Study on influencing factors of oil-water partition coefficient of phenolic compounds
-
摘要: 烷基酚是一类由酚类化合物烷基化后产生的化合物,与其他非烃化合物相比,更易溶于水。文章通过不同温度(25 ℃、45 ℃和65 ℃)、不同盐水浓度(4000 mg/L、6000 mg/L和8000 mg/L)和不同原油类型(X37、X45和X61)的三组油水分配实验,研究了烷基酚在油水两相间的分配特征,确定了烷基酚分配系数的变化规律。研究结果表明:随着同系物烷基分子量的增加,油水分配系数也随之增加;烷基酚的油水分配系数随着温度的增加而减小,同系物烷基分子量大的对温度更加敏感;烷基酚在油水体系中的分配系数随着水相盐度的增加而升高。从实验结果来看,温度和水相的盐度均会造成烷基酚油水分配系数差异,且温度的影响要大于盐度。烷基酚在油水两相间的分配行为可以为原油的二次运移和油藏开发的水驱前缘方向判断提供更多依据。Abstract: Alkylphenols are a kind of compounds produced by alkylation of phenolic compounds. Compared with other non-hydrocarbon compounds, alkylphenols are more soluble in water. In this paper, through three groups of oil-water distribution experiments at different temperatures (25 ℃, 45 ℃ and 65 ℃), different brine concentrations (4000 mg/L, 6000 mg/L and 8000 mg/L) and different crude oil types (X37, X45 and X61), the distribution characteristics of alkylphenols between oil and water were studied, and the variation law of alkylphenol distribution coefficient was determined. The results show that the oil-water partition coefficient increases with the increase of alkyl molecular weight of homologues; The oil-water partition coefficient of alkylphenols decreases with the increase of temperature, and alkyl homologues with higher molecular weights are more sensitive to temperature; The partition coefficient of alkylphenol in oil-water system increases with the increase of water salinity. According to the experimental results, temperature and salinity of water phase will cause the difference of oil-water partition coefficient of alkylphenol, and the influence of temperature is greater than that of salinity. The distribution behavior of alkylphenols between oil and water can provide more reference for the secondary migration of crude oil and the direction of water drive front in reservoir development.
-
Key words:
- alkylphenol /
- oil-water partition coefficient /
- oil-water ratio /
- moisture content
-
图 3 酚类化合物硅烷化的反应机理(张渠等, 2009)
Figure 3. Reaction formula of alkylphenol and BSTFA (Zhang et al., 2009)
表 1 20种酚类化合物的峰号、分子式、分子量与中英文名称及简写
Table 1. Information table of 20 phenolic compounds (peak number, molecular formula, molecular weight, Chinese and English names and abbreviations)
峰号 分子式 分子量 中文名称 英文名称及简写 1 C6H6O 94 苯酚 Phenol(Ph) 2 C7H20O 108 2-甲基酚 2-Methylphenol/2-Cresol(2-MPh) 3 C7H20O 108 3-甲基酚 3-Methylphenol(3-MPh) 4 C7H20O 108 4-甲基酚 4-Methylphenol(4-MPh) 5 C8H34O 122 2-乙基酚 2-Ethylphenol(2-EPh) 6 C8H34O 122 2, 5-二甲基酚 2, 5-Dimethylpheno(2, 5-DMPh) 7 C8H34O 122 2, 4-二甲基酚 2, 4-Dimethylphenol(2, 4-DMPh) 8 C8H34O 122 3, 5-二甲基酚 3, 5-Dimethylphenol(3, 5-DMPh) 9 C8H34O 122 2, 6-二甲基酚 2, 6-Dimethylphenol(2, 6-DMPh) 10 C8H34O 122 4-乙基酚 4-Ethylphenol(4-EPh) 11 C9H48O 136 2-异丙基酚 2-Isopropylphenol(2-IPPh) 12 C8H34O 122 2, 3-二甲基酚 2, 3-Dimethylphenol(2, 3-DMPh) 13 C8H34O 122 3, 4-二甲基酚 3, 4-Dimethylphenol(3, 4-DMPh) 14 C9H48O 136 2-丙基酚 2-Propylphenol(2-PPh) 15 C9H48O 136 3-异丙基酚 3-Isopropylphenol(3-IPPh) 16 C9H48O 136 4-异丙基酚 4-Isopropylphenol(4-IPPh) 17+18 C9H48O 136 2, 4, 6-三甲基酚+
2, 3, 5-三甲基酚2, 4, 6-Trimethylphenol(2, 4, 6-TMPh)+
2, 3, 5-Trimethylphenol(2, 3, 5-TMPh)19 C9H48O 136 2, 3, 6-三甲基酚 2, 3, 6-Trimethylphenol(2, 3, 6-TMPh) 20 C9H48O 136 3, 4, 5-三甲基酚 3, 4, 5-Trimethylphenol(3, 4, 5-TMPh) -
