Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金沙江断裂带中段岩溶发育和地下水循环特征

马剑飞 李向全 张春潮 付昌昌 王学锋 谢小国 王振兴 罗兵 白占学 赵崇钦

夏浩东, 薛云, 邓会娟, 等, 2012. 基于蚁群算法的光谱分解方法剔除植被干扰信息. 地质力学学报, 18 (1): 72-78.
引用本文: 马剑飞, 李向全, 张春潮, 等, 2022. 金沙江断裂带中段岩溶发育和地下水循环特征. 地质力学学报, 28 (6): 956-968. DOI: 10.12090/j.issn.1006-6616.20222823
XIA Hao-dong, XUE Yun, DENG Hui-juan, et al., 2012. ELIMINATING THE DISTURBANCE OF VEGETATION INFORMATION BY SPECTRAL MIXTURE ANALYSIS BASED ON ANT COLONY ALGORITHM. Journal of Geomechanics, 18 (1): 72-78.
Citation: MA Jianfei, LI Xiangquan, ZHANG Chunchao, et al., 2022. Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone. Journal of Geomechanics, 28 (6): 956-968. DOI: 10.12090/j.issn.1006-6616.20222823

金沙江断裂带中段岩溶发育和地下水循环特征

doi: 10.12090/j.issn.1006-6616.20222823
基金项目: 

中国地质科学院基本科研业务费项目 SK202205

中国地质调查局项目 DD20221812

详细信息
    作者简介:

    马剑飞(1987—), 男, 助理研究员, 主要从事水文地质、工程地质研究工作。E-mail: majianfei@mail.cgs.gov.cn

  • 中图分类号: P641;P642

Characterization of karst development and groundwater circulation in the middle part of the Jinshajiang fault zone

Funds: 

the Scientific Research Project of the Chinese Academy of Geological Sciences SK202205

the Geological Survey Project of the China Geological Survey DD20221812

  • 摘要:

    金沙江断裂带中段碳酸盐岩分布区水文地质结构复杂、岩溶水量丰富, 是工程地质安全的重要威胁之一。文章在岩溶地貌和水文地质调查的基础上, 采用水化学和新型同位素测年与示踪的方法, 研究了金沙江断裂带中段岩溶发育特征, 分析了岩溶水补给、径流和排泄过程。结果表明: 岩溶空间分布和地下水补给、径流、排泄均受构造控制; 在垂向上主要存在3个高程级别的岩溶发育分区, 其中二级和三级顶部岩溶的发育时间分别为晚中新世至晚更新世和上新世至晚更新世; 岩溶水补给区海拔4400~4600 m, 主要补给源为大气降水和冰湖水, 水中228Ra/226Ra数据显示非定曲断裂控制范围内水源难以形成跨断裂影响范围的补给; 岩溶水循环速度快, 岩溶大泉的85Kr年龄<15 a, 且基本没有年龄较大的地下水混合; 径流过程中碳酸盐岩溶蚀和阳离子交换作用不充分。在工程中应充分考虑活动断裂影响下岩溶水径流通道空间分布、高水压影响和特殊天气条件带来的地质灾害威胁。

     

  • 遥感技术在基础地质工作中应用越来越广泛,但是由于植被等因素的干扰,难以将植被覆盖下的信息从图像中分离出来,植被是遥感对地表探查的一道天然屏障。在基岩被植被完全覆盖的地区,遥感所获得的信息主要是植被信息,给遥感地质勘查工作带来极大不便。因此,找到一种可行的植被剔除方法,还原植被覆盖下的基岩信息,可更好地发挥遥感技术在基础地质工作中的应用能力。

    过去研究人员主要基于像元的植被指数对植被等干扰信息进行提取,但这种基于像元的模式不能有效地提高提取的精度。因为遥感图像中每个像元一般是多个地物的混合体,一个像元里记录了多类不同性质的地面目标,图像的光谱特征也是多个地物光谱特征的混合反映。混合像元的存在,产生了同物异谱、同谱异物现象,从而给地物的分类造成许多困难。因此,为了提高干扰信息提取的精度,就必须找到一种有效的进行混合像元分解的方法。线性光谱混合模型(Linear Spectrum Mixture Model,LSMM)是目前应用较多的混合像元分解方法[1~2],但LSMM因为要对整幅图像的每个像元都进行处理,所以处理速度较慢。

    蚁群算法是由意大利学者Dorigo等人,通过模拟自然界蚂蚁寻径的行为提出的一种全新仿生进化算法[3~4],是具有离散性、并行性、鲁棒性、正反馈性等特点的一种随机搜索方法。由于其概念简明、实现方便,迅速得到认可,并在优化问题求解、电力系统、计算机、冶金自动化等领域都有成功的应用[5]。但目前很少有人将蚁群算法引入遥感地质领域,由于遥感地质领域的信息提取也可以看作是一个组合优化问题,蚁群算法的全局性、离散性和基于概率选择路径等特点对于遥感图像非常适用。

