留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东南沿海台风暴雨型单体斜坡灾害风险评价——以泰顺仕阳北坡为例

韩帅 刘明军 伍剑波 张帅 孙强 张泰丽

韩帅, 刘明军, 伍剑波, 等, 2022. 东南沿海台风暴雨型单体斜坡灾害风险评价——以泰顺仕阳北坡为例. 地质力学学报, 28 (4): 583-595. DOI: 10.12090/j.issn.1006-6616.2021168
引用本文: 韩帅, 刘明军, 伍剑波, 等, 2022. 东南沿海台风暴雨型单体斜坡灾害风险评价——以泰顺仕阳北坡为例. 地质力学学报, 28 (4): 583-595. DOI: 10.12090/j.issn.1006-6616.2021168
HAN Shuai, LIU Mingjun, WU Jianbo, et al., 2022. Risk assessment of slope disasters induced by typhoon-rainfall in the southeast coastal area, China: A case study of the Shiyang north slope. Journal of Geomechanics, 28 (4): 583-595. DOI: 10.12090/j.issn.1006-6616.2021168
Citation: HAN Shuai, LIU Mingjun, WU Jianbo, et al., 2022. Risk assessment of slope disasters induced by typhoon-rainfall in the southeast coastal area, China: A case study of the Shiyang north slope. Journal of Geomechanics, 28 (4): 583-595. DOI: 10.12090/j.issn.1006-6616.2021168

东南沿海台风暴雨型单体斜坡灾害风险评价——以泰顺仕阳北坡为例

doi: 10.12090/j.issn.1006-6616.2021168
基金项目: 

中国地质调查地质调查项目 DD20190648

中国地质调查地质调查项目  DD20221742

详细信息
    作者简介:

    韩帅(1994—),男,硕士,助理工程师,主要从事地质灾害、工程地质方面的研究。E-mail:869086163@qq.com

  • 中图分类号: P642.22;P694

Risk assessment of slope disasters induced by typhoon-rainfall in the southeast coastal area, China: A case study of the Shiyang north slope

Funds: 

the China Geological Survey DD20190648

the China Geological Survey  DD20221742

  • 摘要: 在东南沿海地区每年汛期由台风暴雨诱发的坡积层滑坡灾害事故众多,给当地人民生命财产安全造成巨大威胁。斜坡单体风险评价是地质灾害治理与防控的重点、难点。在野外调查、工程地质钻探及岩土体力学测试的基础上,以仕阳镇仕阳北坡为例,结合气象资料分析了不同降雨条件下斜坡的稳定性;采用蒙特卡洛方法计算了斜坡安全系数的统计特性;基于斜坡破坏概率研究了承灾体的易损性,并定量计算了不同降雨条件下建筑物及人员的风险值。结果表明:随着降雨强度的增加,滑坡发生概率随之增加,其风险值也逐渐增加,特大暴雨工况风险最大,其人员风险为94人/年,经济风险为1.41亿元/年。研究结果对东南沿海地区该类滑坡的防治工程有重要的参考意义,可为该类滑坡的防灾减灾决策提供建议。

     

  • 图  1  仕阳北坡平面及剖面图

    a—仕阳北坡平面图;b—A-A’剖面图;c—B-B’剖面图

    Figure  1.  The plan and sectional view of the Shiyang north slope

    (a) Plan of the Shiyang north slope; (b) Section A-A'; (c) Section B-B'

    图  2  2016—2019年仕阳镇月降水量

    Figure  2.  Monthly precipitation in Shiyang Town from 2016 to 2019

    图  3  数值计算模型

    a—A-A’剖面计算模型;b—B-B’剖面计算模型

    Figure  3.  Numerical calculation model

    (a) Calculation model of the A-A'section; (b) Calculation model of the B-B'section

    图  4  不同雨强条件下不同时刻A-A’剖面斜坡内部孔隙水压力云图

    孔隙水压力数值区间m~n表示大于m,小于等于n
    a—c—大雨工况下A-A’剖面斜坡内部孔隙水压力云图;d—f—暴雨工况下A-A’剖面斜坡内部孔隙水压力云图;g—i—大暴雨工况下A-A’剖面斜坡内部孔隙水压力云图;j—l—特大暴雨工况下A-A’剖面斜坡内部孔隙水压力云图

