In-situ zircon U-Pb dating method by LA-ICP-MS and discussions on the effect of different beam spot diameters on the dating results
-
摘要: 利用自然资源部古地磁与古构造重建重点实验室新引进的GeoLas HD型193nm ArF准分子激光剥蚀系统和Agilent 7900型四极杆电感耦合等离子质谱仪,成功建立了LA-ICP-MS锆石微区U-Pb定年及微量元素分析测试方法。以标准锆石91500为外标,在32 μm束斑直径、5.0 J/cm2能量密度和5 Hz剥蚀频率等实验条件下,对Plešovice、Temora1和Qinghu锆石标样开展了U-Pb定年实验,所测年龄结果与各标样推荐值在误差范围允许的条件下一致,并且Plešovice年龄结果在不同时间段内保持稳定。同时对未知年龄样品11-5开展了不同实验室测年结果对比研究,所测结果与中国地质大学(武汉)地质过程与矿产资源国家重点实验室所测年龄在误差允许范围内一致。以NIST SRM 610为外标,29Si为内标,分析测试了锆石91500和NIST SRM 612标准样品的微量元素含量,实验测试结果与推荐值一致。在此基础上探索总结了不同剥蚀斑束直径对U-Pb年龄结果的影响,认为在同样的能量密度和剥蚀频率条件下,16~44 μm的剥蚀直径可以获取可靠的锆石U-Pb年龄,但32~44 μm相比16~24 μm小斑束直径所测得的年龄更加精准。Abstract: By using the newly introduced GeoLas HD 193 nm ArF excimer laser ablation system and the Agilent 7900 quadrupole inductively coupled plasma mass spectrometer (ICP-MS) in the Key Laboratory of Paleomagnetism and Tectonic Reconstruction at the Institute of Geomechanics, we successfully established the in-situ zircon U-Pb dating method and trace element analytical method by LA-ICP-MS. U-Pb dating experiments were carried out on Plešovice, Temora1 and Qinghu zircons under the experimental conditions of 32 μm beam spot diameter, 5.0 J/cm2 energy density and 5 Hz denudation frequency using the standard zircon 91500 as the external standard. The ideal age results are consistent with their recommended values, and the measured U-Pb ages for Plešovice zircon remain stable in different periods. Meanwhile, a comparative study of the U-Pb dating results in different laboratories was carried out on an unknown sample 11-5, and the dating results are consistent with that obtained in the State Key Laboratory of Geological Processes and Mineral Resources at China University of Geosciences (Wuhan) within analytical error. Trace elements in zircon standard 91500 and glass standard NIST SRM 612 were analyzed by using NIST SRM 610 as an external standard and 29Si as an internal standard, and the measured values are consistent with the recommended values of trace element contents. In addition, the influence of different beam spot diameters on the zircon U-Pb age results was explored by using the Plešovice zircon as an example. The results show that a denudation diameter of 16~44 μm can obtain reliable zircon U-Pb ages similar to the recommended age, and under the same energy density and denudation frequency conditions, U-Pb ages obtained by using 32~44 μm beam spot diameters are more accurate than those obtained by 16~24 μm beam spot diameters.
-
Key words:
- LA-ICP-MS /
- zircon /
- U-Pb dating /
- trace element
-
图 4 样品11-5不同实验室U-Pb年龄对比图
a—自然资源部古地磁与古构造重建重点实验室测试结果;b—中国地质大学(武汉)地质过程与矿产资源国家重点实验室测试结果
Figure 4. Comparison of U-Pb concordia plot for sample 11-5 from different Laboratories
(a) Results from the Key Laboratory of Paleomagnetism and Tectonic Reconstruction; (b) Results from the State Key Laboratory of Geological Processes and Mineral Resources
图 5 锆石91500和NIST SRM612标样稀土元素球粒陨石标准化配分模式图(球粒陨石标准值据Sun and McDonough, 1989;91500锆石的微量元素平均含量的参考值据王岚等,2012)
Figure 5. Chondrite-normalized REEs patterns of the standard sample 91500 and NIST SRM612 (Chondrite-normalized values are cited from Sun and McDonough, 1989; reference values of trace elements for zircon 91500 are cited from Wang et al., 2012)
表 1 LA-ICP-MS主要工作参数
Table 1. Major working parameters of the LA-ICP-MS
激光剥蚀系统
(GeoLasHD 193 nm ArF准分子)电感耦合等离子质谱系统
(Agilent 7900)分析参数 工作条件 分析参数 工作条件 工作波长 193 nm 等离子气流 15 L/min 能量密度 5 mJ/cm2 RF功率 1550 W 剥蚀频率 5 Hz RF匹配 1.8 V 采样时间 50 s 采样深度 6.0 mm 束斑直径 44/32/24 μm 载气流速 0.6~0.9 L/min 载气类型 100% 氦气 分析同位素 202、204、206~208、232、238 载气流速 0.4 L/min 积分时间 25~30 ms/同位素 -
