineering Sciences, 51(3): 17-25. (in Chinese with English abstract)
    LIU J J, MA C, LI C Y, 2020. Fundamental problems and prospects in the study of deposition dynamics of viscous debris flow in the gully-river junction[J]. Journal of Geomechanics, 26(4): 544-555. (in Chinese with English abstract)
    LIU Y, YOU Y, WANG H F, et al., 2020. Research status and discussion on granular flow impact force[J]. Journal of Disaster Prevention and Mitigation Engineering, 40(5): 714-723. (in Chinese with English abstract)
    LUO L Y, 2011. Research on geometric shapes influencing on incipient motion of gravel[D]. Chongqing: Chongqing Jiaotong University. (in Chinese with English abstract)
    SUN X W, LIU Y P, 2018. Debris flow characteristics and its impact force test in the engineering areas of Dagu and Jiexu hydropower stations in Tibet[J]. Journal of Water Resources and Architectural Engineering, 16(2): 167-172. (in Chinese with English abstract)
    TIAN L Q, 1994. Genetic classification of accumulational landforms of channel viscous debris folw[J]. Mountain Research, 12(1): 9-14. (in Chinese with English abstract)
    WANG Y B, 2019. Debris flow impact forces on bridge piers[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract)
    YANG H J, WEI F Q, HU K H, et al., 2016. Rheological parameters of debris flow slurries with different maximum grain sizes[J]. Journal of Hydraulic Engineering, 47(7): 884-890. (in Chinese with English abstract)
    YANG W Y, LI H Y, 1988. Environmental engineering geology in Nanguanling area of Dalian[C]//Selected papers of the third national engineering geology conference (vol. 2). Chengdu: Chengdu University of Science and Technology Press. (in Chinese)
    YU X B, CHEN X Q, WANG D Z, et al., 2017. Study on the impact rule of viscous debris flow to check dams[J]. Yellow River, 39(3): 37-44. (in Chinese with English abstract)
    ZANG X L, LIN G Y, 2011. Discussion on nomenclature of soil layer in Shenyang area[J]. Science & Technology Information(5): 36. (in Chinese)
    ZENG C, SU Z M, LEI Y, et al., 2015. An experimental study of the characteristics of impact forces between debris flow slurry and large-sized particles[J]. Rock and Soil Mechanics, 36(7): 1923-1930, 1938. (in Chinese with English abstract)
    ZHANG B, TIAN Q J, WANG A G, et al., 2021. Studies on new activity of Lintan-Dangchang Fault, West Qinling[J]. Seismology and Geology, 43(1): 72-91. (in Chinese with English abstract)
    ZHANG Z T, YAO Y L, 1989. Research on starting velocity of the bed gravel in upper Yangtze River[J]. Journal of Yangtze River Scientific Research Institute(2): 1-10. (in Chinese with English abstract)
    ZHENG W J, YUAN D Y, HE W G, et al., 2013. Geometric pattern and active tectonics in Southeastern Gansu province: Discussion on seismogenic mechanism of the MinxianZhangxian MS6.6 earthquake on July 22, 2013[J]. Chinese Journal of Geophysics, 56(12): 4058-4071. (in Chinese with English abstract)
    ZHOU H J, WANG X, YUAN Y, et al., 2014. Rapid-assessing methods of loss in extremely heavy rainfall disaster chain in semiarid region: a case study on a flash flood debris flow in Minxian county, Gansu province[J]. Arid Zone Research, 31(3): 440-445. (in Chinese with English abstract)
    陈长云, 任金卫, 孟国杰, 等, 2013. 巴颜喀拉块体东部活动块体的划分、形变特征及构造意义[J]. 地球物理学报, 56(12): 4125-4141. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201312017.htm
    崔亮, 雷学峰, 赵飞虎, 等, 2011. 基于加权平均法的围岩稳定性评价研究[J]. 煤炭工程(6): 77-78, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201106031.htm
    邓虎, 陈宁生, 胡桂胜, 等, 2011. 甘肃舟曲三眼峪沟泥石流动力学特征参数计算[J]. 重庆交通大学学报(自然科学版), 30(4): 833-838. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201104030.htm
    丁晓莉, 刘世梅, 2006. 岷县地质灾害分布规律及防治措施[J]. 甘肃科技纵横, 35(5): 46-47. https://www.cnki.com.cn/Article/CJFDTOTAL-LZKQ200605036.htm