    本文为了剔除植被干扰信息,综合考虑LSMM处理速度慢而蚁群算法识别目标速度快的特点,结合蚁群算法和线性光谱混合模型,建立基于蚁群搜索的光谱分解模型,剔除植被干扰信息,重构不含有植被信息的新的多波段图像,以期为后续基础地质工作提供基础影像。

    对于采用整数编码求解组合优化问题的蚁群系统,设求解问题因素有N个,蚁群中共有M只蚂蚁,τij(t)表示在t时刻ij组合之间信息素的数量。蚂蚁m在运动过程中根据各个路径上信息素的数量决定下一步的路径。用pijm(t)表示在t时刻蚂蚁m由城市i转移到城市j的概率,则:

    pmij(t)={ταij(t)ηβij(t)rTmταir(t)ηβir(t)jTm0otherwise
    (1)

    其中:Tm表示蚂蚁m下尝试组合情况的集合,该集合随蚂蚁m的行进过程而动态改变。

    信息量τij(t)随时间的推移会逐步衰减,用1-ρ表示它的衰减程度。经过n个时刻,要根据下式对各路径上的信息量作更新:

    τij(t+1)=ρτij(t)+Δτij
    (2)
    Δτij=Ms=1Δτkij
    (3)

    Δτijk表示蚂蚁m在本次循环中在组合ij之间留下的信息量,其计算方法根据蚁群系统的计算模型而定。

    正如Chialvo[6]和Millonas[7]所描述的,单只蚂蚁的状态可以用位置参数r和方向参数θ来表示。蚂蚁的状态转移规则可用一个加权函数表示:

    w(σ)=[1+σ1+δσ]β
    (4)

    这个方程描述了移动到信息素浓度为σ(r)的像素r处的相对概率。参数β表示一种随机度。β大,则w(σ)值较大,蚂蚁以较大的权系数跟随外激素浓度大的路径;反之,对蚂蚁路径选择影响不大。1/δ表示了蚂蚁感知外激素的能力。

    蚂蚁从像元k运动到像元i的归一化转移概率定义为:

    pik=w(σi)w(Δi)j/kw(σj)w(Δj)
    (5)

    w(Δ)是一加权因子,Δj表示蚂蚁在t-1时刻运动时的方向改变量,它的取值为8个离散的w值,一般蚂蚁的来向w定为1/20,原路径方向定为1,邻近的8个像元顺时针依次为1/20,1/12,1/4,1/2,1,1/2,1/4,1/12。

    蚂蚁爬行时,先计算8邻域每个像元的转移概率pik,然后根据轮赌算法选择移动到下一个像元。为了有利于全局搜索最优解,避免陷入局部最优解,设定了蚂蚁的兴奋阈值,当某支蚂蚁达到该值时,采用随机算法从8邻域中选择一个像元进行移动。

    线性光谱混合模型(Linear Spectrum Mixture Model,LSMM)主要的目的是绘制特定像元内地面物质的相对丰度图。因此,它必须要满足几个假设:

    ① 在一个像元里端元的混合必须是线性的。这种线性关系下光子在从太阳到传感器的路径上仅仅与一种端元成分交互,这要求端元组分分布在足够大的面积上。

    ② 在图像上所有的地物类型必须要有足够多的对照光谱,以便对它们进行分离。

    ③ 在图像里存在的端元组分必须在最少一个像元里保持纯状态,这个像元必须能正确识别且可空间定位。

    LSMM假定传感器测量的光谱是像元内所有成分光谱的线性组合[1]。LSMM模型描述如下:

    Ri=nk=1fkRik+εi
    (6)

    在这里i为光谱波段的数目;k是端元的数目;Ri是像元波段i的光谱反射率;fk是像元内端元k的面积比;Rik是波段i端元k的光谱反射率;εi是波段i的模拟误差。

    fk受下式约束:

    nk=1fk=10fk1
    (7)

    残差RMS用下式计算:

    RMS=(mi=1ε2i)/m
    (8)

    RMS残差要对所有图像像元都计算。RMS越大,模型的匹配就越差。所以残差图可以用来估计选择的端元是否适当,选择的端元数目是否足够。

    因为在LSMM模型中,端元反射率和像元反射率都是已知的,只有端元在像元里的面积比未知,只要波段的数目大于端元数目,就可以求出端元的面积比,从而得到各分量图像和残差图像,进而得到地物的分类图像。

    LSMM的优点在于它相对简单,并且是一种有物理意义的丰度测量方法;理论上有较好的科学性,对于解决像元内的混合现象有一定的效果。

    本文中基于蚁群算法的光谱分解算法采用的是混合像元分解蚁群算法,输入经过反射率转换预处理后的影像,输出不含有植被信息的新的多波段图像。

    【算法开始】

    ① 初始化

     1) 蚁群及相关参数;

     2) 信息素矩阵;