BLACK L P, KAMO S L, ALLEN C M, et al., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 200(1-2): 155-170. doi: 10.1016/S0009-2541(03)00165-7 CORFU F, HANCHAR J M, HOSKIN P W O, et al., 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 153(1): 469-500. FU L B, WEI J H, ZHANG D H, et al., 2015. A review of LA-ICPMS analysis for individual fluid inclusions and its applications in ore deposits[J]. Journal of Central South University (Science and Technology), 46(10): 3832-3840. (in Chinese with English abstract) FU Y, SUN X M, LI D F, et al., 2017. LA-ICP-MS U-Th-Pb dating and trace element geochemistry of allanite: implications on the different skarn metallogenesis between the Giant Beiya Au and Machangqing Cu-Mo-(Au) deposits in Yunnan, SW China[J]. Minerals, 7(12): 251. doi: 10.3390/min7120251 GUO H H, XIAO Y L, GU X P, et al., 2014. LA-ICP-MS allanite U-Th-Pb LA-ICP-MS Allanite U-Th-Pb geochronology study on Guangdong Xinfeng REE-rich granite[J]. Acta Geologica Sinica, 88(6): 1025-1037. (in Chinese with English abstract) HOU K J, LI Y H, TIAN Y R, 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 28(4): 481-492. (in Chinese with English abstract) JOCHUM K P, WEIS U, STOLL B, et al., 2011. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 35(4): 397-429. doi: 10.1111/j.1751-908X.2011.00120.x LEI H J, SHEN X M, LIU X J, et al., 2021. LA-ICP-MS in-situ zircon U-Pb dating and its application in zircon geochronology of the Jianchuan Syenite in Western Yunnan[J]. Geotectonica et Metallogenia, 45(4): 822-838. (in Chinese with English abstract) LI Z L, LIU X J, XIAO W J, et al., Geochronology, geochemistry and Hf isotopes of volcanic rocks in Pingxiang area, southwest Guangxi: implications for the latest stage of paleo-Tethyan ocean northward subduction[J]. Journal of Geomechanics, 25(5): 932-946. (in Chinese with English abstract). LI X H, LIU Y, LI Q L, et al., 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization[J]. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. LI X H, TANG G Q, GONG B, et al., 2013. Qinghu zircon: a working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(36): 4647-4654. LI X H, LIU X M, LIU Y S, et al., 2015. Accuracy of LA-ICPMS zircon U-Pb age determination: an inter-laboratory comparison[J]. Science China Earth Sciences, 58(10): 1722-1730. doi: 10.1007/s11430-015-5110-x LIN X, LIU H J, WU Z H, et al., 2021. Provenance study on geochemical elements of detrital K-feldspar in Quaternary gravel layer in Yichang and its geological significance[J]. Journal of Geomechanics, 27(6): 1024-1034. LIU E T, ZHAO J X, WANG H, et al., 2021. LA-ICPMS in-situ U-Pb geochronology of low-uranium carbonate minerals and its application to reservoir diagenetic evolution studies[J]. Journal of Earth Science, 32(4): 872-879. doi: 10.1007/s12583-020-1084-5 LIU Y S, HU Z C, ZONG K Q, et al., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 LIU Y S, HU Z C, LI M, et al., 2013. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 58: 3863-3878. (in Chinese with English abstract) doi: 10.1007/s11434-013-5901-4 LUAN Y, HE K, TAN X J, 2019. In situ U-Pb dating and trace element determination of standard zircons by LA-ICP-MS[J]. Geological Bulletin of China, 38(7): 1206-1218. (in Chinese with English abstract) LUDWIG K R, 2003. ISOPLOT 3.00: a geochronological toolkit for Microsoft excel[M]. Berkeley: Berkeley Geochronology Center. PENG L, LI Q Z, CHAI F D, et al., 2017. Single zircon in situ U-Pb age by LA-ICPMS at small beam spot[J]. Journal of Hefei University of Technology, 40(1): 110-116. (in Chinese with English abstract) SLáMA J, KOšLER J, CONDON D J, et al., 2008. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005 SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 WANG L, YANG L Q, WANG Y P, et al., 2012. In situ U-Pb dating and trace element simultaneity determination of zircon by LA-ICP-MS[J]. Acta Geoscientica Sinica, 33(5): 763-772. (in Chinese with English abstract) WIEDENBECK M, HANCHAR J M, PECK W H, et al., 2004. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research, 28(1): 9-39. doi: 10.1111/j.1751-908X.2004.tb01041.x XIE L W, ZHANG Y B, ZHANG H H, et al., 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite[J]. Chinese Science Bulletin, 53(10): 1565-1573. YE L J, XIAO Z B, TU J R, et al., 2019. U-Pb isotopic dating in situ microanalysis of uranium minerals by EPMA and LA-ICPMS[J]. Acta Geoscientia Sinica, 40(3): 479-482. (in Chinese with English abstract) YU C, YANG Z M, ZHOU L M, et al., 2019. Impact of laser focus on accuracy of U-Pb dating of zircons by LA-ICPMS[J]. Mineral Deposits, 38(1): 21-28. (in Chinese with English abstract) YUAN H L, GAO S, LIU X M, et al., 2004. Accurate U-Pb Age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x ZHANG L J, ZHOU T F, 2017. Minerals in-situ LA-ICPMS trace elements study and the applications in ore deposit genesis and exploration[J]. Acta Petrologica Sinica, 33(11): 3437-3452. (in Chinese with English abstract) ZHOU L L, WEI J Q, WANG F, et al., 2017. Optimization of the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 36(4): 350-359. (in Chinese with English abstract) 付乐兵, 魏俊浩, 张道涵, 等, 2015. 单个流体包裹体成分LA-ICPMS分析与矿床学应用进展[J]. 中南大学学报(自然科学版), 46(10): 3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037 郭海浩, 肖益林, 谷湘平, 等, 2014. 广东新丰稀土花岗岩中褐帘石LA-ICP-MS的U-Th-Pb定年研究[J]. 地质学报, 88(6): 1025-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406006.htm 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 雷海佳, 沈晓明, 刘希军, 等, 2021. LA-ICP-MS锆石U-Pb定年实验流程的建立及其在滇西剑川正长岩锆石年代学中的应用[J]. 大地构造与成矿学, 45(4): 822-838. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202104013.htm 李政林, 刘希军, 肖文交, 等, 2019. 桂西南凭祥火山岩年代学、地球化学及Hf同位素研究: 对古特提斯洋最晚北向俯冲事件的启示[J]. 地质力学学报, 25(6): 932-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905021.htm 李献华, 唐国强, 龚冰, 等, 2013. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 58(20): 1954-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320010.htm 李献华, 柳小明, 刘勇胜, 等, 2015. LA-ICPMS锆石U-Pb定年的准确度: 多实验室对比分析[J]. 中国科学: 地球科学, 45(9): 1294-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509004.htm 林旭, 刘海金, 吴中海, 等, 2021. 宜昌第四纪砾石层钾长石主、微量元素物源研究及其地质意义[J]. 地质力学学报, 27(6): 1024-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202106011.htm 刘勇胜, 胡兆初, 李明, 等, 2013. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 58: 3753-3769. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201336003.htm 栾燕, 何克, 谭细娟, 2019. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 38(7): 1206-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907014.htm 彭陆, 李全忠, 柴发达, 等, 2017. 单颗粒锆石小束斑LA-ICPMS原位微区U-Pb年龄的测定[J]. 合肥工业大学学报(自然科学版), 40(1): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201701020.htm 王岚, 杨理勤, 王亚平, 等, 2012. 锆石LA-ICP-MS原位微区U-Pb定年及微量元素的同时测定[J]. 地球学报, 33(5): 763-772. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205011.htm 谢烈文, 张艳斌, 张辉煌, 等, 2008. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J]. 科学通报, 53(2): 220-228. doi: 10.3321/j.issn:0023-074X.2008.02.013 叶丽娟, 肖志斌, 涂家润, 等, 2019. LA-ICPMS与EPMA结合测定铀矿物微区原位U-Pb年龄[J]. 地球学报, 40(3): 479-482. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201903009.htm 于超, 杨志明, 周利敏, 等, 2019. 激光焦平面变化对LA-ICPMS锆石U-Pb定年准确度的影响[J]. 矿床地质, 38(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201901002.htm 张乐骏, 周涛发, 2017. 矿物原位LA-ICPMS微量元素分析及其在矿床成因和预测研究中的应用进展[J]. 岩石学报, 33(11): 3437-3452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711007.htm 周亮亮, 魏均启, 王芳, 等, 2017. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 36(4): 350-359. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201704003.htm