BAO J P, MA A L, 1998. Rapid separation and analysis of phenols and neutral nitrogen compounds in crude oil[J]. Journal of Jianghan Petroleum Institute, 20(2): 1-5. (in Chinese with English abstract) BENNETT B, LARTER S R, 1997. Partition behaviour of alkylphenols in crude oil/brine systems under subsurface conditions[J]. Geochimica et Cosmochimica Acta, 61(20): 4393-4402. doi: 10.1016/S0016-7037(97)88537-7 BOWLER B F J, LARTER S R, CLEGG H, et al., 1997. Dimethylcarbazoles in crude oils: comment on "liquid chromatographic separation schemes for pyrrole and pyridine nitrogen aromatic heterocycle fractions from crude oils suitable for rapid characterization of geochemical samples"[J]. Analytical Chemistry, 69(15): 3128-3129. doi: 10.1021/ac9703358 CAI P P, 2017. A study on Formation Mechanisim and main controlling factors of the heavy oil reservoirs in Liaodong Bay Area[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract) CARLISLE C T, KAPOOR S, 1982. Development of a rapid and accurate method for determining partition coefficients of chemical tracers between oils and brines (for single well tracer tests). Final report (No. DOE/BC/10100-4). Geochem Research, Inc., Houston, TX (USA). CHENG X, HOU D J, XU C G, et al., 2016. Biodegradation of tricyclic terpanes in crude oils from the Bohai Bay Basin[J]. Organic Geochemistry, 101: 11-21. doi: 10.1016/j.orggeochem.2016.08.007 DALE J D, SHOCK E L, MACLEOD G, et al., 1997. Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 61(19): 4017-4024. doi: 10.1016/S0016-7037(97)00212-3 FANG P, WU J, LI B T, et al., 2021 Comparison of different elution methods for separating asphaltene adsorbed hydrocarbons [J]. Acta Petrolei Sinica, 42 (5): 623-633, 653. (in Chinese with English abstract) FENG W P, WANG F Y, WANG Z X, et al., 2020. Characteristics and origin of crude oils in the Wulanhua sag[J]. Journal of Geomechanics, 26(6): 932-940. (in Chinese with English abstract) HU H J, JIANG Y L, LIU J D, et al., 2019. Dynamic accumulation process of coal-formed gas in Wenliu Area, Dongpu Depression[J]. Journal of Geomechanics, 25(2): 215-222. (in Chinese with English abstract) IOPPOLO M, ALEXANDER R, KAGI R I, 1992. Identification and analysis of C0-C3 phenols in some Australian crude oils[J]. Organic Geochemistry, 18(5): 603-609. doi: 10.1016/0146-6380(92)90086-D IOPPOLO-ARMANIOS, M., ALEXANDER, R., KAGI, R. I., 1995. Geosynthesis of organic compounds: I. Alkylphenols. Geochimica et Cosmochimica Acta, 59(14), 3017-3027. doi: 10.1016/0016-7037(95)80001-8 KNAEPEN W A I, TIJSSEN R, VAN DEN BERGEN E A, 1990. Experimental aspects of partitioning tracer tests for residual oil saturation determination with FIA-based laboratory equipment[J]. SPE Reservoir Engineering, 5(2): 239-244. doi: 10.2118/18387-PA LARTER S R, APLIN A C, 1995. Reservoir geochemistry: methods, applications and opportunities[J]. Geological Society, London, Special Publications, 86(1): 5-32. doi: 10.1144/GSL.SP.1995.086.01.02 LEO A, HANSCH C, ELKINS D, 1971. Partition coefficients and their uses. Chemical reviews, 71(6), 525-616. doi: 10.1021/cr60274a001 LI C F, HE J H, 2005. Solid phase