     3) 访问标志矩阵P

     4) 残差矩阵RMS

     5) 丰度矩阵F

    ② 迭代,直到达到停止条件

     1) 评价每只蚂蚁,对每只蚂蚁做

      如果没有访问过当前像元则完成下述工作

       (1) 建立端元系数矩阵x;(矩阵x主要存储像元内各子端元的面积)

       (2) 建立当前像元波段矩阵y;(矩阵y主要存储当前像元各波段的光谱反射率值)

       (3) 调用最小二乘法计算各端元的比例系数矩阵a;(重新计算各子端元的面积)

       (4) 对矩阵a进行负数漂移处理;

       (5) 对矩阵a进行归一化处理;

       (6) 计算该点残差存放到RMS矩阵;

       (7) 记录丰度信息到F

       (8) 根据矩阵a调整该像元的各波段值;

       (9) 设置当前像元访问标志;

       (10) 如果剔除端元所占比例超过某阈值,调整(增加)信息素;

     2) 每只蚂蚁爬行,做

      如果 蚁群迭代到某兴奋阈值 则

       蚂蚁采用随机算法从8邻域中选择一个像元进行移动

      否则

       (1) 根据公式(4)计算8邻域每个像元的w(σ)

       (2) 根据进入方向分配8邻域每个像元的权值

       (3) 根据公式(5)计算8邻域每个像元的转移概率pik

       (4) 按照轮赌算法选择移动到下一个像元

    ③ 按照BSQ格式保存图像数据;

    ④ 按照BSQ格式保存残差矩阵;

    ⑤ 按照BSQ格式保存剔除专题的丰度矩阵;

    【算法结束】

    选取青海黄南州吉地地区为试验区,该区为植被高度覆盖区。试验区遥感数据为Landsa7号卫星的ETM,景号为132-36,2000年7月18日获取的影像,太阳高度角为64.2°。试验区图像大小为408×402像素,经过反射率转换预处理后的影像作为输入图像。基于ENVI3.6及VC++6.0开发的蚁群光谱分解软件进行试验。

    通过求取植被指数,可以发现该区植被覆盖度为85.7157%(见图 1,绿色部分为植被),高植被覆盖率严重影响了矿化弱信息的提取。选用ETM1,2,3,4,5,7等6个波段进行主成分变换,其中PC1和PC2占95.3%。通过主成分分析,选用PC1和PC2制作二维散点图(见图 2)。通过散点图分析,确定图像上主要有植被及3种未知类别共4个端元。运行蚁群光谱分解软件,最后得到剔除植被后影像(见图 3)及残差图(见图 4)。

    图  1  预处理后影像(ETM7+ETM 4+ETM 1)
    Figure  1.  The image after pre-processing
    图  2  散点图
    Figure  2.  Scatter diagram
    图  3  剔除植被后影像(band 7+band 4+band 1)
    Figure  3.  The image after eliminating vegetation
    图  4  残差图(最大残差为0.103)
    蓝色:0~0.025;绿色:0.025~0.050;黄色:0.050~0.075;红色:0.075~0.103
    Figure  4.  The residual map

    从残差图上可以看出,最大残差为0.103,绝大部分残差在0.05以下。说明光谱分解的效果较好。对比图 2图 3可以发现,进行植被剔除后,原来绿色部分的植被覆盖区被还原为该区本来的面目。

    基于蚁群算法的光谱分解方法剔除植被信息,首次将蚁群这种全新的算法引入到遥感地质领域,综合考虑传统的光谱分解植被剔除方法处理速度慢和蚁群算法识别目标速度快的特点,通过残差图分析以及原图与剔除植被后影像对比分析,初步验证了基于蚁群算法的光谱分解方法来剔除植被信息的可行性。

    由于蚁群算法的理论体系还有待进一步完善,所以用这种全新的算法来处理遥感地质领域的一些复杂问题,还有许多工作要做。如蚁群的初始参数怎样优化,才能取得理想的效果,有待于进一步深入研究。

    责任编辑:范二平
  • 图  1  研究区水文地质简图

    Figure  1.  Hydrogeological sketch map of the study area

    图  2  水体中Ra和85Kr采样照片

    a—Ra同位素采集与富集;b—85Kr样品采集

    Figure  2.  Photos of Ra and 85Kr sampling

    (a) Ra isotopes sampling; (b) 85Kr sampling

    图  3  研究区不同高程的岩溶地貌

    a—第一级岩溶,溶洞,海拔约5000 m;b—第二级岩溶,溶洞(样品编号H19),海拔约4050 m;c—第三级岩溶,溶洞(样品编号H60),海拔约3600 m;d—波密泉(样品编号BM),海拔约3550 m;e—根久泉(样品编号GJ;据马剑飞等,2022a修改),海拔约3450 m;f—定曲泉(样品编号LB),海拔约3670 m

