留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

元古代华南洋的轮廓

杨明桂 姚悦 熊燃 王光辉 胡青华 徐梅桂

马杰,谢非,史保胤,等,2023. 青藏高原东北缘北联池剖面清水营组孢粉组合特征及地质意义[J]. 地质力学学报,29(4):555−568 doi: 10.12090/j.issn.1006-6616.2023012
引用本文: 杨明桂,姚悦,熊燃,等,2023. 元古代华南洋的轮廓[J]. 地质力学学报,29(1):1−20 doi: 10.12090/j.issn.1006-6616.2021051
MA J,XIE F,SHI B Y,et al.,2023. Characteristics and geological significance of the palynological assemblages of the Qingshuiying Formation in the Beilianchi section, northeastern margin of the Tibetan Plateau[J]. Journal of Geomechanics,29(4):555−568 doi: 10.12090/j.issn.1006-6616.2023012
Citation: YANG M G,YAO Y,XIONG R,et al.,2023. The outline of the Proterozoic South China Ocean[J]. Journal of Geomechanics,29(1):1−20 doi: 10.12090/j.issn.1006-6616.2021051

元古代华南洋的轮廓

doi: 10.12090/j.issn.1006-6616.2021051
基金项目: 中国地质科学院“中国矿产地质志”系列研究项目(2015117,2016185)
详细信息
    作者简介:

    杨明桂(1933—),男,教授级高级工程师,从事区域地质调查、矿产勘查和地质科学研究工作。E-mail: jxjudkc@126.com

  • 中图分类号: P547;P617

The outline of the Proterozoic South China Ocean

Funds: This research is financially supported by the Research Programs of the “Chinese Mineral Geology” Series of the Chinese Academy of Geological Sciences (Grants No.2015117, 2016185).
  • 摘要: 地质界追寻华南洋的研究已有40年历史,在已有研究基础上,通过《中国区域地质志·江西志》《中国矿产地质志·江西卷》及《华南洋−滨太平洋构造演化与成矿》专题对中新元古代华南洋的地质特征与相关地质构造及成矿问题有了进一步的认识:凭祥−歙县−苏州结合带与金沙江−红河结合带在河内市北面相连,为中新元古代华南洋的消亡潜没地带,构成了扬子板块与新厘定的华夏−东南亚板块分界(简称金沙江−红河−歙县−苏州结合带),现今是一条向南弯曲的纬向构造带;华南洋是扬子古板块与华夏−东南亚古板块间的中新元古代大洋,约闭合于820± Ma,板块碰撞发生了晋宁运动,扬子陆块与华夏−东南亚陆块基本固结,并连为一体;该区印支期以来为欧亚板块重要组成部分,新元古代晚期815± Ma至早古生代形成华南裂谷系,晚古生代以来先后受特提斯构造域、古太平洋构造域复合形成了中国南部及邻区高原、大陆、海域、岛弧的地质构造格局;在华南洋潜没地带的基础上经不断发展演化形成了以S、I型两大岩浆成矿系列为特色的钨锡铜金多金属贵稀金属“金沙江−红河−钦州湾−杭州湾”巨型成矿带。

     

  • 青藏高原东北缘六盘山地区新生代以来的沉积地层与青藏高原向东北方向的隆升扩展息息相关(Yin et al., 2002Dupont-Nivet et al., 2007方小敏,2017蒋锋云等,2021Wu et al., 2022)。古近系清水营组分布面积广,沉积厚度大,以滨浅湖相细碎屑为主,蕴含了丰富的古环境和古气候信息(张进等,2005王伟涛等,2010吴小力等,20172023Wu et al., 2018)。目前,关于古近系清水营组的研究主要集中在沉积时代、沉积环境及古气候三个方面(张进等,2005赵岩等, 2016吴小力等,2017李明涛等,2020)。清水营组沉积时代的确定主要基于古地磁与孢粉的研究成果,由于缺乏定量的绝对年龄的约束,目前还存在渐新世和中新世等诸多争议(王伟涛等,2013宁夏回族自治区地质调查院,2017寇琳琳等,2021)。以六盘山东缘的寺口子剖面为例,孢粉化石主要产于清水营组下部,鉴定结果表明其时代属于渐新世,但上部的年龄由于缺乏孢粉组合,无法从古生物角度加以限定(宁夏回族自治区地质调查院,2017)。古地磁测年结果认为寺口子剖面清水营组的顶部年龄为16.8 Ma,属于中新世早期(王伟涛等,2013),但贺家口子剖面清水营组的古地磁测年结果却将其沉积时代限定为38.5~23.5 Ma,属于始新世—渐新世(申旭辉等,2001)。沉积环境的宏观研究认为清水营组的沉积处在走廊南山逆冲活动减弱的阶段,整个盆地逐渐由非补偿型盆地转变为过补偿型盆地,沉积体系也产生相应的转变(张进等,2005)。隆德三里店水库北侧的清水营组中段下部是曲流河沉积,中段上部为湖滨三角洲沉积,再向上演化为湖泊,并成为盐湖,最后出现间歇性湖泊沉积(张进等,2005)。由于青藏高原东北缘清水营组沉积时期,水体范围大,沉积范围广,岩性以一套含石膏层的干旱泥岩沉积为主,沉积地层中孢粉含量稀少,孢粉组合特征在不同剖面上的也存在一定的差异。关于清水营组孢粉组合特征方面的研究,目前主要集中在青藏高原东北缘六盘山以东的零星剖面,但孢粉含量比较稀少,六盘山以西地区仅仅在隆德观音店剖面发现了少量的孢粉(宁夏回族自治区地质调查院,2017)。六盘山以东的同心县贺家口子剖面以Ephedripites(麻黄粉)、Meliacoidites(楝粉)、Ulmipollenites(榆粉)和Pinuspollenites(双束松粉)等为主,整体反映干热的亚热带气候(孙素英,1982宁夏回族自治区地质矿产局,1990)。海原县红沟梁剖面孢粉组合为Ephedripites(麻黄粉)−Nitrariadites(白刺粉)−Chenopodipollis(藜粉)−Quercoidites(栎粉)以及六盘山以西的隆德县观音店剖面产孢粉化石Chenopodipollis(藜粉)、Ephedripites(麻黄粉)、Pinuspollenites(双束松粉)和Betulaceoipollenites(拟桦粉)等,气候也都比较干旱(宁夏回族自治区地质调查院,2017)。宁南盆地北部同心地区主量元素、微量元素和稀土元素分析表明清水营组时期为干旱气候区域(李明涛等,2020)。宁南盆地清水营组石膏中Al2O3/SiO2、Al2O3/Ti2O、K2O/Na2O和87Sr/86Sr等指标反映该区域渐新世存在气候干旱化和湿润化相间的特征(吴小力等,2023)。上述部分学者对清水营组的孢粉研究中,均未发现湿润气候条件下的孢粉植被特征,有待进一步研究。因此,文章的研究以青藏高原东北缘六盘山以西的北联池清水营组剖面为基础,通过系统的孢粉特征鉴定,总结区域上不同剖面的孢粉组合特征。研究成果将为清水营组的沉积时代的限定及植物群落整体面貌所反映的古气候背景的恢复提供依据。

    青藏高原东北缘弧形构造带位于青藏高原地块、阿拉善地块与鄂尔多斯地块的交界部位,是青藏高原向东北方向隆升扩展的最前缘,东北缘弧形构造带的隆升扩展过程对于区域古生态环境必然产生巨大的影响(张进等,2005郑文俊等,20192021寇琳琳等,2021)。青藏高原东北缘弧形构造带主要包括海原断裂、香山−天景山断裂、烟筒山断裂和大罗山−牛首山断裂4条弧形断裂以及夹持于期间的老龙湾盆地、清水河盆地、红寺堡盆地等新生代盆地。北联池剖面位于海原断裂带以西,青藏高原东北缘弧形构造带的后缘(图1 )。

    图  1  青藏高原东北缘弧形构造带区域地质简图
    Figure  1.  Regional geologic map of the arcuate tectonic belt on the northeastern margin of the Tibet Plateau

    该区主要出露白垩纪及古近纪—新近纪地层,古近纪、新近纪与下伏白垩纪地层系之间为微角度不整合接触。白垩系自下而上主要包括三桥组、和尚铺组、李洼峡组、马东山组和乃家河组。三桥组为一套以紫红色砾岩为主的冲积扇相沉积,为盆地发育初期快速堆积的产物;和尚铺组为一套以浅灰白色含砾砂岩、砂岩为主的河流相沉积;李洼峡组为一套以泥岩、灰岩及少量粉砂岩和细砂岩为主的滨湖−三角洲相沉积;马东山组为一套以深灰色页岩、黑色页岩、杂色泥岩,局部夹薄层泥灰岩为主的滨浅湖相沉积;乃家河组为干旱蒸发环境的局限湖盆,局部发育蒸发岩、盐岩。古近系寺口子组在六盘山以西总体上为一套以紫红色砾岩为主的冲积扇相沉积,在六盘山以东发育一套以紫红色砂岩为主的扇三角洲前缘相沉积;清水营组在青藏高原东北缘分布面积比较广,厚度大,主要为一套紫红色泥岩夹深灰色薄层石膏层,代表了一套滨浅湖相沉积,在底部发育三角洲水下分裂河道,呈现透镜状。新近系彰恩堡组总体上为一套橘红色泥岩、泥质粉砂岩、粉砂质泥岩,代表了一套相对稳定的滨湖相沉积;干河沟组为一套河流−冲积扇相沉积,在纵向上发育多个旋回,岩性以砾岩、含砾砂岩为主,自下而上砾岩厚度逐渐加大。

    孢粉研究的样品采自青藏高原东北缘六盘山以西北联池剖面清水营组,上覆新近系彰恩堡组,二者之间为整合接触。岩性总体为一套红褐色泥岩、粉砂质或砂质泥岩,夹薄层灰绿色石膏,上部夹红褐色含砾砂岩。下伏地层为古近系寺口子组紫红色砂砾岩,整合或不整合接触。剖面地层厚度约55.45 m,剖面自下而上共采集孢粉分析样品45个(图2)。