    Figure  4.  Cloud diagram of pore water pressure inside the slope of the A-A'section at different time under different rain intensities

    (a-c) Cloud map of pore water pressure inside the slope of the A-A'section under heavy rain conditions; (d-f) Cloud map of pore water pressure inside the slope of the A-A'section under torrential rain conditions; (g-i) Cloud map of pore water pressure inside the slope of the A-A'section under downpour conditions; (j-l) Cloud map of pore water pressure inside the slope of the A-A'section under heavy downpour conditions

    图  5  不同雨强条件下不同时刻B-B’剖面斜坡内部孔隙水压力云图

    孔隙水压力数值区间m~n表示大于m,小于n
    a—c—大雨工况下B-B’剖面斜坡内部孔隙水压力云图;d—f—暴雨工况下B-B’剖面斜坡内部孔隙水压力云图;g—i—大暴雨工况下B-B’剖面斜坡内部孔隙水压力云图;j—l—特大暴雨工况下B-B’剖面斜坡内部孔隙水压力云图

    Figure  5.  Cloud diagram of pore water pressure inside the slope of B-B'section at different times under different rain intensities

    (a-c) Cloud map of pore water pressure inside the slope of B-B'profile under heavy rain conditions; (d-f) Cloud map of pore water pressure inside the slope of B-B'profile under torrential rain conditions; (g-i) Cloud map of pore water pressure inside the slope of B-B'section under downpour conditions; (j-l) Cloud map of pore water pressure inside the slope of B-B'section under heavy downpour conditions

    图  6  A-A’剖面潜在滑移面及安全系数

    孔隙水压力数值区间m~n表示大于m,小于n
    a—大雨工况下A-A’剖面潜在滑移面及安全系数;b—暴雨工况下A-A’剖面潜在滑移面及安全系数;c—大暴雨工况下A-A’剖面潜在滑移面及安全系数;d—特大暴雨工况下A-A’剖面潜在滑移面及安全系数

    Figure  6.  Potential slip surface and safety factor of the A-A'section

    (a) Potential slip surface and safety factor of the A-A'section under heavy rain conditions; (b) Potential slip surface and safety factor of the A-A'section under torrential rain conditions; (c) Potential slip surface and safety factor of the A-A'section under downpour conditions; (d) Potential slip surface and safety factor of the A-A'section under heavy downpour conditions

    图  7  B-B’剖面潜在滑移面及安全系数

    孔隙水压力数值区间m~n表示大于m,小于n
    a—大雨工况下B-B’剖面潜在滑移面及安全系数;b—暴雨工况下B-B’剖面潜在滑移面及安全系数;c—大暴雨工况下B-B’剖面潜在滑移面及安全系数;d—特大暴雨工况下B-B’剖面潜在滑移面及安全系数

    Figure  7.  Potential slip surface and safety factor of the B-B'section

    (a) Potential slip surface and safety factor of the B-B'section under heavy rain conditions; (b) Potential slip surface and safety factor of the B-B'section under torrential conditions; (c) Potential slip surface and safety factor of the B-B'section under downpour conditions; (d) Potential slip surface and safety factor of the B-B'section under heavy downpour conditions

    图  8  仕阳北坡滑坡影响范围分区

    Figure  8.  Zoning of the affected areas by the Shiyang north slope landslide

    图  9  仕阳北坡承载体易损性

    Figure  9.  Vulnerability of the bearing body on the Shiyang north slope

    图  10  仕阳北坡室内人员风险

    人员风险数值区间m~n表示大于m,小于等于n
    a—大雨工况下室内人员风险;b—暴雨工况下室内人员风险;c—大暴雨工况下室内人员风险;d—特大暴雨工况下室内人员风险

    Figure  10.  Risk of the Shiyang north slope under rain conditions to the people inside a house

    (a) Under heavy rain conditions; (b) Under torrential rain conditions; (c) Under downpour conditions; (d) Under heavy downpour conditions