    Figure  3.  Karst landforms at different elevations in the study area

    (a) The first-elevation-level krast (Krast cave at 5000 m); (b) The second-elevation-level (Krast cave at 4050 m; Sample H19); (c) The third-elevation-level (Krast cave at 3600 m; Sample H60); (d) The Bomi Spring at 3550 m (Sample BM); (e) The Genjiw Spring at 3450 m (Sample GJ; Modified from Ma et al., 2022b); (f) The Dingqu Spring at 3670 m (Sample LB)

    图  4  水化学Durov图

    Figure  4.  Durov diagram of hydrochemistry

    图  5  水样226Ra和228Ra与盐度的关系及226Ra与228Ra的关系图

    a—盐度/226Ra;b—盐度/228Ra;c—228Ra/226Ra

    Figure  5.  226Ra and 228Ra vesus salinity and 226Ra vesus 228Ra

    (a) Salinity vesus 226Ra; (b) Salinity vesus 228Ra; (c) 228Ra vesus 226Ra

    图  6  研究区水体中离子关系图

    Figure  6.  The relationship between ions in the water from the study area

    a—(Ca2+/Na+)/(HCO3-/Na+); b—(Na++K+-Cl-)/(Ca2++Mg2+-HCO3--SO42-)

    图  7  水样T值与TDS和85Kr关系图

    a—水样TDS与氚值(T)关系;b—岩溶泉85Kr活度与氚值(T)关系(图中虚线表示根据基于延迟输入函数的活塞流模型计算出的过去几十年的混合分数,实线表示年轻水占50%和99%时的模型计算值;Avrahamov et al., 2018)

    Figure  7.  T value vesus TDS value and 85Kr value in the water sample

    (a) TDS value vesus T value in the water sample; (b) 85Kr value vesus T value in the karst springs The dashed lines are mixing lines between an old, T and 85Kr free component and groundwater of different ages. The solid lines are the calculated values by the model when the young water accounts for 50% and 99% based on Avrahamov et al., 2018.

    图  8  研究区主要岩溶泉多期流量(GJ、BM部分数据源自Ma et al., 2022b)

    Figure  8.  Multi-flow of main karst springs in the study area (Parts of GJ, BM data are from Ma et al., 2022b)

    表  1  不同高程次生方解石的230Th年龄

    Table  1.   230Th age of secondary calcite at different elevations

    样品编号 高程/m 230Th年龄/a BP
    H19 4050 36737±11667
    H60 3600 14298±903
    下载: 导出CSV

    表  2  水化学和同位素测试结果

    Table  2.   Test results of hydrochemical components and isotopes

    水体类型 数据项/样品编号* 水化学指标 同位素指标
    TDS Ca2+ Mg2+ K+ Na+ Cl- SO42- HCO3- pH δD δ18O T
    /mg·L-1 /‰ /‰ TU
    岩溶泉 最大值 207.00 54.83 10.86 0.91 5.75 0.30 9.15 223.50 7.89 -142.00 -18.90 4.70
    最小值 90.00 22.06 7.44 0.16 0.25 0.17 1.35 102.80 7.71 -146.00 -19.50 4.20
    平均值 162.50 42.67 9.66 0.58 3.31 0.22 6.91 175.85 7.82 -143.25 -19.08 4.40
    变异系数 0.31 0.33 0.16 0.54 0.69 0.32 0.54 0.29 0.01 -0.01 -0.02 0.06
    河水 最大值 251.00 68.62 11.83 1.50 3.35 1.05 91.31 138.90 8.16 -135.00 -17.90 7.00
    最小值 52.00 10.65 0.84 0.58 1.61 <0.1 7.58 36.28 7.68 -142.00 -18.80 4.30
    平均值 139.20 35.18 5.52 0.89 2.17 42.21 84.75 7.89 -138.80 -18.34 5.56
    变异系数 0.67 0.73 0.83 0.41 0.31 0.94 0.57 0.02 -0.02 -0.02 0.23
    湖水 Lake-1 69.00 18.39 2.83 0.51 0.97 0.10 6.08 66.45 7.35 -127.00 -16.60 8.10
    Lake-2 9.00 1.37 0.10 0.08 0.25 0.15 < 0.20 12.08 7.44
    降雨 4月降雨 9.00 1.31 0.18 0.17 0.33 0.21 0.30 12.08 7.70 -79.00 -10.00 10.00
    9月降雨 15.00 1.79 0.22 0.08 0.33 1.40 2.00 12.02 6.74
    积雪 积雪 10.00 2.11 0.05 0.08 0.09 0.35 1.50 11.42 7.38 -177.00 -24.10 7.20
    “*”该列中岩溶泉和河水列出的为数据的统计值;湖水、降雨和积雪列出的为采样编号,其所在行的数据是样品的测试值
    下载: 导出CSV