    图  2  青藏高原东北缘北联池剖面清水营组剖面柱状图
    Figure  2.  Histogram of the Qingshuiying Formation of the Beilianchi section, northeastern margin of the Tibetan Plateau

    此次孢粉前处理在中国地质科学院地质力学研究所孢粉实验室完成,采用盐酸−氢氟酸法。室内孢粉分析实验步骤如下:

    第1步称样,称取100g风干后的样品;第2步碎样,将样品碎成小颗粒,过1.18 mm标准筛;第3步盐酸(HCl)处理,将样品放入玻璃容器中,加入20%的盐酸溶液,约为样品的3倍,在加热板加热半小时,并可根据反应情况更换新液,直到反应完全为止;第4步水洗,用移液管轻轻抽出上部废液,加满水静置6小时,用移液管抽出废液,再加满水,一般需换水3~4次,直至中性;第5步氢氟酸(HF)处理,将样品移至塑料烧杯中,加入40%的氢氟酸溶液,约为样品的1倍以上,多次反复搅动后,静置48小时,移除废液,更换新液,反复搅动后静置,再洗至中性,步骤同第4步;第6步超声波震荡过筛,将洗至中性的样品在超声波振荡器里进行振荡筛滤,先后过200 µm和7 µm筛布富集孢粉;第7步保存制片,将样品离心、脱水后,加入甘油保存,以备制取活动片在显微镜下鉴定。

    鉴定过程中参考了《花粉分析》(格刺德科娃等,1956)、《中国植物花粉形态》(中国科学院植物研究所形态室孢粉组,1960)、《中国孢粉化石(第一卷):晚白垩世和第三纪孢粉》(宋之琛等,1999)。

    经孢粉前处理、鉴定和分析后发现,45块样品中,42块中含有孢粉,而其他3块样品几乎不含孢粉。42块含有孢粉的样品中,2块样品鉴定超过300粒,7块样品鉴定在100~300粒之间,其余33块样品鉴定不足100粒。根据孢粉鉴定和统计结果,用鉴定超过100粒的9块样品计算出孢粉属种类型及百分比含量(表1)。主要孢粉类型见图3图4,主要和具代表性的孢粉百分比含量图谱见图5。孢粉组合中绝大多数属种总体上变化不显著,故未作孢粉组合带的划分。

    表  1  青藏高原东北缘北联池剖面清水营组孢粉统计表
    Table  1.  Statistics of sporopollens from the Qingshuiying Formation of the Beilianchi section, northeastern margin of the Tibetan Plateau
    孢粉属种中文名称亲缘关系不同样品的孢粉含量/%
    LBF-74LBF-75LBF-76LBF-78LBF-79LBF-105LBF-106LBF-110LBF-111
    蕨类植物孢子 3.8 0.8 0.9 1.1
    Deltoidospora sp. 三角孢 0.9 0.8
    Lygodioisporites sp. 瘤面海金沙孢 海金沙科 0.9
    Polypodiaceaesporites sp. 水龙骨单缝孢 水龙骨科 1.9 0.9 1.1
    裸子植物花粉 1.9 0.3 1.6 0.9 0.8 1.8 0.6 1.2
    Classopollisannulatus 环圈克拉梭粉 希默杉亚科 0.0 0.9
    Cycadopitescycadoides 苏铁粉 苏铁科 0.2
    Ginkgoretectina minor 小银杏粉 银杏科 0.2
    Keteleeriaepollenites sp. 油杉粉 油杉属 0.2
    Pinuspollenites sp. 双束松粉 松属 1.9 0.3 1.6 0.8 1.8 0.6 0.5
    被子植物花粉 96.8 99.7 98.4 97.1 95.3 98.4 97.3 96.6 98.3
    Aceripollenites sp. 槭粉 槭树科 0.2
    Alnipollenitesmetaplasmus 变形桤木粉 桦木科 0.3
    Artemisiaepollenites communis 普通蒿粉 菊科蒿属 17.2 15.1 10.6 15.7 20.8 12.3 22.7 19.0 26.9
    Betulaceoipollenitesbituitus 拟桦粉 桦木科 3.2 1.2 2.0 2.8 2.5 2.7 4.6 5.8
    B. prominens 显环桦粉 桦木科 0.3 0.8
    Betulaepollenitesclaripites 明亮肋桦粉 桦木科 1.5 0.8 0.6
    B. microrugusus 微隆肋桦粉 桦木科 0.9 0.8 2.9
    B. plicoides 褶皱肋桦粉 桦木科 2.0 1.2
    Brevitricolpites sp. 短三沟粉 0.3
    Carpinipites orbicularis 圆形枥粉 桦木科 18.5 24.1 44.7 7.8 10.4 13.9 10.0 8.6 6.7
    C. spackmanii 斯氏枥粉 桦木科 0.3 2.8 0.0 2.3
    C. tetraporus 四孔枥粉 桦木科 16.6 6.5 26.0 12.7 1.9 9.8 12.7 12.6 7.2
    Caryophyllidites sp. 石竹粉 石竹科 1.3
    Chenopodipollismicroporatus 小孔藜粉 藜科 1.3 1.9 1.0 1.8 1.7 1.9
    C. multiplex 多坑藜粉 藜科 0.9 0.9
    Cruciferaeipites minor 小十字花粉 十字花科 0.3 1.9
    C. pusillus 小栗粉 栗亚科 9.0
    Cyperaceaepollisscholitzensis 许里兹莎草粉 莎草科 1.6
    C. sp. 莎草粉 莎草科 0.3 0.8
    Cyrillaceaepollenitesmegaexactus 西里拉粉 西里拉科或栗亚科 0.6 0.8 0.5
    Echitricolporitesmicroechinatus 细刺刺三孔沟粉 菊科紫菀族 1.0
    Elaeangnacites sp. 胡颓子粉 胡颓子科 1.9 1.9 3.8 1.6 0.9 2.9 0.5
    Engelhardtioiditeslevis 小黄杞粉 胡桃科 5.1 1.0 4.1 10.9 9.2 12.5
    Faguspollenites mediocris 平凡山毛榉粉 山毛榉科 0.6
    Fraxinoipollenitesovatus 卵形梣粉 木犀科 0.3 1.0 0.9
    F. sp. 梣粉 木犀科 0.7
    Gothanipollis elegans 华美高腾粉 桑寄生科? 1.9 0.3 0.8 1.2
    Graminiditesgracilis 纤弱禾本粉 禾本科 1.3 0.3 0.8 2.0 2.8 1.8 0.6
    G. major 大型禾本粉 禾本科 2.8 0.6
    Juglanspollenitesrotundus 圆形胡桃粉 胡桃科 0.8 3.3 0.9 1.1
    J. tetraporus 四孔胡桃粉 胡桃科 1.7 0.7
    J. verus 真胡桃粉 胡桃科 1.3 2.0 1.8 1.1 0.7
    Lonicerapollis sp. 忍冬粉 忍冬科 0.2
    Meliaceoidites orbicularis 圆楝粉 楝科 1.3 2.5 2.0 0.9 1.7
    Momipitescoryloides 拟榛莫米粉 胡桃科 1.9 2.0 1.8 1.1
    M. polanulatus 极环莫米粉 胡桃科 0.9
    M. tenuipolus 薄极莫米粉 胡桃科 4.0 1.2
    M. triradiatus 三射莫米粉 胡桃科 4.5 0.9 7.5 2.5
    M. spp. 莫米粉 胡桃科 8.8 17.0 1.7
    Moraceoipollenites sp. 桑粉 桑科 0.3
    Nanlingpollisrhombiformis 菱形南岭粉 伞形科 0.9 11.8 4.7 2.5
    Nyssapollenitesanalepticus 待壮紫树粉 珙桐科 0.5
    N. commixtus 混合紫树粉 珙桐科 1.3 4.9 2.7 2.9 1.9
    N. pseudolaesus 极面紫树粉 珙桐科 2.7 3.4
    Paraalnipollenites sp. 异常桤木粉 桦木科 0.9
    Pokrovskajaoriginalis 坡氏粉 蒺藜科白刺属 5.1 5.6 1.6 0.9 1.4
    Qinghaipollis elegans 青海粉 伞形科 1.1
    Quercoidites cf. densu 致密栎粉(比较种) 山毛榉科 0.6 1.1 1.4
    Q. microhenrici 小亨氏栎粉 山毛榉科 1.3 1.9
    Ranunculaciditeshailongjingensis 海龙井毛茛粉 毛茛科 1.6 1.8 0.5
    R. vulgaris 平常毛茛粉 毛茛科 0.6 2.5
    R. sp. 毛茛粉 毛茛科 0.6 2.0 2.8 1.7 0.7
    Rhoipitesqaidamensis 柴达木漆树粉 漆树科 0.9
    Rutaceoipollenitesoblatus 扁圆芸香粉 芸香科 1.9 2.4 2.0 2.8 2.7
    Rutaceoipollis sp. 芸香粉 芸香科 1.0 2.8 2.5 1.8
    Salixipollenites elegans 锦致柳粉 杨柳科柳属 0.8
    S. pseudoporites 假孔柳粉 杨柳科柳属 1.8
    Sapindaceiditesmicrorugosus 细波无患子粉 无患子科 0.9 1.6
    Tiliaepollenites sp. 椴粉 椴科 0.9 0.5
    Tricolpopollenitespsilatus 光三沟粉 0.3 0.8
    Tricolporopollenites spp. 三孔沟粉 3.9 5.7 0.9
    Tubulifloriditesminispinulosus 微刺管花菊粉 菊科管花菊族 2.4 2.6
    T. minumus 微小管花菊粉 菊科管花菊族 1.1 1.7
    Ulmipollenitesgranulatus 粒纹榆粉 榆科 1.3 0.9 6.9 0.9
    U. rotundatus 圆形榆粉 榆科 0.9 2.9 2.8 4.1 4.5 2.9 0.7
    U. triangulatus 三角榆粉 榆科 0.9 2.5
    Ulmoideipiteskrempii 克氏脊榆粉 榆科 1.5 0.8 2.0 0.9 2.5 1.8
    U. planeraeformis 刺榆型脊榆粉 榆科 1.9
    U. tricostatus 三肋脊榆粉 榆科 1.9 1.0
    Umbelliferaepitesminutus 小拟伞形粉 伞形科 11.5 9.0 4.1 1.0 13.2 12.5
    U. sp. 拟伞形粉 伞形科 1.3 0.9 2.0 2.7
    Vaclavipollis radiatus 辐射法克拉维粉 石竹科 1.9 4.9 0.5
    不能鉴定的孢粉 1.3 2.9 1.7 0.5
    鉴定孢粉数量/粒 157 324 123 102 106 122 110 174 416
    下载: 导出CSV 
    | 显示表格
    图  3  青藏高原东北缘北联池剖面清水营组蕨类、裸子和被子植物主要孢粉类型
    1—三角孢;2—莱蕨孢;3—水龙骨单缝孢;4—凤尾蕨孢;5—环圈克拉梭粉;6—苏铁粉;7—小银杏粉;8—槭粉;9—拟桦粉;10—褶皱肋桦粉;11—普通蒿粉;12—圆形枥粉;13—四孔枥粉;14—短三沟粉;15—纤细拟菊苣粉;16—小孔栗粉;17—小孔藜粉;18—多坑藜粉;19—小十字花粉;20—西里拉粉;21—胡颓子粉;22—小黄杞粉;23—双束松粉;24—许里兹莎草粉;25—平凡山毛榉粉;26—华美高腾粉
    Figure  3.  Photomicrographs of selected spore-pollen from the Qingshuiying Formation in the Beilianchi section, northeastern margin of the Tibetan Plateau
    (1) Deltoidospora sp.; (2) Leptolepidites sp.; (3) Polypodiaceaesporites sp.; (4) Pterisisporites sp.; (5) Classopollis annulatus; (6) Cycadopites cycadoides; (7) Ginkgoretectina minor; (8) Aceripollenites sp.; (9) Betulaceoipollenites bituitus; (10) Betulaepollenites plicoides; (11) Artemisiaepollenites communis; (12) Carpinipites orbicularis; (13) Carpinipites tetraporus; (14) Brecolpites sp.; (15) Cichorieacidites gracilis; (16) Cupuliferoipollenites minitrimatus; (17) Chenopodipollis microporatus; (18) Chenopodipollis multiplex; (19) Cruciferaeipites minor; (20) Cyrillaceaepollenites megaexactus; (21) Elaeangnacites sp.; (22) Engelhardtioidites levis; (23) Pinuspollenites sp.; (24) Cyperaceaepolliss cholitzensis; (25) Faguspollenites mediocris; (26) Gothanipollis elegans
    图  4  青藏高原东北缘北联池剖面清水营组被子植物主要孢粉类型
    1—卵形梣粉;2—纤弱禾本粉;3—唇形三沟粉;4—圆形胡桃粉;5—大型禾本粉;6—真胡桃粉; 7—圆楝粉;8—三射莫米粉;9—拟榛莫米粉;10—薄极莫米粉;11—菱形南岭粉;12—桑粉;13—极面紫树粉;14—异常桤木粉;15—混合紫树粉;16—海龙井毛茛粉;17—坡氏粉;18—致密栎粉(比较种);19—小亨氏栎粉;20—青海粉;21—柴达木漆树粉;22—细波无患子粉;23—平常毛茛粉;24—芸香粉;25—锦致柳粉;26—假孔柳粉;27—扁圆芸香粉;28—椴粉;29—微刺管花菊粉;30—圆形榆粉;31—刺榆型脊榆粉;32—三肋脊榆粉;33、34—小拟伞形粉
    Figure  4.  Photomicrographs of selected spore-pollen from the Qingshuiying Formation in the Beilianchi section, northeastern margin of the Tibetan Plateau
    (1) Fraxinoipollenites ovatus; (2) Graminidites gracilis; (3) Labitricolpites stenosus; (4) Juglanspollenite srotundus; (5) Graminidites major; (6) Juglanspollenites verus; (7) Meliaceoidites orbicularis; (8) Momipites triradiatus; (9) Momipites coryloides; (10) Momipites tenuipolus; (11) Nanlingpollis rhombiformis; (12) Moraceoipollenites sp.; (13) Nyssapollenites pseudolaesus; (14) Paraalnipollenites sp.; (15) Nyssapollenites commixtus; (16) Ranunculacidites hailongjingensis; (17) Pokrovskajaoriginalis; (18) Quercoidites cf. densus; (19) Quercoidites microhenrici; (20) Qinghaipollis elegans; (21) Rhoipites qaidamensis; (22) Sapindaceidites microrugosus; (23) Ranunculacidites vulgaris; (24) Rutaceoipollis sp.; (25) Salixipollenites elegans; (26) Salixipollenites pseudoporites; (27) Rutaceoipollenites oblatus; (28) Tiliaepollenites sp.; (29) Tubulifloridites inispinulosus; (30) Ulmipollenites rotundatus; (31) Ulmoideipites planeraeformis; (32) Ulmoideipites tricostatus; (33 and 34) Umbelliferaepites minutus
    图  5  青藏高原东北缘北联池剖面清水营组被子植物主要孢粉类型百分比图谱
    Figure  5.  Selected sporopollen percentage diagram from the Qingshuiying Formation of the Beilianchi section, northeastern margin of the Tibetan Plateau