    图  11  仕阳北坡经济风险

    注:经济风险数值区间m~n表示大于m,小于n
    a—大雨工况下经济风险;b—暴雨工况下经济风险;c—大暴雨工况下经济风险;d—特大暴雨工况下经济风险

    Figure  11.  Economic risk of the Shiyang north slope under rain conditions

    (a) Under heavy rain conditions; (b) Under torrential rain conditions; (c) Under downpour conditions; (d) Under heavy downpour conditions

    表  1  2016—2019年各类降雨级别天数统计表

    Table  1.   Statistics of the days of different rainfall levels from 2016 to 2019

    降雨级别 天数/d 各降雨级别出现概率/%
    小雨(≤10 mm/d) 406 27.79
    中雨(10~25 mm/d) 129 8.83
    大雨(25~50 mm/d) 58 3.97
    暴雨(50~100 mm/d) 18 1.23
    大暴雨(100~250 mm/d) 4 0.27
    特大暴雨(>250 mm/d) 1 0.07
    注:表中数值m~n表示大于m, 小于等于n
    下载: 导出CSV

    表  2  数值计算工况

    Table  2.   Numerical calculation conditions

    剖面 计算工况
    A-A’剖面 工况1:自重+大雨
    工况2:自重+暴雨
    工况3:自重+大暴雨
    工况4:自重+特大暴雨
    B-B’剖面 工况5:自重+大雨
    工况6:自重+暴雨
    工况7:自重+大暴雨
    工况8:自重+特大暴雨
    下载: 导出CSV

    表  3  岩土体物理力学参数

    Table  3.   Physical and mechanical parameters of the rock and soil

    材料 饱和体积含水率/% 天然密度/(g·cm-3) 粘聚力/kPa 内摩擦角/(°) 饱和渗透系数/(10-6 m/s)
    残坡积层洪积层 34.0 1.73 17.0 16.3 4.0
    全风化凝灰岩 36.0 1.91 16.0 25.3 4.4
    强风化凝灰岩 34.0 2.06 19.5 26.0 2.0
    中风化凝灰岩 30.0 2.20 250.0 45.0 0.2
    强风化凝灰质细砂岩 35.4 1.80 17.0 24.0 4.1
    中风化凝灰质细砂岩 33.6 2.30 20.0 25.8 1.9
    下载: 导出CSV

    表  4  不同工况下斜坡安全系数与破坏概率

    Table  4.   Slope safety factor and failure probability under different working conditions

    工况1 工况2 工况3 工况4 工况5 工况6 工况7 工况8
    安全系数 1.122 1.093 0.999 0.997 1.133 1.061 1.006 1.002
    破坏概率 5.04% 9.80% 48.90% 50.32% 11.84% 27.32% 46.40% 48.02%
    下载: 导出CSV