extraction technology and its application[J]. Journal of Tianzhong, 20(5): 13-16. (in Chinese with English abstract) LI D J, ZHU X M, DONG Y L, et al., 2007. Sequence stratigraphy and depositional system of Paleogene Shahejie Formation in Liaodong Bay Depression[J]. Petroleum Exploration and Development, 34(6): 669-676. (in Chinese with English abstract) doi: 10.1007/s12182-008-0018-0 LI M W, LARTER S R, STODDART D, et al., 1992. Liquid chromatographic separation schemes for pyrrole and pyridine nitrogen aromatic heterocycle fractions from crude oils suitable for rapid characterization of geochemical samples[J]. Analytical Chemistry, 64(13): 1337-1344. doi: 10.1021/ac00037a007 LI M W, LARTER S R, STODDART D, et al., 1995. Fractionation of pyrrolic nitrogen compounds in petroleum during migration: derivation of migration-related geochemical parameters[J]. Geological Society, London, Special Publications, 86(1): 103-123. doi: 10.1144/GSL.SP.1995.086.01.09 LI E T, MI J L, ZHOU B, et al., 2021. Cretaceous biodegradation and reservoir forming geochemical characteristics in Mosuowan area, Junggar Basin [J]. Natural Gas Geoscience, 32 (9): 1384-1392. (in Chinese with English abstract) LI S M, JIANG Z X, DONG Y X, et al., 2008. Genetic type and distribution of the oils in the Nanpu Depression, Bohai Bay Basin[J]. Geoscience, 22(5): 817-823. (in Chinese with English abstract) LOU M T, SHANG Z H, 1998. Development and applications of solid phase extraction techniques[J]. Analytical Instrumentation(1): 1-6. (in Chinese with English abstract) MA Z L, TAN J Q, ZHAO H, et al., 2020. Organic geochemistry and geological significance of oilseepage from the Devonian of Luquan area, Yunnan Province[J]. Journal of Geomechanics, 26 (6): 952-960. (in Chinese with English abstract) PETERS C A, HALLMANN C, GEORGE S C, 2018. Phenolic compounds in oil-bearing fluid inclusions: implications for water-washing and oil migration[J]. Organic Geochemistry, 118: 36-46. doi: 10.1016/j.orggeochem.2018.02.001 PRICE L C, 1976. Aqueous solubility of petroleum as applied to its origin and primary migration[J]. AAPG Bulletin, 60(2): 213-244. https://pubs.geoscienceworld.org/aapgbull/article-abstract/60/2/213/37038/Aqueous-Solubility-of-Petroleum-as-Applied-to-Its SHI Q, LIAO Q L, LIANG Y M, 1999. Analysis of phenolic compounds in FCC diesel Oil by GC/MS[J]. Journal of Chinese Mass Spectrometry Society, 20(2): 1-10. (in Chinese with English abstract) TAYLOR P, LARTER S, JONES M, et al., 1997. The effect of oil-water-rock partitioning on the occurrence of alkylphenols in petroleum systems[J]. Geochimica et Cosmochimica Acta, 61(9): 1899-1910. doi: 10.1016/S0016-7037(97)00034-3 WANG D D, ZHOU X G, LI S Z, et al., 2017. A study on the oil and gas source of Tonghua Basin, East Peripheral basin of Songliao: nwe evidence from Tongdi well 1[J]. Journal of Geomechanics, 23(3): 422-428. (in Chinese with English abstract) WANG X, WANG Y B, LV X X, et al., 2011. Hydrocarbon accumulation conditions and distribution patterns in the Liaodong Bay Depression, the Bohai Sea[J]. Oil & Gas Geology, 32(3): 342-351. (in Chinese with English abstract) XUE Y A, GUO T, LIU Z B, et al., 2021. Accumulation conditions