    实验共鉴定出孢粉类型60属65种,其中有蕨类植物孢子(5属)、裸子植物花粉(6属3种)和被子植物花粉(49属62种)。蕨类植物孢子仅发现5属,主要有Deltoidospora sp.、Leptolepidites sp.、Lygodioisporites sp.、Polypodiaceaesporites sp.和Pterisisporites sp.。裸子植物花粉发现6属3种,主要包括Abiespollenites sp.、ClassopollisannulatusCycadopitescycadoidesGinkgoretectina minorKeteleeriaepollenites sp.和Pinuspollenites sp.。被子植物花粉发现49属62种,主要包括Aceripollenites sp.、Alnipollenites metaplasmusArtemisiaepollenites communisBetulaceoipollenites bituitusB. prominensBetulaepollenites claripitesB. microrugususB. plicoidesBrevitricolpites sp.、Carpinipites orbicularisC. spackmaniiC. tetraporusCaryophyllidites sp.、ChenopodipollismicroporatusC. multiplexCichorieacidites gracilisCruciferaeipites minorCupuliferoipollenites minitrimatusC. pusillusCyperaceaepollis scholitzensisC.sp、Cyrillaceaepollenites megaexactusEchiperiporites sp.、Echitricolporites microechinatusElaeangnacites sp.、Engelhardtioidites levisFaguspollenites changheensisF. mediocrisFraxinoipollenites ovatusF. sp.、Gothanipollis elegansGraminidites gracilisG. majorJuglanspollenites rotundusJ. tetraporusJ. verusLabitricolpites stenosusLonicerapollis sp.、Meliaceoidites orbicularisMomipites coryloidesM. polanulatusM. tenuipolusM. triradiatusM. spp.、Moraceoipollenites sp.、Nanlingpollis rhombiformisNyssapollenites analepticusN. commixtusN. pseudolaesusParaalnipollenites sp.、PokrovskajaoriginalisQinghaipollis elegansQuercoidites cf. densuQ. microhenriciRanunculacidites hailongjingensisR. vulgarisR. sp.、RhoipitesqaidamensisRutaceoipollenites oblatusRutaceoipollis sp.、Salixipollenites elegansS. pseudoporitesSapindaceidites microrugosusTiliaepollenites sp.、Tricolpopollenites psilatusTricolporopollenites spp.、Tubulifloridites grandisT. minispinulosusT. minumusUlmipollenites granulatusU. rotundatusU. triangulatusUlmoideipites krempiiU. planeraeformisU. tricostatusUmbelliferaepites minutusU. sp.、Vaclavipollis radiatusZelkavaepollenites sp.。

    清水营组的孢粉组合是以被子植物花粉(95.3%~99.7%)为主,蕨类孢子(0~3.8%)和裸子植物花粉(0~1.9%)仅占少量。被子植物花粉中,以具孔类为主,包括桦木科(17.9%~72.4%)、胡桃科(0.8%~24.5%)及榆科(0.7%~12.7%)等木本植物花粉,以及一定量的三孔沟或三沟类花粉。