    表  5  不同区域滑坡到达角及概率

    Table  5.   Angle and probability of landslide arrival in different regions

    滑坡到达角/(°) P(TL)
    Ⅰ区、Ⅳ区 27~33 0.88
    Ⅱ区、Ⅴ区 20~27 0.52
    Ⅲ区、Ⅵ区 18~20 0.05
    下载: 导出CSV
  • CHEN L X, YIN K L, WANG Y, 2008. Discussion on risk prediction for single landslide[J]. Journal of Natural Disasters, 17(2): 65-70. (in Chinese with English abstract)
    CROSS M, 1998. Landslide susceptibility mapping using the Matrix Assessment Approach: a Derbyshire case study[J]. Geological Society, London, Engineering Geology Special Publications, 15(1): 247-261. doi: 10.1144/GSL.ENG.1998.015.01.26
    DAI F C, LEE C F, NGAI Y Y, 2002. Landslide risk assessment and management: an overview[J]. Engineering Geology, 64(1): 65-87. doi: 10.1016/S0013-7952(01)00093-X
    DU J, 2012. Risk assessment of individual landslide[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)
    GAO K C, CUI P, ZHAO C Y, et al., 2006. Landslide hazard evaluation of Wanzhou based on GIS information value method in the three gorges reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 25(5): 991-996. (in Chinese with English abstract)
    HU R L, FAN L F, WANG S S, et al., 2013. Theory and method for landslide risk assessment-current status and future development[J]. Journal of Engineering Geology, 21(1): 76-84. (in Chinese with English abstract)
    LI X, XUE G C, LIU C Z, et al., 2022. Evaluation of geohazard susceptibility based on information value model and information value-logistic regression model: a case study of the central mountainous area of Hainan Island[J]. Journal of Geomechanics, 28(2): 294-305. (in Chinese with English abstract)
    LIAN Z P, XU Y, 2016. Risk analysis of individual landslide in Southwest of Hubei province, Southwestern Hubei: a case of Yanyegongsi landslide[J]. Geology and Mineral Resources of South China, 32(3): 249-257. (in Chinese with English abstract)
    LIU J M, WANG T, SHI J S, et al., 2017. Emergency rapid assessment of landslides induced by the Jiuzhaigou Ms 7.0 earthquake, Sichuan, China[J]. Journal of Geomechanics, 23(5): 639-645. (in Chinese with English abstract)
    LU X, LIU Y, 2016. Application of GeoStudio software in slope stability analysis[J]. Journal of Pingxiang University, 33(3): 72-75. (in Chinese with English abstract)
    MA Y S, ZHANG Y C, ZHANG C S, et al., 2004. Theory and approaches to the risk evaluation of geological hazards[J]. Journal of Geomechanics, 10(1): 7-18. (in Chinese with English abstract)
    NGUYEN B Q V, KIM Y T, 2021. Regional-scale landslide risk assessment on Mt. Umyeon using risk index estimation[J]. Landslides, 18(7): 2547-2564. doi: 10.1007/s10346-021-01622-8
    SHI J S, SHI L, WU S R, 2007. Difficulties and problematical aspects of landslide risk assessment: an overview[J]. Geological Review, 53(6): 797-806. (in Chinese with English abstract)
    TANG C, ZHU J, 2006. Approach for urban debris flow risk assessment[J]. Advances in Water Science, 17(3): 383-388. (in Chinese with English abstract)
    TYAGI A, TIWARI R K, JAMES N, 2021. GIS-based landslide hazard zonation and risk studies using MCDM[M]//SITHARAM T G, JAKKA R, GOVINDARAJU L. Local site effects and ground failures. Singapore: Springer: 251-266.
    UZIELLI M, NADIM F, LACASSE S, et al., 2008. A conceptual framework for quantitative estimation of physical vulnerability to landslides[J]. Engineering Geology, 102(3-4): 251-256. doi: 10.1016/j.enggeo.2008.03.011