    表  3  岩溶泉补给高程计算值

    Table  3.   Calculated values of the karst water recharge elevation

    岩溶泉编号 补给高程h/m
    δ18O=-0.0028h -3.93 δ18O=-0.0033h-4.29 δ18O=-0.0023h-10.011 δD=-0.0195h-67.813 δ18O=-0.0018h-6.86
    GJ 5346 4427 3865 3804 6689
    LB 5561 4609 4126 4010 7022
    JT 5382 4458 3908 3856 6744
    BM 5346 4427 3865 3804 6689
    注:①李维杰等,2018;来自川东、渝、滇、黔等四地监测数据;②姚檀栋等,2009;以青海、西藏监测台站为主;③张磊等,2021;来自道孚-康定-石棉-西昌数据;④于津生等,1980;来自渝、黔、川、藏东等地数据
    下载: 导出CSV

    表  4  研究区主要水体226Ra和228Ra活度

    Table  4.   226Ra and 228Ra activity in the water samples from the study area

    水样编号 226Ra活度/dpm·100 L-1 228Ra活度/dpm·100 L-1 228Ra/226Ra
    GJ 6.27±1.07 7.18±2.38 0.91
    BM 8.75±1.06 7.00±1.97 3.07
    LB 7.56±0.98 4.28±1.91 0.80
    Lake-1 3.95±0.78 5.27±1.97 0.57
    Lake-2 9.57±1.11 29.42±2.70 1.34
    定曲-2 14.95±1.16 13.56±2.13 1.14
    下载: 导出CSV
  • AVRAHAMOV N, YECHIELI Y, PURTSCHERT R, et al., 2018. Characterization of a carbonate karstic aquifer flow system using multiple radioactive noble gases (3H-3He, 85Kr, 39Ar) and 14C as environmental tracers[J]. Geochimica et Cosmochimica Acta, 242: 213-232. doi: 10.1016/j.gca.2018.09.009
    BOLLHÖFER A, SCHLOSSER C, SCHMID S, et al., 2019. Half a century of Krypton-85 activity concentration measured in air over Central Europe: Trends and relevance for dating young groundwater[J]. Journal of Environmental Radioactivity, 205-206: 7-16. doi: 10.1016/j.jenvrad.2019.04.014
    CLARK I D, FRITZ P, 1997. Environmental isotopes in hydrogeology[M]. Boca Raton: CRC Press.
    DONAHUE J, 1965. Laboratory growth of Pisolite grains[J]. Journal of Sedimentary Research, 35(1): 251-256. doi: 10.1306/74D7123A-2B21-11D7-8648000102C1865D
    FAN H B, ZHANG Y H, HE S Y, et al., 2018. Hazards and treatment of karst tunneling in Qinling-Daba mountainous area: overview and lessons learnt from Yichang-Wanzhou railway system[J]. Environmental Earth Sciences, 77(19): 679. doi: 10.1007/s12665-018-7860-1
    GAO C, LIU S Y, FENG J D, et al., 2021. Monitoring atmospheric 85Kr by atom counting[J]. Journal of Environmental Radioactivity, 233: 106604. doi: 10.1016/j.jenvrad.2021.106604
    GAO Q Z, CUI Z J, LIU G N, et al., 2000. The fission track ages of the cavernous recrystalline calcites in Tibet plateau and their geomorphologic significance[J]. Marine Geology & Quaternary Geology, 20(3): 61-65. (in Chinese with English abstract)
    GAO Q Z, CUI Z J, TAO Z, et al., 2002. The nature, formation age and genetic environment of the Palaeokarst on the Qinghai-Xizang plateau[J]. Acta Geographica Sinica, 57(3): 267-274. (in Chinese with English abstract) doi: 10.3321/j.issn:0375-5444.2002.03.002
    GAUTAM V K, KOTHARI M, SINGH P K, et al., 2022. Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan[J]. Journal of Groundwater Science and Engineering, 10(1): 1-9, doi: 10.19637/j.cnki.2305-7068.2022.01.001.
    JIANG Z C, ZHANG J, HUANG C, et al., 2019. Causes of formation and geo-scientific significance of karst gorge group in Xiangxi geopark[J]. Carsologica Sinica, 38(2): 269-275. (in Chinese with English abstract)
    KANG X B, YANG S F, GUAN Z D, et al., 2021. Distribution of soluble rock strata and development of karst landforms in the Batang area, west Sichuan plateau[J]. Carsologica Sinica, 40(3): 381-388. (in Chinese with English abstract)
    KONG F C, YANG Y K, MA Y J, et al., 2021. The distribution and sources of radium isotopes in Da Qaidam Salt Lake[J]. Journal of Lake Sciences, 33(2): 632-646. (in Chinese with English abstract) doi: 10.18307/2021.0227
    LANG L, LIU J A, ZHONG Q Q, et al., 2020. Water mixing in the northern slope of the South China Sea as traced by 226Ra and 228Ra[J]. Marine Environmental Science, 39(4): 511-521. (in Chinese with English abstract)
    LI C S, DING J F, LIAO Y K, et al., 2020. Experimental study on karst dissolution action mechanism under tunnel excavation condition[M]//LI C S, DING J F, LIAO Y K, et al. Groundwater chemical kinetics and fractal characteristics of karst tunnel. Singapore: Springer: 117-148.