    孢粉组合中,ArtemisiaepollenitesCarpinipitesUmbelliferaepites含量最为丰富,MomipitesEngelhardtioiditesUlmipollenitesUlmoideipites含量也较高,其他属种含量较少。该孢粉组合中的这些分子均为国内外渐新世常见分子。如桦木科Carpinipites植物为泛北极分子,广泛见于世界各地古近纪中晚期,尤以晚期渐新世最为繁盛(青海石油管理局勘探开发研究院和中国科学院南京地质古生物研究所,1985)。张一勇(1990)总结已有研究资料认为,晚始新世之后胡桃科花粉表现出现代性。在该孢粉组合中,胡桃科中含量较高的是MomipitesEngelhardtioidites。胡桃科中,一般MomipitesCoryloides在地质时期延续时间较长,从古新世一直延续到中新世,古近纪中、晚期曾广泛分布于世界各地,尤以渐新世最为鼎盛(张一勇,1990)。UlmipollenitesUlmoideipites的地质时代是晚白垩世晚期—古近纪,为苏联、北美及南亚等地区古新世—始新世中的常见种,繁盛于古新世。UlmipollenitesUlmoideipites是华南地区古新世的优势分子,在始新世和渐新世也为常见分子。该孢粉组合中还出现了为数不多但种类繁多的热带—亚热带植物的被子植物花粉,如MeliaceoiditesMeliaceoidites在中国北方多分布于始新世和渐新世,Meliaceoidites见于渤海沿岸渐新世沙河街组(陶明华等,2001)和江苏晚渐新世三垛组二段(王宪曾等,1979)。清水营组的孢粉化石在同心县贺家口子剖面以Ephedripites(麻黄粉)、Meliacoidites(楝粉)、Ulmipollenites(榆粉)和Pinuspollenites(双束松粉)等为主(孙素英,1982宁夏回族自治区地质矿产局,1990),海原县红沟梁剖面的孢粉组合为Ephedripites(麻黄粉)−Nitrariadites(白刺粉)−Chenopodipollis(藜粉)−Quercoidites(栎粉)(宁夏回族自治区地质调查院,2017),隆德县观音店剖面产Chenopodipollis(藜粉)、Ephedripites(麻黄粉)、Pinuspollenites(双束松粉)和Betulaceoipollenites(拟桦粉)(宁夏回族自治区地质调查院,2017),鉴定该清水营组沉积时代属于渐新世。银川盆地北部灵武地区清水营组产脊椎动物化石CyclomyluslohensisIndricotheriumgrangeriArchaeotheriumordosius,认为该区的清水营组为渐新世(宁夏回族自治区地质调查院,2017)。王伴月等(1994)研究清水营组中的哺乳动物化石确定时代为渐新世中—晚期。草本植物菊科Artemisiaepollenites和伞形科Umbelliferaepites有一定含量,藜科Chenopodipollis、禾本科Graminidites和莎草科Cyperaceaepollis花粉等仅个别出现。菊科、伞形科、藜科、禾本科及莎草科等草本植物在地史中均出现较晚,一般多始现于古近纪,至新近纪才比较繁盛。菊科花粉一般出现于古近纪晚期,在渐新世少量出现,直至中新世才在世界各地普遍分布。一般认为藜科出现于早始新世,莎草科花粉最早的花粉化石发现于始新世中期,但在新近纪才有较大的发展。

    同心县马断头−丁家二沟剖面的清水营组孢粉属种类型与文中比较类似,确定其地质时代为渐新世—中新世早期(宁夏回族自治区地质调查院,2017)。该组合与青海民和盆地晚渐新世—早中新世谢家组孢粉组合可以对比,其孢粉组合特征整体表现为被子植物占优势,以楝粉和栎粉为主要成分,还有桦木科、榆科;草本植物花粉以藜科花粉为主,热带—亚热带分子有少量(孙秀玉等,1984)。最上部样品中热带—亚热带分子明显增多,指示了气候有明显转暖的趋势,时代可能为早中新世沉积。宁夏寺口子剖面清水营组顶部古地磁测得的年龄为16.8 Ma,属于早中新世(王伟涛,2012王伟涛等,2013)。宁夏隆德观音店剖面清水营组上部碎屑锆石年龄表明其沉积时代应晚于17.8 Ma(寇琳琳等,2021)。综合分析,清水营组的地质时代属于中晚渐新世—中新世早期。

    古近系清水营组在青藏高原东北缘分布广泛,总体上为一套代表干旱咸化湖盆环境的碎屑岩沉积,以发育大量石膏夹层为特征(宁夏回族自治区地质调查院,2017)。有机地球化学分析表明,清水营组泥岩中的有机质类型主要为湖相还原环境中的藻类有机质(徐清海等,2023)。微量元素V、Cr、U和Ni以及V/(V+Ni)的值都反映出清水营组沉积时期为贫氧,水体相对较深的还原环境(潘进礼等,2022)。B/Ga比值高达7.6,指示水体为高含盐度的咸水环境,气候干旱炎热,SiO2–(Al2O3+K2O+Na2O)双变量图解投点均位于相对干旱的气候区域(李明涛等,2020潘进礼等,2022)。六盘山东侧寺口子剖面清水营组沉积物色度、磁化率和总有机碳综合分析表明,色度指标红度缓慢上升,黄度、亮度指标以及磁化率和总有机碳指标均处于低值,湿润指数较高,指示了区域上温暖湿润的气候环境,但已经开始有变冷变干的趋势(Jiang et al., 2008Jiang and Ding, 2008肖霖等,2019)。结合现有研究中对沉积特征以及有机碳、微量元素、色度指标、磁化率、总有机碳的综合分析,青藏高原东北缘清水营组沉积时期总体上属于干旱湖盆的沉积环境,气候温暖湿润但却有波动,特别是在清水营组沉积末期气候已有变冷变干的趋势。

    根据孢粉组合特征,青藏高原东北缘六盘山地区北联池剖面清水营组孢粉植物群以被子植物桦木科、胡桃科和榆科等落叶阔叶植物为主,组合中还出现了数量不多但种类繁多的热带—亚热带植物的花粉,草本植物花粉也较丰富;裸子植物花粉和蕨类植物花粉含量很少。该组合中耐寒山地针叶植物花粉偶见。根据青藏高原及邻区渐新世地层中孢粉组合的研究认为渐新世总体上亚热带、热带植物成分的丰度和分异度都降低,温带植物如桦木科和榆科花粉大增,耐寒山地针叶植物大量发育,干旱类型草本植物增加,预示着青藏高原隆升对区域气候环境的影响(吴珍汉等,2006苗运法等,2008)。在北联池剖面沉积时期的古植被以桦木科、胡桃科和榆科等落叶阔叶被子植物为主,这些花粉含量高表明这一时期的气候是较温凉湿润的,但还含有数量不多但种类繁多的热带—亚热带植物的花粉,如NyssapollenitesMeliaceoidites等,说明气候还是比较温和的。清水营组的孢粉组合中,草本植物伞形科花粉含量高,伞形科是热带—亚热带分子,而典型干旱植物分子麻黄科和藜科花粉含量少,个别样品中蒺藜科Pokrovskaja含量稍高,指示样品所在层位沉积时的气候并不干旱。北联池剖面清水营组的孢粉组合总体反映了温和较湿的气候,主要为暖温带的环境。在青藏高原东北缘弧形构造带前缘的丁家二沟剖面、同心剖面清水营组孢粉相对比较丰富,在不同的剖面虽有一定的差异,总体上是以Ephedripites(麻黄粉)、Meliacoidites(楝粉)、Ulmipollenites(榆粉)和Pinuspollenites(双束松粉)等为主,反应了相对干热的气候背景,特别是缺少耐寒的山地针叶林植物(孙素英,1982宁夏回族自治区地质矿产局,1990)。在青藏高原后缘的六盘山以西地区,现有研究仅在隆德剖面做过相关的孢粉鉴定工作,从发现的少量孢粉来看主要为Chenopodipollis(藜粉)、Ephedripites(麻黄粉)、Pinuspollenites(双束松粉)和Betulaceoipollenites(拟桦粉),未见到耐寒的山地针叶林植物(宁夏回族自治区地质调查院,2017)。综合青藏高原东北缘弧形构造带不同剖面的清水营组孢粉组合特征分析,孢粉组合是以桦木科、胡桃科和榆科等为主的温带落叶阔叶林,主要生长在低山或丘陵地区,与温带成分一起还出现了紫树科和楝科等少量的热带、亚热带成分,说明地势低洼地区为落叶阔叶林中杂生有热带—亚热带分子,林下生长着少量的灌木和草本植物,根据该孢粉组合特征推测当时气候温和湿润,属暖温带类型。根据区域资料研究表明,青藏高原向北东方向隆升扩展的时限为10~8 Ma(Shi et al., 2020),孢粉资料综合分析认为清水营组的沉积时代为中晚渐新世—中新世早期,此时在六盘山东西两侧均未出现耐寒的针叶林植物,也就说明在清水营组沉积时期,青藏高原向北东方向的推挤作用尚未影响到六盘山地区,区域气候环境并未发生由暖湿向寒冷的明显变化。

    (1)以北联池剖面清水营组孢粉组合特征为基础,结合区域不同剖面孢粉组合特征综合分析认为,清水营组沉积的地质时代属于中晚渐新世—中新世早期。

    (2)青藏高原东北缘六盘山以西的北联池清水营组剖面,孢粉组合特征总体以被子植物花粉占绝对优势,裸子植物花粉和蕨类植物花粉含量很少,表明这一时期的气候特征属于较温和湿润的气候环境。

    (3)清水营组沉积时期,青藏高原东北缘弧形构造带不同剖面的孢粉组合中几乎不见耐寒山地针叶植物花粉的出现,说明区域气候环境相对稳定,尚未发生由暖转冷的重大变化,青藏高原向东北方向的隆升扩展尚未影响到六盘山地区。

  • 图  1  浏阳−德兴−歙县一带蛇绿岩片与构造岩片分布略图(据杨明桂等,2015修改)

    a—下南华统漫田岩片;b—南华系—寒武系广寒寨岩片;c—下南华统—青白口系上统白土混杂岩块;d—下南华统乌石岩片;e—震旦系黄马岩片;f—何坊−杨溪登山群混杂岩片;g—中元古界铁沙街岩片;①—凭祥−歙县−苏州结合带;②—赣东北深断裂带;③—上饶−萧山深断裂带;④—北海−萍乡−绍兴深断裂带;⑤—石耳山走滑断裂带

    Figure  1.  Distribution of ophiolite and tectonic slices in the Liuyang–Dexing–Shexian area (modified from Yang et al., 2015)