    WANG N T, PENG K, LI Q H, et al., 2012. Quantitative evaluation of geological disaster liability based on RS & GIS analysis: A case study of Wufeng County, Hubei Province[J]. Earth Science Frontiers, 19(6): 221-229. (in Chinese with English abstract)
    WANG T, WU S R, SHI J S, 2009. A review of international landslide risk assessment and management guidelines[J]. Geological Bulletin of China, 28(8): 1006-1019. (in Chinese with English abstract)
    WU J H, ZHANG C S, MENG H J, et al., 2021. Temporal and spatial characteristics of landslide susceptibility in the West open-pit mining area, Fushun, China[J]. Journal of Geomechanics, 27(3): 409-417. (in Chinese with English abstract)
    WU S R, SHI J S, ZHANG C S, et al., 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 28(8): 995-1005. (in Chinese with English abstract)
    WU Y, LIU D S, LU X, et al., 2011. Vulnerability assessment model for hazard bearing body and landslide risk index[J]. Rock and Soil Mechanics, 32(8): 2487-2492, 2499. (in Chinese with English abstract)
    XIANG X Q, HUANG R Q, 2000. Risk assessment and risk management for slope geohazards[J]. Journal of Geological Hazards and Environment Preservation, 11(1): 38-41. (in Chinese with English abstract)
    XU C, DAI F C, YAO X, et al., 2010. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 18(1): 15-26. (in Chinese with English abstract)
    YANG Z H, ZHANG Y S, GUO C B, et al., 2017. Landslide hazard rapid assessment in the Ms8.1 nepal earthquake-impacted area, based on Newmark model[J]. Journal of Geomechanics, 23(1): 115-124. (in Chinese with English abstract)
    YIN K L, ZHANG G R, 2003. Risk zonation of geo-hazards and its comprehensive control[J]. Safety and Environmental Engineering, 10(1): 32-35. (in Chinese with English abstract)
    YIN K L, CHEN L X, ZHANG G R, 2007. Regional landslide hazard warning and risk assessment[J]. Earth Science Frontiers, 14(6): 85-97. (in Chinese with English abstract) doi: 10.1016/S1872-5791(08)60005-6
    YUAN K, CUI Y L, HU J H, et al., 2021. Analysis of the distribution of landslides triggered by heavy rains caused by typhoon "Lekima" in 2019: taking Ningguo city, Anhui province as an example[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 37(3): 74-81. (in Chinese with English abstract)
    ZHANG C S, ZHANG Y C, MA Y S, et al., 2006. Calculation method and application of the right-weighty value on geological hazards in region[J]. Hydrogeology & Engineering Geology, 33(6): 84-88. (in Chinese with English abstract)
    ZHANG L, ZHANG Y C, LUO Y H, et al., 1998. Theory and practice of geological disaster assessment[M]. Beijing: Geological Publishing House. (in Chinese)
    ZHANG T L, 2016. The research of deformation characteristics and formation mechanism of landslides inducing by typhoon rainfall in the eastern part of Zhejiang Province[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)
    ZHANG X Y, ZHANG C S, MENG H J, et al., 2018. Landslide susceptibility assessment of new Jing-Zhang high-speed railway based on GIS and information value model[J]. Journal of Geomechanics, 24(1): 96-105. (in Chinese with English abstract)
    ZHAO H, TAN Y H, XU H, et al., 2010. Application of Monte-Carlo method to Shangtian landslide's reliability analysis[J]. Chinese Journal of Underground Space and Engineering, 6(5): 938-945. (in Chinese with English abstract)