    LI S C, WANG X T, XU Z H, et al., 2021. Numerical investigation of hydraulic tomography for mapping karst conduits and its connectivity[J]. Engineering Geology, 281: 105967. doi: 10.1016/j.enggeo.2020.105967
    LI W J, WANG J L, WANG J L, 2018. Characteristics of the stable isotopes in precipitation and the source of water vapor in different terrain in the southwest region[J]. Resources and Environment in the Yangtze Basin, 27(5): 1132-1142. (in Chinese with English abstract) doi: 10.11870/cjlyzyyhj201805020
    LI X Q, MA J F, ZHANG C C, et al., 2021. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan-Xizang railway[J]. Hydrogeology & Engineering Geology, 48(5): 34-45. (in Chinese with English abstract)
    LIAO F, WANG G C, YI L X, et al., 2020. Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China[J]. Journal of Hydrology, 585: 124782. doi: 10.1016/j.jhydrol.2020.124782
    LOOSLI H H, LEHMANN B E, SMETHIE JR W M, 2000. Noble gas radioisotopes: 37Ar, 85Kr, 39Ar, 81Kr[M]//COOK P G, HERCZEG A L. Environmental tracers in subsurface hydrology. Boston: Springer: 379-396.
    LU Y R, 1999. Study on the evolution of karst hydrogeological environment and its engineering effect[M]. Beijing: Science Press. (in Chinese)
    LUO W Y, 2019. Characteristics of water-thermal hazard and hydrogeological route selection in typical sections of Sichuan-Tibet Railway[C]//Proceedings of Seminar on construction technology of Sichuan-Tibet Railway project. Xi'an: China Railway Society. (in Chinese with English abstract)
    LUO X, JIAO J J, WANG X S, et al., 2017. Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18O/2H and radium isotopes[J]. Journal of Hydrology, 546: 189-203, doi: 10.1016/j.jhydrol.2017.01.017.
    LUO X, JIAO J J, MOORE W S, et al., 2018. Significant chemical fluxes from natural terrestrial groundwater rival anthropogenic and fluvial input in a large-river deltaic estuary[J]. Water Research, 144: 603-615. doi: 10.1016/j.watres.2018.07.004
    MA J F, LI X Q, ZHANG C C, et al., 2022a. Recharge source, mode and development potential of typical tectonic karst groundwater in the eastern Qinghai-Xizang Plateau[J/OL]. Geology in China, (2022-08-22). https://kns.cnki.net/kcms/detail/11.1167.P.20220822.1417.016.html. (in Chinese with English abstract)
    MA J F, FU C C, ZHANG C C, et al., 2022b. Plateau tectonic karst development characteristics and underground conduits identification in the northern part of Kangding[J]. Bulletin of Geological Science and Technology, 41(1): 288-299. (in Chinese with English abstract)
    MA J F, LI X Q, LIU F, et al., 2022a. Application of hydrochemical and isotopic data to determine the origin and circulation conditions of karst groundwater in an alpine and gorge region in the Qinghai-Xizang Plateau: a case study of Genie Mountain[J]. Environmental Earth Sciences, 81(10): 291, doi: 10.1007/s12665-022-10414-9.
    MA J F, LI X Q, ZHANG C C, et al., 2022b. Identification of origin and runoff of karst groundwater in the glacial lake area of the Jinsha River fault zone, China[J]. Scientific Reports, 12(1): 14661. doi: 10.1038/s41598-022-18960-9
    MU W P, 2018. Mechanism of water inrush on faults of coal seam floor and prediction of dewatering rate from karst aquifers in Beiyangzhuang mine[D]. Beijing: China University of Mining and Technology. (in Chinese with English abstract)
    QIN Y L, WU J L, ZHAN H Y, et al., 2021. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area, western Sichuan Province, China[J]. Journal of Geomechanics, 27(3): 463-474. (in Chinese with English abstract)
    SHEN J F, SHI Y H, YU Q C, et al., 1991. On the formation condition and prediction-method of karst caves in carbonate rocks[J]. Earth Science—Journal of China University of Geosciences, 16(1): 61-70. (in Chinese with English abstract)
    SHI X D, KANG X B, XU M, et al., 2019. Hydrochemical characteristics and evolution laws of karst grounderwater in the slope zone of the canyon area, Sichuan-Yunnan Plateau[J]. Acta Geologica Sinica, 93(11): 2975-2984. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2019.11.019
    SICHUAN LOCAL CHRONICLES COMPILATION COMMITTEE, 1996. Annals of Sichuan province [M]. Chengdu: Chengdu Cartographic Publishing House: 127. (in Chinese)