    (a) Mantian sheet rocks of the lower Nanhua System; (b) Guanghanzhai sheet rocks of the Nanhua System; (c) Baitu mélange rock blocks of the lower Nanhua System–upper Qingbaikou system; (d) Wushi sheet rocks of the lower Nanhua System; (e) Huangma sheet rocks of the Sinian system; (f) Mélange sheet rocks of the Hefang–Yangxidengshan Group ; (g) Mesoproterozoic Tieshajie sheet rocks; ①–Pingxiang–Shexian–Suzhou junction zone; ②–Deep fault belt in the northeast of Jiangxi; ③–Shangrao–Xiaoshan deep fault belt; ④–Beihai–Pingxiang–Shaoxing deep fault belt; ⑤–Shiershan strike-slip fault belt

    图  2  万载兴源冲矿区推覆构造剖面图

    C2h—上石炭统黄龙组;Pt3 1 y2-1—新元古代宜丰蛇绿混杂岩片;Qb1 2S—青白口系上统下部双桥山群1—逆冲断裂;2—铜矿体;3—钻孔位置及编号

    Figure  2.  Profile of the nappe structure in the Xingyuanchong mining area, Wanzai

    C2h–Upper Carboniferous Huanglong formation; Pt1 3 y2-1–New Proterozoic ophiolitic mélange sheet rock ; Qb1 2S–Shuangqiaoshan Group in the bottom of the upper Qingbaikou system 1reverse faults; 2–copper ore body; 3–borehole locations and their numbers

    图  3  钦杭华南洋潜没带与邻区构造分区略图(杨明桂等,2015

    蛇绿岩带:①歙县伏川;②德兴−弋阳;③浏阳文家市A—凭祥−歙县−苏州结合带;B—北海−萍乡−绍兴断裂带;Ⅰ—扬子板块;Ⅰ1—中下扬子地块;Ⅰ2—南华造山系湘桂造山带;Ⅱ—华夏−东南亚板块;Ⅱ1—华南洋潜没带;Ⅱ1 1—信江−钱塘地块;Ⅱ2 1—广丰地块;Ⅱ3 1—万年推覆地体上叠萍乡−乐平坳陷带;Ⅱ4 1—湘东坳陷带;Ⅱ5 1—钦州华力西−印支造山带;Ⅱ2—华南造山系东南造山带

    Figure  3.  Structural zoning of the Qinhang South China Ocean subduction zone and adjacent areas (Yang et al., 2015)

    Ophiolite belts: ① Fuchuan, Shexian County; ② Dexing–Yiyang; ③ Wenjia, Liuyang City A–Pingxiang–Shexian–Suzhou juction zone; B–Beihai–Pingxiang–Shaoxing fault belt; Ⅰ–Yangtze plate; Ⅰ1–Middle-lower Yangtze Block; Ⅰ2– Xianggui orogenic belt of the Nanhua orogenic system; Ⅱ–Cathaysia–Southeast Asia plate; Ⅱ1–South China Ocean subduction zone; Ⅱ1 1-Xinjiang–Qiantang plot; Ⅱ2 1–Guangfeng plot; Ⅱ3 1–Wannian nappe (bottom) and Pingxiang–Leping depression zone (upper); Ⅱ4 1-Xiangdong depression zone; Ⅱ5 1–Qinzhou Variscan–Indochina orogenic belt; Ⅱ2– Southeast orogenic belt of South China orogenic system

    图  4  浙皖赣青白口纪晚世晚期华南裂谷系示意图(据杨明桂等,2015修改)

    ①—陆相火山盆地;②—枕状玄武岩;③—次深海含火山沉积浊积岩;④—浅海双峰式火山岩;⑤—水下裂陷华夏陆块;Cu—含铜火山沉积

    Figure  4.  Schematic sketch for the late South China Rift Valley of the late Qingbaikou in Zhejiang–Anhui–Jiangxi (modified from Yang et al., 2015)

    ①–continental volcanic basin; ②–pillow basalt; ③–bathyal turbidite with volcanic deposition; ④– bimodal volcanic rocks of shallow sea; ⑤– Cathaysia block rifted under water; Cu–copper-bearing volcanic deposits

    图  5  加里东造山期江西中部对冲构造示意图(据江西省地质矿产勘查开发局,2017修改)

    1—蛇绿岩;2—不整合面;3—正断裂;4—逆冲推覆断裂带Nh−Pz1—南华系—下古生界;Qb2 2—青白口系上部;Qb2 2−Pz1—青白口系上部—下古生界;Qb1 2S—青白口系下部双桥山群;Qb1 2W—青白口系下部万年群;Pt2ts—中元古界铁沙街岩片;Pt2-3—推测的叠覆扬子陆缘中新元古界岛弧沉积;Pt2-3ψ—中新元古界张村蛇绿混杂岩;Pt2t—中元古界田里岩组;F1—凭祥−歙县−苏州板块结合带;F2—德兴−弋阳(赣东北)深断裂带;F3—萍乡−绍兴深断裂带

    Figure  5.  Schematic diagram of the thrust structure in central Jiangxi province during the Caledonian orogeny (modified fromJiangxi Bureau of Geology and Mineral Resources, 2017)

    1–ophiolite; 2–plane of unconformity; 3–positive fracture; 4–thrust-nappe fault zone Nh–Pz1–Nanhuan System–Lower Paleozoic; Qb2 2–upper Qingbaikou System; Qb2 2–Pz1–upper Qingbaikou System–lower Paleozoic; Qb1 2S–Shuangqiaoshan group of the lower Qingbaikou System; Qb1 2W–Wannian group of the lower Qingbaikou System; Pt2ts–Mesoproterozoic Tieshajie sheet rock; Pt2-3–the presumed Meso-Neoproterozoic island arc deposition overlaid on the Yangtze continental margin; Pt2-3ψ–Mes-Neoproterozoic Zhangcun ophiolitic mélange rock; Pt2t–Mesoproterozoic Tianliyan formation; F1–Pingxiang–Shexian–Suzhou junction zone; F2–Dexing–Yiyang (northeastern Jiangxi) deep fault belt; F3–Pingxiang–Shaoxing deep fault belt

    图  6  余干县石口−汪家燕山期逆冲推覆构造岩片堆叠与飞来峰构造略图(据江西省地质矿产勘查开发局,2017修改)

    J—侏罗系;C—石炭系;C—T-石炭系-三叠系;Qb1 2S—青白口系上统下部双桥山群;Qb1 2W—青白口系上统下部万年群;F—逆冲推覆断裂带

    Figure  6.  The stacking of thrust-nappe tectonic sheets and the structure of klippe during the Yanshanian period in the Shikou–Wangjia area, Yugan county (modified from Jiangxi Bureau of Geology and Mineral Resources, 2017)

    J–Jurassic; C–Carboniferous; C–T–Carboniferous–Triassic; Qb1 2S–Shuangqiaoshan group of the lower Qingbaikou System; Qb1 2W–Wannian group of the lower Qingbaikou System; F–thrust-nappe fault zones

    图  7  江南(雪峰段)隆起-沿海北西向剖面的岩石圈构造略图(据袁学诚,2007修改)

    1—壳内低速带;2—晚白垩世—古近纪红色盆地;3—晚古生代—早中生代坳陷;4—晚中生代火山盆地;5—岩石圈地幔硬块;6—断层

    Figure  7.  Lithospheric structure sketch of the Jiangnan uplift (Xuefeng segment)–coastal NW-section (modified from Yuan, 2007)

    1–low-velocity zone in the shell; 2–red basins of the late Cretaceous Epoch–Paleogene period; 3– depression of the upper Paleozoic–early Mesozoic; 4–late Mesozoic volcanic basins; 5–hard mass in lithospheric mantle; 6–faults

    图  8  中新元古代华南洋发展演化示意图(江西省地质矿产勘查开发局,2017

    ①扬子古元古代克拉通;②华夏古元古代克拉通;Pt3—新元古界下部;Pt2-3—中元古界—新元古界下部;Pt2—中元古界;φ—蛇绿岩套;γ—花岗岩;G—高压变质带;A—宜丰含铜蛇绿岩;B—德兴含金蛇绿岩;C—铁沙街−平水含铜火山建造;D—枕状熔岩细碧岩石英角斑岩建造a—华南洋弧盆结构;b—晋宁期造山构造

    Figure  8.  The development and evolution of the Meso-Neoproterozoic South China Ocean (Jiangxi Bureau of Geology and Mineral Resources, 2017)

    (a) The structure of the South China Ocean arc basin; (b) The Orogenic structure of the Jinning period①–Palaeoproterozoic Yangtze craton; ②–Palaeoproterozoic Cathaysia craton; Pt3–the lower Neoproterozoic; Pt2-3–the lower Meso-Neoproterozoic; Pt2–the Mesoproterozoic; φ–ophiolite suite; γ–granite; G–metamorphic belt by high pressure; A–Yifeng copper-bearing ophiolite; B–Dexing gold-bearing ophiolite; C–Tieshajie–Pingshui copper-bearing volcanic formation; D–pillow lava–spilite-quartz–keratophyre formation

    图  9  中新元古代华南洋陆缘地层分布图(杨明桂和王光辉,2020

    Pt3—新元古界(双桥山群、冷家溪群、溪口群上部、四堡群、梵净山群);Pt3W—新元古界万年群;Pt3S—新元古界双溪坞群;Pt3 p—新元古界平水组;Pt2—中元古界;1—新元古界深变质岩出露点;2—蛇绿岩片;3—晋宁期花岗岩;4—扬子东南陆缘枕状熔岩细碧岩石英角斑岩出露点

    Figure  9.  Stratigraphic distribution of the continental margin of the Meso-Neoproterozoic South China Ocean (Yang and Wang, 2020)

    Pt3–the Neoproterozoic (Shuangqiaoshan Group, Lengjiaxi Group, Upper Xikou Group, Sibao Group, Fanjingshan Group); Pt3W–Neoproterozoic Wannian Group; Pt3S–Neoproterozoic Shuangxiwu Group; Pt3p–Neoproterozoic Pingshui Formation; Pt2–the Mesoproterozoic; 1–the outcrops of Neoproterozoic deep metamorphic rocks; 2–ophiote sheet; 3–granite of the Jinningian period; 4–the outcrops of pillow lava–spilite–quartz-keratophyre in the southeast Yangtze continental margin