    ZHAO Y, NI H Y, WU J B, et al., 2021. Evaluation of geological hazard vulnerability based on AHP-CF model: Take Shiyang town of Taishun county as an example[J]. East China Geology, 42(1): 66-75. (in Chinese with English abstract)
    陈丽霞, 殷坤龙, 汪洋, 2008. 单体滑坡灾害风险预测[J]. 自然灾害学报, 17(2): 65-70. doi: 10.3969/j.issn.1004-4574.2008.02.012
    杜娟, 2012. 单体滑坡灾害风险评价研究[D]. 武汉: 中国地质大学.
    高克昌, 崔鹏, 赵纯勇, 等, 2006. 基于地理信息系统和信息量模型的滑坡危险性评价: 以重庆万州为例[J]. 岩石力学与工程学报, 25(5): 991-996. doi: 10.3321/j.issn:1000-6915.2006.05.020
    胡瑞林, 范林峰, 王珊珊, 等, 2013. 滑坡风险评价的理论与方法研究[J]. 工程地质学报, 21(1): 76-84. doi: 10.3969/j.issn.1004-9665.2013.01.009
    李信, 薛桂澄, 柳长柱, 等, 2022. 基于信息量模型和信息量-逻辑回归模型的海南岛中部山区地质灾害易发性研究[J]. 地质力学学报, 28(2): 294-305. doi: 10.12090/j.issn.1006-6616.2021111
    连志鹏, 徐勇, 2016. 鄂西南地区单体滑坡灾害风险分析: 以五峰县盐业公司滑坡为例[J]. 华南地质与矿产, 32(3): 249-257. doi: 10.3969/j.issn.1007-3701.2016.03.007
    刘甲美, 王涛, 石菊松, 等, 2017. 四川九寨沟Ms 7.0级地震滑坡应急快速评估[J]. 地质力学学报, 23(5): 639-645. doi: 10.3969/j.issn.1006-6616.2017.05.001
    卢茜, 刘颖, 2016. GeoStudio软件在边坡稳定分析中的应用[J]. 萍乡学院学报, 33(3): 72-75. doi: 10.3969/j.issn.1007-9149.2016.03.017
    马寅生, 张业成, 张春山, 等, 2004. 地质灾害风险评价的理论与方法[J]. 地质力学学报, 10(1): 7-18. doi: 10.3969/j.issn.1006-6616.2004.01.002
    石菊松, 石玲, 吴树仁, 2007. 滑坡风险评估的难点和进展[J]. 地质论评, 53(6): 797-806. doi: 10.3321/j.issn:0371-5736.2007.06.014
    唐川, 朱静, 2006. 城市泥石流风险评价探讨[J]. 水科学进展, 17(3): 383-388. doi: 10.3321/j.issn:1001-6791.2006.03.015
    王宁涛, 彭轲, 黎清华, 等, 2012. 基于RS和GIS的地质灾害易发性定量评价: 以湖北省五峰县为例[J]. 地学前缘, 19(6): 221-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206028.htm
    王涛, 吴树仁, 石菊松, 2009. 国际滑坡风险评估与管理指南研究综述[J]. 地质通报, 28(8): 1006-1019. doi: 10.3969/j.issn.1671-2552.2009.08.002
    吴季寰, 张春山, 孟华君, 等, 2021. 抚顺西露天矿区滑坡易发性评价与时空特征分析[J]. 地质力学学报, 27(3): 409-417. doi: 10.12090/j.issn.1006-6616.2021.27.03.037
    吴树仁, 石菊松, 张春山, 等, 2009. 地质灾害风险评估技术指南初论[J]. 地质通报, 28(8): 995-1005. doi: 10.3969/j.issn.1671-2552.2009.08.001
    吴越, 刘东升, 陆新, 等, 2011. 承灾体易损性评估模型与滑坡灾害风险度指标[J]. 岩土力学, 32(8): 2487-2492, 2499. doi: 10.3969/j.issn.1000-7598.2011.08.039
    向喜琼, 黄润秋, 2000. 地质灾害风险评价与风险管理[J]. 地质灾害与环境保护, 11(1): 38-41. doi: 10.3969/j.issn.1006-4362.2000.01.008
    许冲, 戴福初, 姚鑫, 等, 2010. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 18(1): 15-26. doi: 10.3969/j.issn.1004-9665.2010.01.003
    杨志华, 张永双, 郭长宝, 等, 2017. 基于Newmark模型的尼泊尔Ms8.1级地震滑坡危险性快速评估[J]. 地质力学学报, 23(1): 115-124. doi: 10.3969/j.issn.1006-6616.2017.01.007
    殷坤龙, 张桂荣, 2003. 地质灾害风险区划与综合防治对策[J]. 安全与环境工程, 10(1): 32-35. doi: 10.3969/j.issn.1671-1556.2003.01.010
    殷坤龙, 陈丽霞, 张桂荣, 2007. 区域滑坡灾害预测预警与风险评价[J]. 地学前缘, 14(6): 85-97. doi: 10.3321/j.issn:1005-2321.2007.06.011
    袁康, 崔玉龙, 胡俊宏, 等, 2021. 2019年"利奇马"台风暴雨滑坡分布分析: 以安徽省宁国市为例[J]. 陕西理工大学学报(自然科学版), 37(3): 74-81. doi: 10.3969/j.issn.1673-2944.2021.03.012
    张春山, 张业成, 马寅生, 等, 2006. 区域地质灾害风险评价要素权值计算方法及应用: 以黄河上游地区地质灾害风险评价为例[J]. 水文地质工程地质, 33(6): 84-88. doi: 10.3969/j.issn.1000-3665.2006.06.021
    张梁, 张业成, 罗元华, 等, 1998. 地质灾害灾情评估理论与实践[M]. 北京: 地质出版社.
    张泰丽, 2016. 浙江省东部台风暴雨诱发滑坡变形特征和成因机制研究[D]. 武汉: 中国地质大学.
    张向营, 张春山, 孟华君, 等, 2018. 基于GIS和信息量模型的京张高铁滑坡易发性评价[J]. 地质力学学报, 24(1): 96-105. doi: 10.12090/j.issn.1006-6616.2018.24.01.011
    赵辉, 谭跃虎, 徐辉, 等, 2010. 雅砻江上田边坡可靠性蒙特卡洛方法综合运用[J]. 地下空间与工程学报, 6(5): 938-945. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201005016.htm
    赵阳, 倪化勇, 伍剑波, 等, 2021. 基于AHP-CF模型的地质灾害易发性评价: 以泰顺县仕阳镇为例[J]. 华东地质, 42(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ202101008.htm
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  215
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2022-04-22

目录

    /

    返回文章
    返回