    TESFALDET Y T, PUTTIWONGRAK A, ARPORNTHIP T, 2020. Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand[J]. Journal of Groundwater Science and Engineering, 8(1): 10-19.
    WANG D J. 2021. Development characteristics of plateau karst and influences on the engineering in a tunnel area of southeast Tibet[J]. Tunnel Construction, 41(6): 996-1006. (in Chinese with English abstract)
    WENG J T, RU J W, 1982. Cave pearls[J]. Carsologica Sinica, 1(1): 58-65. (in Chinese with English abstract)
    XIA J W, ZHU M, 2020. Study on tectonic characteristics and activity of middle section of Jinshajiang Main Fault Zone[J]. Yangtze River, 51(5): 131-137, 159. (in Chinese with English abstract)
    XU H H, HU B, LIU W L, et al., 2020. Study on karst water drainage path in plateau karst area[J]. Yangtze River, 51(11): 128-133. (in Chinese with English abstract) doi: 10.11988/ckyyb.20190833
    XU Y P, XIANG X Q, YANG G L, 2020. Study on recharge, runoff and drainage of karst groundwater in Nanjiang Grand Canyon in Kaiyang[J]. Water Resources and Hydropower Engineering, 51(2): 53-59. (in Chinese with English abstract)
    XUE Y G, KONG F M, LI S C, et al., 2021. Water and mud inrush hazard in underground engineering: genesis, evolution and prevention[J]. Tunnelling and Underground Space Technology, 114: 103987. doi: 10.1016/j.tust.2021.103987
    YANG Z H, WU R A, GUO C B, et al., 2022. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the Western Sichuan[J]. Geology in China, 49(2): 355-368. (in Chinese with English abstract)
    YANG Z P, JIANG Y W, LI B, et al., 2020. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics, 26(4): 459-470. (in Chinese with English abstract)
    YAO T D, ZHOU H, YANG X X, 2009. Indian monsoon influences altitude effect of δ18O in precipitation/river water on the Tibetan Plateau[J]. Chinese Science Bulletin, 54(16): 2724-2731, doi: 10.1007/s11434-009-0497-4. (in Chinese with English abstract)
    YOUNG M B, GONNEEA M E, FONG D A, et al., 2008. Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry[J]. Marine Chemistry, 109(3-4): 377-394. doi: 10.1016/j.marchem.2007.07.010
    YU J S, ZHANG H B, YU F J, et al., 1980. Oxygen isotopic composition of meteoric water in the eastern part of Xizang[J]. Geochimica, 9(2): 113-121. (in Chinese with English abstract)
    ZHANG C C, LI X Q, MA J F, et al., 2021. Formation model of geothermal water in Chaya of Tibet: perspective from hydrochemistry and stable isotopes[J]. Geoscience, 35(1): 199-208. (in Chinese with English abstract)
    ZHANG D, 1994. Distribution of Tibetan karren and their morphogenetic analysis[J]. Carsologica Sinica, 13(3): 270-280.
    ZHANG D, SHI C X, 2002. CO2 partial pressure, karst dissolution rate and karst micro-landforms on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 76(4): 566-570. (in Chinese with English abstract)
    ZHANG L, GUO L S, LIU S W, et al., 2021. Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe-Anninghe fault zone, Sichuan Province, China[J]. Acta Petrologica Sinica, 37(2): 589-598. (in Chinese with English abstract)
    ZHANG Y S, GUO C B, LI X Q, et al., 2021. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: current status and development direction[J]. Hydrogeology & Engineering Geology, 48(5): 1-12. (in Chinese with English abstract)
    ZHAO T S, GAO R X, 1985. Concealed karst development in eastern part of lower Liaohe river plain, Liaoning Province, and its hydrogeological significance[J]. Carsologica Sinica, 4(3): 257-266. (in Chinese with English abstract)
    ZHONG L M, XU M, WU M L, et al., 2018. Development of deep karst under the coupling of multistage flow systems: a case of southern part of the Zhongliang Mountain anticline of the parallel barrier structure in Eastern Sichuan[J]. Hydrogeology & Engineering Geology, 45(1): 45-51. (in Chinese with English abstract)
    高全洲, 崔之久, 刘耕年, 等, 2000. 青藏高原洞穴次生方解石的裂变径迹年代及地貌学意义[J]. 海洋地质与第四纪地质, 20(3): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200003012.htm