    图  10  金沙江−红河−歙县−苏州结合带中段相邻地区地质构造图(据任纪舜,2013修改)

    Figure  10.  Geological structural map of the adjacent areas in the middle section of the Jinsha River–Red River–Shexian–Suzhou junction zone (modified from Ren, 2013)

    图  11  华南洋与邻侧构造略图

    Figure  11.  Tectonic sketch of the South China Ocean and its adjacent side

    图  12  中国主要陆块在Rodinia超大陆汇聚过程中可能的位置(据陆松年,1998修改)

    Figure  12.  Possible positions of China’s main continental blocks during the convergence of the Rodinia supercontinent (modified from Lu, 1998)

    图  13  钦杭成矿带及邻侧地质矿产简图(据杨明桂和梅勇文,1997修改)

    1—走滑断裂带;2—逆冲推覆断裂带;3—主要矿田;4—断裂;5—钦杭成矿带南北分界线

    Figure  13.  Geological and mineral map of the Qinhang metallogenic belt and its adjacent areas(modified from Yang and Mei, 1997

    1–strike-slip fault belt; 2–thrust-nappe fault zone; 3–main ore fields; 4–fault; 5–north–south divide of the Qinzhou–Hangzhou metallogenic belt

    图  14  金沙江−红河成矿带主要内生金属矿床矿产分布图

    1—结合带;2—主要矿集区、矿田及编号;3—主要矿床;A—金沙江成矿带;B—红河成矿带矿集区、矿田:1—多彩Cu;2—赵卡隆Fe、Cu;3—俄支Sn、Au、Cu;4—足那−包买Pb、Zn;5—加多岭Fe、Pb、Zn;6—玉龙Cu、Au;7—呷村Ag、Fe、Cu、Au;8—巴塘−义敦Ag、Sn;9—普朗Cu;10—马厂菁铂金;11—个旧Sn、Cu、Pb、Zn、W;12—大坪−长安Au、Ni;13—永安(越南)W、Bi、Sn

    Figure  14.  Mineral distribution map of the main endogenous metal deposits in the Jinsha River–Hong River metallogenic belt

    1–junction zone; 2–main ore concentration areas, ore fields and their numbers; 3–main deposits; A–Jinshajiang metallogenic belt; B–Honghe metallogenic belt Ore concentration areas and ore fields: 1–Duocai (Cu); 2–Zhaokalong (Fe and Cu); 3–Ezhi (Sn, Au, and Cu); 4–Zuna–Baomai (Pb and Zn); 5–Jiaduoling (Fe, Pb, and Zn); 6–Yulong (Cu and Au); 7–Gacun (Ag, Fe, Cu, and Au); 8–Batang–Yidun (Ag and Sn); 9–Pulang (Cu); 10–Machangjing (Pt); 11–Gejiu (Sn, Cu, Pb, Zn, and W); 12–Daping–Chang’an (Au and Ni); 13–Yong’an (in Vietnam) (W, Bi, and Sn)