    葛伟鹏, 2013. 岷县漳县6.6级地震发震构造与区域地形地貌特征关系讨论[J]. 地震工程学报, 35(4): 840-847. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201304019.htm
    何文贵, 郑文俊, 王爱国, 等, 2013. 临潭-宕昌断裂新活动特征与岷县漳县MS6.6地震关系研究[J]. 地震工程学报, 35(4): 751-760. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201304006.htm
    何文社, 方铎, 刘兴年, 等, 2003. 砾卵石起动临界条件[J]. 四川水力发电, 22(1): 64-65, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSL200301023.htm
    何晓英, 2014. 浆体与级配颗粒组合条件下泥石流冲击特性实验研究[D]. 重庆: 重庆交通大学.
    何晓英, 陈洪凯, 唐红梅, 2016. 泥石流浆体与固体颗粒冲击信号能量分布研究[J]. 振动与冲击, 35(6): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201606011.htm
    胡桂胜, 陈宁生, 邓明枫, 等, 2011. 甘肃舟曲三眼峪沟泥石流粗大颗粒冲击力特征分析[J]. 地球与环境, 39(4): 478-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201104007.htm
    胡乐, 辛鹏, 王涛, 等, 2021. 硬土软岩滑坡近水平滑移的离心机模型试验研究[J]. 地质力学学报, 27(1): 73-82. doi: 10.12090/j.issn.1006-6616.2021.27.01.008
    李昌友, 傅鹤林, 蔡海良, 等, 2009. 风化板岩水理特性研究[J]. 铁道科学与工程学报, 6(1): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200901014.htm
    李江峰, 2021. 卵石起动流速公式对比研究[J]. 人民长江, 52(11): 201-206, 218. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202111033.htm
    李培振, 高宇, 郭沫君, 2015. 泥石流冲击力的研究现状[J]. 结构工程师, 31(1): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201501031.htm
    李祥碧, 徐广标, 1985. 潘集矿区第四纪冰川沉积物的特征[J]. 淮南矿业学院学报(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB198501000.htm
    李相博, 刘化清, 张忠义, 等, 2014. 深水块状砂岩碎屑流成因的直接证据: "泥包砾"结构: 以鄂尔多斯盆地上三叠统延长组研究为例[J]. 沉积学报, 32(4): 611-622. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201404001.htm
    廖建波, 李相博, 赵惠周, 等, 2017. 鄂尔多斯盆地延长组深水块状砂岩"泥包砾"结构成因机制[J]. 中国石油大学学报(自然科学版), 41(4): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201704006.htm
    刘道川, 游勇, 杜杰, 等, 2019. 泥石流冲击力的时空分布特征[J]. 工程科学与技术, 51(3): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903003.htm
    刘晶晶, 马春, 李春雨, 2020. 粘性泥石流入汇区河床堆积动力学研究的问题与展望[J]. 地质力学学报, 26(4): 544-555. doi: 10.12090/j.issn.1006-6616.2020.26.04.047
    刘洋, 游勇, 王海帆, 等, 2020. 颗粒流冲击力研究现状及讨论[J]. 防灾减灾工程学报, 40(5): 714-723. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202005005.htm
    罗羚源, 2011. 卵砾石几何形状对起动的影响研究[D]. 重庆: 重庆交通大学.
    孙兴伟, 刘云鹏, 2018. 大古与街需水电站工程区泥石流基本特征及冲击力试验研究[J]. 水利与建筑工程学报, 16(2): 167-172. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201802032.htm
    田连权, 1994. 沟道粘性泥石流堆积地貌的成因分类[J]. 山地研究, 12(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA401.001.htm
    王友彪, 2019. 泥石流对桥墩冲击力研究[D]. 成都: 西南交通大学.
    杨红娟, 韦方强, 胡凯衡, 等, 2016. 不同上限粒径泥石流浆体的流变参数变化规律[J]. 水利学报, 47(7): 884-890. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201607007.htm
    杨文远, 李宏义, 1988. 大连南关岭地区环境工程地质问题[C]//全国第三次工程地质大会论文选集(下卷). 成都: 成都科技大学出版社.
    于献彬, 陈晓清, 王道正, 等, 2017. 黏性泥石流浆体对拦砂坝冲击规律研究[J]. 人民黄河, 39(3): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201703012.htm
    臧秀玲, 林国友, 2011. 沈阳地区土层定名探讨[J]. 科技信息(5): 36. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXX201105022.htm
    曾超, 苏志满, 雷雨, 等, 2015. 泥石流浆体与大颗粒冲击力特征的试验研究[J]. 岩土力学, 36(7): 1923-1930, 1938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507018.htm
    张波, 田勤俭, 王爱国, 等, 2021. 西秦岭临潭-宕昌断裂第四纪最新活动特征[J]. 地震地质, 43(1): 72-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202101005.htm
    张植堂, 姚于丽, 1989. 长江上游河床卵石起动流速表达式的讨论[J]. 长江科学院院报(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB198902000.htm
    郑文俊, 袁道阳, 何文贵, 等, 2013. 甘肃东南地区构造活动与2013年岷县-漳县MS6.6级地震孕震机制[J]. 地球物理学报, 56(12): 4058-4071. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201312011.htm
    周洪建, 王曦, 袁艺, 等, 2014. 半干旱区极端强降雨灾害链损失快速评估方法: 以甘肃岷县"5·10"特大山洪泥石流灾害为例[J]. 干旱区研究, 31(3): 440-445. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201403010.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  673
  • HTML全文浏览量:  274
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-09-18

目录

    /

    返回文章
    返回