    高全洲, 崔之久, 陶贞, 等, 2002. 青藏高原古岩溶的性质、发育时代和环境特征[J]. 地理学报, 57(3): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200203001.htm
    蒋忠诚, 张晶, 黄超, 等, 2019. 湘西地质公园岩溶峡谷群成因及其地学意义[J]. 中国岩溶, 38(2): 269-275. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201902016.htm
    康小兵, 杨四福, 管振德, 等, 2021. 川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征[J]. 中国岩溶, 40(3): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103002.htm
    孔凡翠, 杨英魁, 马玉军, 等, 2021. 大柴旦盐湖中镭同位素分布特征来源及示踪意义[J]. 湖泊科学, 33(2): 632-646. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202102028.htm
    郎琳, 刘建安, 钟强强, 等, 2020. 226Ra和228Ra对南海北部陆坡水团的示踪作用[J]. 海洋环境科学, 39(4): 511-521. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202004003.htm
    李维杰, 王建力, 王家录, 2018. 西南地区不同地形降水稳定同位素特征及其水汽来源[J]. 长江流域资源与环境, 27(5): 1132-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201805020.htm
    李向全, 马剑飞, 张春潮, 等, 2021. 川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究[J]. 水文地质工程地质, 48(5): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105004.htm
    卢耀如, 1999. 岩溶水文地质环境演化与工程效应研究[M]. 北京: 科学出版社.
    罗文艺, 2019. 川藏铁路水-热灾害特征及典型段落水文地质选线探析[C]//川藏铁路工程建造技术研讨会. 西安: 中国铁道学会.
    马剑飞, 李向全, 张春潮, 等, 2022a. 青藏高原东部典型构造岩溶地下水补给来源、模式及开发利用潜力[J/OL]. 中国地质, (2022-08-22). https://kns.cnki.net/kcms/detail/11.1167.P.20220822.1417.016.html.
    马剑飞, 付昌昌, 张春潮, 等, 2022b. 康定北部高原构造岩溶发育特征与地下水径流带识别[J]. 地质科技通报, 41(1): 288-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202201031.htm
    穆文平, 2018. 北阳庄矿煤层底板断层突水机理与岩溶水疏降水量预测[D]. 北京: 中国矿业大学(北京).
    秦宇龙, 吴建亮, 詹涵钰, 等, 2021. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报, 27(3): 463-474. doi: 10.12090/j.issn.1006-6616.2021.27.03.042
    沈继方, 史毅虹, 于青春, 等, 1991. 碳酸盐岩中岩溶洞穴的形成条件及预测方法初探[J]. 地球科学——中国地质大学学报, 16(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199101007.htm
    史箫笛, 康小兵, 许模, 等, 2019. 川滇高原斜坡地带峡谷区岩溶水化学特征及演化规律[J]. 地质学报, 93(11): 2975-2984. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201911019.htm
    四川省地方志编纂委员会, 1996. 四川省志·地理志(上下册)[M]. 成都: 成都地图出版社: 127.
    王杜江. 2021. 藏东南某隧址区高原型岩溶发育特征及工程影响[J]. 隧道建设, 41(6): 996-1006.
    翁金桃, 茹锦文, 1982. 穴珠[J]. 中国岩溶, 1(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198201010.htm
    夏金梧, 朱萌, 2020. 金沙江主断裂带中段构造特征与活动性研究[J]. 人民长江, 51(5): 131-137, 159. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202005022.htm
    许汉华, 胡斌, 刘文连, 等, 2020. 高原岩溶区岩溶水排泄路径研究[J]. 人民长江, 51(11): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202011022.htm
    徐一萍, 向喜琼, 杨根兰, 2020. 开阳南江大峡谷岩溶地下水补径排研究[J]. 水利水电技术, 51(2): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002005.htm
    杨志华, 吴瑞安, 郭长宝, 等, 2022. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质, 49(2): 355-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202202001.htm
    杨忠平, 蒋源文, 李滨, 等, 2020. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 26(4): 459-470. doi: 10.12090/j.issn.1006-6616.2020.26.04.039
    姚檀栋, 周行, 杨晓新, 2009. 印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响[J]. 科学通报, 54(15): 2124-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200915003.htm
    于津生, 张鸿斌, 虞福基, 等, 1980. 西藏东部大气降水氧同位素组成特征[J]. 地球化学, 9(2): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198002000.htm
    张春潮, 李向全, 马剑飞, 等, 2021. 基于水化学及稳定同位素的西藏察雅地下热水成因研究[J]. 现代地质, 35(1): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101022.htm
    章典, 师长兴, 2002. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J]. 地质学报, 76(4): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200204023.htm
    张磊, 郭丽爽, 刘树文, 等, 2021. 四川鲜水河-安宁河断裂带温泉氢氧稳定同位素特征[J]. 岩石学报, 37(2): 589-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202102016.htm
    张永双, 郭长宝, 李向全, 等, 2021. 川藏铁路廊道关键水工环地质问题: 现状与发展方向[J]. 水文地质工程地质, 48(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105001.htm
    赵天石, 高瑞袖, 1985. 辽宁省下辽河平原东部隐伏岩溶发育规律及水文地质意义[J]. 中国岩溶, 4(3): 257-266. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198503007.htm
    钟玲敏, 许模, 吴明亮, 等, 2018. 多级水流系统耦合下深部岩溶分异研究: 以川东隔挡式构造区中梁山背斜南段为例[J]. 水文地质工程地质, 45(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201801007.htm
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  885
  • HTML全文浏览量:  542
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-12
  • 修回日期:  2022-09-10

目录

/

返回文章
返回