  • BAI D Y, XIONG X, YANG J, et al. , 2014. Geological structure characteristics of the middle segment of the Xuefeng orogen[J]. Geology in China, 41(2): 399-418. (in Chinese with English abstract)
    BAI W J, GAN Q G, YANG J S, et al. , 1986. Discovery of well-reserved ophiolite and its basical characters in southeastern margin of the Jiangnan ancient continent[J]. Acta Petrologica et Mineralogica, 5(4): 289-299. (in Chinese with English abstract)
    CHEN G D. 1956. Examples of "activizing region" in the Chinese platform with special reference to the "Cathaysla" problem[J]. Acta Geological Sinica, (03): 239-271. (in Chinese with English abstract)
    CAWOOD P A, ZHAO G C, YAO J L, et al. , 2017. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 186: 173-194.
    CHEN R S, 2018. Progress and direction of research on the basic geological survey in Fujian province[J]. Geology of Fujian, 37(2): 83-108. (in Chinese with English abstract)
    CHEN Y C, WANG D H, XU Z G, et al. , 2015. Important mineral and regional metallogenic regularity in China[M]. Beijing: Geology Press. (in Chinese)
    CHENG Y Q, 1994. Introduction to regional geology in China[M]. Beijing: Geology Press: 327-458. (in Chinese)
    DENG J, LI W C, MO X X, et al. , 2016. Sanjiang Tethys composite orogenic belt and mineralization[M]. Beijing: Science Press. (in Chinese)
    DING B H, SHI R D, ZHI X C, et al. , 2008. Neoproterozoic (~850 Ma) subduction in the Jiangnan orogen: evidence from the SHRIMP U-Pb dating of the SSZ-type ophiolite in southern Anhui Province[J]. Acta Petrologica et Mineralogica, 27(5): 375-388. (in Chinese with English abstract)
    Fujian Institute of Geological Survey, 2016. China regional Geology·Fujian chronicle[M]. Beijing: Geology Press. (in Chinese)
    GAO L Z, YANG M G, DING X Z, et al. , 2008. SHRIMP U-Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen groups in South China: constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt[J]. Geological Bulletin of China, 27(10): 1744-1751. (in Chinese with English abstract)
    GAO L Z, DING X Z, CAO Q, et al. , 2010. New Geological time scale of Late Precambrian in China and geochronology[J]. Geology in China, 37(4): 1014-1020. (in Chinese with English abstract)
    GAO L Z, DING X Z, LIU Y X, et al. , 2013b. The revision of the Chentangwu Formation in Neoproterozoic stratigraphic column: Constraints on zircon U-Pb dating of tuff from the Mengshan section in Pujiang County, Zhejiang Province[J]. Geological Bulletin of China, 32(7): 988-995. (in Chinese with English abstract)
    GAO L Z, LU J P, DING X Z, et al. , 2013a. Zircon U-Pb dating of Neoproterozoic tuff in South Gaungxi and its implications for stratigraphic correlation[J]. Geology in China, 40(5): 1443-1452. (in Chinese with English abstract)
    GAO L Z, CHEN J S, DAI C G, et al. , 2014a. SHRIMP zircon U-Pb dating of tuff in Fanjingshan Group and Xiajiang Group from Guizhou and Hunan Provinces and its stratigraphic implications[J]. Geological Bulletin of China, 33(7): 949-959. (in Chinese with English abstract)
    GAO L Z, ZHANG H, DING X Z, et al. , 2014b. SHRIMP zircon U-Pb dating of the Jiangshan-Shaoxing faulted zone in Zhejiang and Jiangxi[J]. Geological Bulletin of China, 33(6): 763-775. (in Chinese with English abstract)
    GE X H, MA W P, 2014. China regional tectonics courses[M]. Beijing: Geology Press: 216-385. (in Chinese)
    Guangxi Zhuang Autonomous Region Geology and Mineral Bureau, 1985. Regional geology of Guangxi Zhuang autonomous region[M]. Beijing: Geology Press. (in Chinese)
    GUO L Z, SHI Y S, MA R S, et al. , 1980. Tectonic lattice and crustal evolution in South China [J]. Proceedings of the International Exchange of Geology (I), 1-89(in Chinese with English abstract)
    Hainan Provincial Geological Survey Institute, 2017. Regional geology·of China Hannan chronicle[M]. Beijing: Geology Press. (in Chinese)
    HU S L, ZOU H B, ZHOU X M, 1992. The 40Ar/39Ar age of the Proterozoic collision orogenic belt in Jiangnan[J]. Chinese Science Bulletin, 37(3): 286-290. (in Chinese) doi: 10.1360/csb1992-37-3-286
    HUANG C H, 2017. U-Pb isotopic ages of zircon from Yuli Belt in Taiwan and its geological significance[J]. Geological Bulletin of China, 36(10): 1722-1739. (in Chinese with English abstract)
    HUANG C K, 2004. 1: 2.5 million geological maps and instructions of the People's Republic of China[M]. Xi’an: China Cartographic Publishing House. (in Chinese)
    Hunan Geological Survey Institute, 2017. Regional geology of China·Hunan chronicle[M]. Beijing: Geology Press. (in Chinese)
    Institute of Geology, Chinese Academy of Geological Sciences, 2006. Geological map of western China and its adjacent areas[M]. Beijing: Geology Press. (in Chinese)
    JIA B H, PENG H Q, TANG X S, et al. , 2004. Discovery of the Wenjiashi ophiolitic melange belt in northeastern Hunan and its implications[J]. Geoscience, 18(2): 229-236. (in Chinese with English abstract)
    Jiangxi Bureau of Geology and Mineral Resources, 2015. Geology of mineral resources in China volume of Jiangxi[M]. Beijing: Geology Press. (in Chinese with English abstract)
    Jiangxi Bureau of Geology and Mineral Resources, 2017. China regional Geology·Jiangxi chronicle[M]. Beijing: Geology Press. (in Chinese with English abstract)
    LI B L, JI J Q, FU X Y, et al. , 2008. Zircon SHRIMP dating and its geological implications of the metamorphic rocks in Ailao Shan-Diancang Mountain Ranges, west Yunnan[J]. Acta Petrologica Sinica, 24(10): 2322-2330. (in Chinese with English abstract)
    LI C Y, WANG F, LIU X Y, et al. , 1982. Explanatory notes to the tectonic map of Asia[M]. China Cartographic Publishing House. (in Chinese)
    LI J T, LIANG B, HE W J, et al. , 2016. Geological and tectonic evolution of the basement in the Qiangtang basin of northern Tibet: Evidence from detrital zircon U-Pb isotope chronology of sandstone in the Jurassic Yanshipin Group[J]. Geology in China, 43(4): 1216-1226. (in Chinese with English abstract)
    LI W C, PAN G T, HOU Z Q, et al. , 2010. Southwest "Three Rivers" Multi-island Arc Basin-collision orogenic metallogenic environment and exploration technology[M]. Beijing: Geology Press. (in Chinese)
    LI X H, ZHOU G Q, ZHAO J X, 1994. Shrimp ion microprobe zircon U-Pb age of the ne Jiangxi ophiolite and its tectonic implications[J]. Geochimica, 23(2): 125-131. (in Chinese with English abstract)
    LI X Z, JIANG X S, SUN Z M, et al. , 2002. Southwest Sanjiang area collision and mountain process[M]. Beijing: Geology Press: 1-206. (in Chinese)
    LI Z X, LI X H, ZHOU H W, et al. , 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia[J]. Geology, 30(2): 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
    LI Z X, LI X H, KINNY P D, et al. , 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122(1-4): 85-109. doi: 10.1016/S0301-9268(02)00208-5
    LI Z X, BOGDANOVA S V, COLLINS A S, et al. , 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 160(1-2): 179-210. doi: 10.1016/j.precamres.2007.04.021
    LIN S F, XING G F, DAVIS DW, et al. , 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 46(4): 319-322. doi: 10.1130/G39806.1
    LIU S S, YANG Y F, GUO L N, et al. , 2018. Tectonic characteristics and metallogeny in Southeast Asia[J]. Geology in China, 45(5): 863-889. (in Chinese with English abstract)
    LU S N, 1998. A review of advance in the research on the Neoproterozoic Rodinia supercontinent[J]. Geological Review, 44(5): 489-495. (in Chinese with English abstract)
    LU S N, LI H K, WANG H C, et al. , 2009. Detrital zircon population of Proterozoic meta-sedimentary strata in the Qinling-Qilian-Kunlun Orogen[J]. Acta Petrologica Sinica, 25(9): 2195-2208. (in Chinese with English abstract)
    MAO J W, CHEN M H, YUAN S D, et al. , 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 85(5): 636-358. (in Chinese with English abstract)
    MO X X, 2009. Qinghai-Tibet Plateau: Cenozoic collision-post-collision igneous rocks[M]. Beijing: Geology Press. (in Chinese)
    PAN G T, LI X Z, WANG L Q, et al. , 2002. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological Bulletin of China, 21(11): 701-707. (in Chinese with English abstract)
    PAN G T, XIAO Q H, YIN F G, et al. , 2017. The tectonics of China[M]. Beijing: Geology Press: 403-422. (in Chinese)
    REN J S, 2013. 1/1000000 International Geological Map of Asia [M]. Beijing: Geology Press. (in Chinese)
    SHA S L, LIU X L, YANG W L, et al. , 2017. Pan-African tectonic-thermal events recorded in Dali area, western Yunnan[J]. Geological Bulletin of China, 36(6): 928-932. (in Chinese with English abstract)
    SHI M F, LIN F C, LI X Z, et al. , 2011. Stratigraphic zoning and tectonic events in Indochina and adjacent areas of southwest China[J]. Geology in China, 38(5): 1244-1256. (in Chinese with English abstract)
    SHI M K, XIONG C Y, JIA D Y, et al. , 1993. Comprehensive prediction of non-ferrous metal concealed deposits in Guangxi, Guangdong and Jiangxi[M]. Beijing: Geology Press. (in Chinese)
    SHU L S, SHI Y S, GUO L Z, 1995. Plate-terrain structure and collision orogenic kinematics in the middle section of Jiangnan[M]. Nanjing: Nanjing University Press. (in Chinese)
    SHU L S, 2012. An analysis of princlpal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035-1053. (in Chinese with English abstract)
    SHUI T, XU B T, LIANG R H, et al. , 1988. Metamorphic basement geology in Zhejiang and Fujian, China[M]. Beijing: Science Press: 59-82. (in Chinese)
    WAN T F, 2004. Outline of Chinese geotectonics[M]. Beijing: Geology Press. (in Chinese)
    WAN T F, 2013. A new Asian tectonic unit map[J]. Geology in China, 40(5): 1351-1365. (in Chinese with English abstract)
    WAN Y S, LIU D Y, XU M H, et al. , 2007. SHRIMP U–Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units[J]. Gondwana Research, 12(1-2): 166-183. doi: 10.1016/j.gr.2006.10.016