and key technologies of exploration and development in Suizhong 36-1 Oilfield [J]. Acta Petrolei Sinica, 42(11): 1531-1542. (in Chinese with English abstract) YIN X L, ZHOU D S, LV J T, et al., 2006. Characteristics of fluid inclusions and their significance for research on oil accumulation in the central Bohai Depression[J]. Journal of Geomechanics, 12(1): 84-90. (in Chinese with English abstract) ZHANG Q, YONG H, SONG X Y, et al., 2009. Separation and analysis of alkylphenol compound in crude oil[J]. Petroleum Geology & Experiment, 31(3): 303-306. (in Chinese with English abstract) ZHANG X F, LIU Z B, YANG Z C, et al., 2018. Influence factors of reservoir properties and their changes after waterflooding[J]. Marine Geology Frontiers, 34(10): 60-67. (in Chinese) ZHAO M P, LI Y Z, CHANG W B, 2003. The analysis of phenolic environmental estrogens[J]. Chinese Journal of Analytical Chemistry, 31(1): 103-109. (in Chinese with English abstract) https://europepmc.org/abstract/CBA/365473 包建平, 马安来, 1998. 原油中烷基苯酚和中性含氮化合物的快速分离与分析[J]. 江汉石油学院学报, 20(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX802.000.htm 蔡盼盼, 2017. 辽东湾地区稠油藏形成和主控因素研究[D]. 青岛: 中国石油大学(华东). 方朋, 吴嘉, 李勃天, 等, 2021. 不同洗脱法分离沥青质吸附烃的对比[J]. 石油学报, 42(5): 623-633, 653. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105006.htm 冯伟平, 王飞宇, 王宗秀, 等, 2020. 乌兰花凹陷原油特征及成因[J]. 地质力学学报, 26(6): 932-940. doi: 10.12090/j.issn.1006-6616.2020.26.06.074 胡洪瑾, 蒋有录, 刘景东, 等, 2019. 东濮凹陷文留地区煤成气运聚机理及成藏过程[J]. 地质力学学报, 25(2): 215-222. doi: 10.12090/j.issn.1006-6616.2019.25.02.020 李存法, 何金环, 2005. 固相萃取技术及其应用[J]. 天中学刊, 20(5): 13-16. doi: 10.3969/j.issn.1006-5261.2005.05.006 李德江, 朱筱敏, 董艳蕾, 等, 2007. 辽东湾坳陷古近系沙河街组层序地层分析[J]. 石油勘探与开发, 34(6): 669-676. doi: 10.3321/j.issn:1000-0747.2007.06.006 李二庭, 米巨磊, 周波, 等, 2021. 准噶尔盆地莫索湾地区白垩系生物降解与成藏地球化学特征[J]. 天然气地球科学, 32(9): 1384-1392. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202109011.htm 李素梅, 姜振学, 董月霞, 等, 2008. 渤海湾盆地南堡凹陷原油成因类型及其分布规律[J]. 现代地质, 22(5): 817-823. doi: 10.3969/j.issn.1000-8527.2008.05.017 楼蔓藤, 商振华, 1998. 固相萃取技术的发展与应用[J]. 分析仪器(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ199801000.htm 马中良, 谭静强, 赵晗, 等, 2020. 云南裸劝地区泥盆系油苗地球化学特征及地质意义[J]. 地质力学学报, 26(6): 952-960. doi: 10.12090/j.issn.1006-6616.2020.26.06.076 史权, 廖启玲, 梁咏梅, 1999. GC/MS分析催化裂化柴油中的酚类化合物[J]. 质谱学报, 20(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB199902000.htm 王丹丹, 周新桂, 李世臻, 等, 2017. 松辽外围东部通化盆地油气来源研究: 来自通地1井的证据[J]. 地质力学学报, 23(3): 422-428. doi: 10.3969/j.issn.1006-6616.2017.03.009 王祥, 王应斌, 吕修祥, 等, 2011. 渤海海域辽东湾坳陷油气成藏条件与分布规律[J]. 石油与天然气地质, 32(3): 342-351. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201103009.htm 薛永安, 郭涛, 刘宗斌, 等, 2021. 绥中36-1油田成藏条件及勘探开发关键技术[J]. 石油学报, 42(11): 1531-1542. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111013.htm 殷秀兰, 周东生, 吕杰堂, 等, 2006. 渤中坳陷流体包裹体特征及其对成藏研究的意义[J]. 地质力学学报, 12(1): 84-90. doi: 10.3969/j.issn.1006-6616.2006.01.013 张渠, 雍洪, 宋晓莹, 等, 2009. 原油中烷基酚类化合物的分离分析研究[J]. 石油实验地质, 31(3): 303-306. doi: 10.3969/j.issn.1001-6112.2009.03.018 张雪芳, 刘宗宾, 杨志成, 等, 2018. 储层物性影响因素及注水开发后的变化: 以辽东湾坳陷Z油田为例[J]. 海洋地质前沿, 34(10): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201810007.htm 赵美萍, 李元宗, 常文保, 2003. 酚类环境雌激素的分析研究进展[J]. 分析化学, 31(1): 103-109. doi: 10.3321/j.issn:0253-3820.2003.01.026