    WANG Y, WANG D H, HUANG F, 2020. Geology of China's Minerals·China's mineral regions by province atlas[M]. Beijing: Geology Press. (in Chinese)
    WU L S, 2009. Geological structure and regional mineralization in the Socialist Republic of Vietnam[J]. Mineral Deposits, 28(5): 725-726. (in Chinese)
    XIONG S Q, YANG H, DING Y Y, et al. , 2018. Subdivision of tectonic units in China based on aeromagnetic data [J]. Geology in China, 45(04): 658-680. (in Chinese with English abstract)
    XU B, GUO L Z, SHI Y S, 1992. Proterozoic terrain and multi-stage collision orogenic belt in Anhui, Zhejiang and Jiangxi[M]. Beijing: Geology Press: 1-112. (in Chinese)
    XU D M, LIN Z Y, LUO X Q, et al. , 2015. Metallogenetic series of major metallic deposits in the Qinzhou-Hangzhou metallogenic belt[J]. Earth Science Frontiers, 22(2): 7-24. (in Chinese with English abstract)
    XU Z Q, YANG J S, HOU Z Q, et al. , 2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China, 43(1): 1-42. (in Chinese with English abstract)
    YANG M G, MEI Y W, 1997. Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture[J]. Geology and Mineral Resources of South China(3): 52-59. (in Chinese with English abstract)
    YANG M G, MEI Y W, ZHOU Z Y, et al. , 1998. Metallogenic Regularity and Prediction of Luoxiao - Wuyi uplift and Shangrao-Chenzhou depression[M]. Beijing: Geological Publishing House. (in Chinese)
    YANG M G, HUANG S B, LOU F S, et al. , 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area[J]. Geology in China, 36(3): 528-543. (in Chinese with English abstract)
    YANG M G, ZHU P J, XIONG Q H, et al. , 2012a. Framework and evolution of the neoproterozoic-early paleozoic south-China rift system[J]. Acta Geologica Sinica, 86(9): 1367-1375. (in Chinese with English abstract)
    YANG M G, LV X X, HUANG Y, et al. , 2012b. The correlation of geological structures across the Taiwan strait[Z]. New Progress in Jiangxi Geology. Nanchang: Jiangxi Science and Technology Press. (in Chinese with English abstract)
    YANG M G, WU F J, SONG Z R, et al. , 2015. North Jiangxi: a geological window of south China[J]. Acta Geologica Sinica, 89(2): 222-233. (in Chinese with English abstract)
    YANG M G, WANG G H, 2020. Core-mantle-type extensional mode and dynamic mechanism of the magmatic metallogenic explosion of the Yanshanian in the Cathaysian metallogenic province[J]. Journal of Geomechanics, 26(1): 1-12. (in Chinese with English abstract)
    YANG M G, YU Z Z, TANG W X, et al. , 2021. South China ocean-coastal pacific tectonic evolution and mineralization[M]. Beijing: Geology Press. (in Chinese)
    YAO J L, SHU L S. 2014. Precambrian crust evolution in South China [C]. 2014 China Earth Sciences Joint Annual Conference (Topic 49): Proceedings of the Tectonic Structure of the South China Continent, 7. (in Chinese)
    YU G S, XIAO K C, 1985. Discussion on the existence of the ancient ophiolite belt in northeastern Jiangxi and its geological structure significance[J]. Geology of Jiangxi(1-2): 39-50. (in Chinese with English abstract)
    YUAN X C, 2007. Mushroom structure of the lithospheric mantle and its genesis at depth: revisited[J]. Geology in China, 34(5): 737-758. (in Chinese with English abstract)
    ZENG Y, YANG M G, 1999. Central Jiangxi collision melange zone[J]. Regional Geology of China, 18(1): 17-22. (in Chinese with English abstract)
    ZHANG G W, GUO A L, WANG Y J, et al. , 2013. Tectonics of South China continent and its implications[J]. Science China Earth Sciences, 56(11): 1804-1828. doi: 10.1007/s11430-013-4679-1
    ZHANG G W, GUO A L, DONG Y P, et al. , 2019. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract)
    ZHANG X H, GUO X W, YANG J Y, et al. , 2010. Gravity characteristics and preliminary division of tectonic units in China and adjacent areas[J]. Geology in China, 37(4): 881-887. (in Chinese with English abstract)
    ZHANG Y J, ZHOU X H, LIAO S B, et al. , 2010. Neoproterozoic crustal composition and orogenic process of the Zhanggongshan area, Anhui—Jiangxi[J]. Acta Geologica Sinica, 84(10): 1401-1427. (in Chinese with English abstract)
    ZHONG Y F, MA C Q, SHE Z B, et al. , 2005. SHRIMP U-Pb zircon geochronology of the Jiuling granitic complex batholith in Jiangxi province[J]. Earth Science—Journal of China University of Geosciences, 30(6): 685-691. (in Chinese with English abstract)
    ZHU A Q, ZHANG Y S, LU Z D, et al. , 2009. Study on metallogenic series and metallogenic belt of metal-nonmetal deposits in Zhejiang Province[M]. Beijing: Geology Press: 8-15. (in Chinese)
    ZHU Q B, JIN G D, ZHAO X L, et al. , 2020. Petrogenesis of the late Mesozoic Lingshang ultramafic intrusion in northern Jiangxi Province: Chronologic and geochemical constraints[J]. Geology in China, 47(4): 1092-1108. (in Chinese with English abstract)
    柏道远, 熊雄, 杨俊, 等, 2014. 雪峰造山带中段地质构造特征[J]. 中国地质, 41(2): 399-418. doi: 10.3969/j.issn.1000-3657.2014.02.008
    白文吉, 甘启高, 杨经绥, 等, 1986. 江南古陆东南缘蛇绿岩完整层序剖面的发现和基本特征[J]. 岩石矿物学杂志, 5(4): 289-299.
    陈国达. 1956. 中国地台“活化区”的实例并着重讨论“华夏古陆”问题[J]. 地质学报, (03): 239-271.
    陈润生, 2018. 福建基础地质调查研究进展与方向[J]. 福建地质, 37(2): 83-108. doi: 10.3969/j.issn.1001-3970.2018.02.001
    陈毓川, 王登红, 徐志刚, 等, 2015. 中国重要矿产和区域成矿规律[M]. 北京: 地质出版社.
    程裕淇, 1994. 中国区域地质概论[M]. 北京: 地质出版社: 327-458.
    丁炳华, 史仁灯, 支霞臣, 等, 2008. 江南造山带存在新元古代(~850Ma)俯冲作用: 来自皖南SSZ型蛇绿岩锆石SHRIMPU-Pb年龄证据[J]. 岩石矿物学杂志, 27(5): 375-388.
    福建省地质调查研究院, 2016. 中国区域地质志·福建志[M]. 北京: 地质出版社.
    郭令智, 施央申, 马瑞士, 等. 1980. 华南大地构造格架和地壳演化[J]. 国际交流地质学术论文集(I), 1-89
    高林志, 杨明桂, 丁孝忠, 等, 2008. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄: 对江南新元古代造山带演化的制约[J]. 地质通报, 27(10): 1744-1751.
    高林志, 丁孝忠, 曹茜, 等, 2010. 中国晚前寒武纪年表和年代地层序列[J]. 中国地质, 37(4): 1014-1020.
    高林志, 陆济璞, 丁孝忠, 等, 2013a. 桂北地区新元古代地层凝灰岩锆石U-Pb年龄及地质意义[J]. 中国地质, 40(5): 1443-1452.
    高林志, 丁孝忠, 刘燕学, 等, 2013b. 浙江浦江县蒙山地区陈塘坞组在地层柱中的位置: 来自SHRIMP锆石U-Pb年龄的制约[J]. 地质通报, 32(7): 988-995.
    高林志, 陈建书, 戴传固, 等, 2014a. 黔东地区梵净山群与下江群凝灰岩SHRIMP锆石U-Pb年龄[J]. 地质通报, 33(7): 949-959.
    高林志, 张恒, 丁孝忠, 等, 2014b. 江山-绍兴断裂带构造格局的新元古代SHRIMP锆石U-Pb年龄证据[J]. 地质通报, 33(6): 763-775.
    葛肖虹, 马文璞, 2014. 中国区域大地构造学教程[M]. 北京: 地质出版社: 216-385.
    广西壮族自治区地质矿产局, 1985. 广西壮族自治区区域地质志[M]. 北京: 地质出版社.
    海南省地质调查院, 2017. 中国区域地质志·海南志[M]. 北京: 地质出版社.
    湖南省地质调查院, 2017. 中国区域地质志·湖南志[M]. 北京: 地质出版社.
    胡世玲, 邹海波, 周新民, 1992. 江南元古宙碰撞造山带的两个40Ar/39Ar年龄值[J]. 科学通报, 37(3): 286-290.
    黄长煌, 2017. 台湾玉里带变质岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 36(10): 1722-1739.
    黄崇轲, 2004. 1: 250万中华人民共和国地质图及说明书[M]. 西安: 中国地图出版社.
    贾宝华, 彭和求, 唐晓珊, 等, 2004. 湘东北文家市蛇绿混杂岩带的发现及意义[J]. 现代地质, 18(2): 229-236. doi: 10.3969/j.issn.1000-8527.2004.02.013
    江西省地质矿产勘查开发局. 2015. 中国矿产地质志·江西卷[M]. 北京: 地质出版社.
    江西省地质矿产勘查开发局, 2017. 中国区域地质志·江西志[M]. 北京: 地质出版社.
    李宝龙, 季建清, 付孝悦, 等, 2008. 滇西点苍山—哀牢山变质岩系锆石SHRIMP定年及其地质意义[J]. 岩石学报, 24(10): 2322-2330.
    李春昱, 王荃, 刘雪亚, 等, 1982. 亚洲大地构造图说明书[M]. 中国地图出版社.
    李江涛, 梁斌, 何文劲, 等, 2016. 藏北羌塘盆地基底的地质构造演化: 来自侏罗纪雁石坪群砂岩碎屑锆石U-Pb同位素年代学证据[J]. 中国地质, 43(4): 1216-1226.
    李文昌, 潘桂堂, 侯增谦, 等, 2010. 西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地图出版社.
    李献华, 周国庆, 赵建新, 1994. 赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义[J]. 地球化学, 23(2): 125-131.
    李兴振, 江新胜, 孙志明, 等, 2002. 西南三江地区碰撞造山过程[M]. 北京: 地质出版社: 1-206.
    刘书生, 杨永飞, 郭林楠, 等, 2018. 东南亚大地构造特征与成矿作用[J]. 中国地质, 45(5): 863-889.
    陆松年, 1998. 新元古时期Rodinia超大陆研究进展述评[J]. 地质论评, 44(5): 489-495.
    陆松年, 李怀坤, 王惠初, 等, 2009. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究[J]. 岩石学报, 25(9): 2195-2208.
    毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 85(5): 636-658.
    莫宣学, 2009. 青藏高原新生代碰撞-后碰撞火成岩[M]. 北京: 地质出版社.
    潘桂棠, 李兴振, 王立全, 等, 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 21(11): 701-707.
    潘桂棠, 肖庆辉, 尹福光, 等, 2017. 中国大地构造[M]. 北京: 地质出版社: 403-422. .
    任纪舜, 2013. 1: 1000000国际亚洲地质图[M]. 北京: 地质出版社.
    沙绍礼, 刘学龙, 杨文礼, 等, 2017. 滇西大理地区存在泛非期构造-热事件记录[J]. 地质通报, 36(6): 928-932. doi: 10.3969/j.issn.1671-2552.2017.06.005
    施美凤, 林方成, 李兴振, 等, 2011. 东南亚中南半岛与中国西南邻区地层分区及沉积演化历史[J]. 中国地质, 38(5): 1244-1256. doi: 10.3969/j.issn.1000-3657.2011.05.011
    史明魁, 熊成云, 贾德裕, 等, 1993. 湘桂粤赣地区有色金属隐伏矿床综合预测[M]. 北京: 地质出版社.
    舒良树, 施央申, 郭令智, 1995. 江南中段板块-地体构造与碰撞造山运动学[M]. 南京: 南京大学出版社.
    舒良树, 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
    水涛, 徐步台, 梁如华, 等, 1988. 中国浙闽变质基底地质[M]. 北京: 科学出版社: 59-82.
    万天丰, 2004. 中国大地构造学纲要[M]. 北京: 地质出版社.
    万天丰, 2013. 新编亚洲大地构造区划图[J]. 中国地质, 40(5): 1351-1365. doi: 10.3969/j.issn.1000-3657.2013.05.002
    王岩, 王登红, 黄凡, 2020. 中国矿产地质志·中国矿产地分省图集[M]. 北京: 地质出版社.
    吴良士, 2009. 越南社会主义共和国地质构造与区域成矿[J]. 矿床地质, 28(5): 725-726. doi: 10.3969/j.issn.0258-7106.2009.05.019
    熊盛青, 杨海, 丁燕云, 等. 2018. 中国航磁大地构造单元划分[J]. 中国地质, 45(04): 658-680.
    徐备, 郭令智. 施央申, 1992. 皖浙赣地区元古代地体和多期碰撞造山带[M]. 北京: 地质出版社: 1-112.
    徐德明, 蔺志勇, 骆学全, 等, 2015. 钦-杭成矿带主要金属矿床成矿系列[J]. 地学前缘, 22(2): 7-24.
    许志琴, 杨经绥, 侯增谦, 等, 2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 43(1): 1-42. doi: 10.3969/j.issn.1000-3657.2016.01.001
    杨明桂, 梅勇文, 1997. 钦-杭古板块结合带与成矿带的主要特征[J]. 华南地质与矿产(3): 52-59.
    杨明桂, 梅勇文, 周子英, 等, 1998. 罗霄-武夷隆起及郴州上饶坳陷成矿规律及预测[M]. 北京: 地质出版社.
    杨明桂, 黄水保, 楼法生, 等, 2009. 中国东南陆区岩石圈结构与大规模成矿作用[J]. 中国地质, 36(3): 528-543.
    杨明桂, 祝平俊, 熊清华, 等, 2012a. 新元古代-早古生代华南裂谷系的格局及其演化[J]. 地质学报, 86(9): 1367-1375.
    杨明桂, 吕细徐, 黄越, 等, 2012b. 台海两岸地质构造的关联问题[Z]. 江西地质新进展. 南昌: 江西科学技术出版社.
    杨明桂, 吴富江, 宋志瑞, 等, 2015. 赣北: 华南地质之窗[J]. 地质学报, 89(2): 222-233.
    杨明桂, 王光辉, 2020. 论华夏成矿省燕山期岩浆成矿大爆发的核幔式扩展模式与动力机制: 纪念李四光先生诞辰130周年[J]. 地质力学学报, 26(1): 1-12.
    杨明桂, 余忠珍, 唐维新, 等, 2021. 华南洋-滨太平洋构造演化与成矿[M]. 北京: 地质出版社.
    姚金龙, 舒良树. 2014. 华南前寒武纪地壳演化[C]. 2014年中国地球科学联合学术年会 (专题49): 华南大陆构造论文集, 7.
    于根生, 肖柯才, 1985. 赣东北古蛇绿岩带的存在及其地质构造意义的讨论[J]. 江西地质(1-2): 39-50.
    袁学诚, 2007. 再论岩石圈地幔蘑菇云构造及其深部成因[J]. 中国地质, 34(5): 737-758.
    曾勇, 杨明桂, 1999. 赣中碰撞混杂岩带[J]. 中国区域地质, 18(1): 17-22.
    张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大路构造与问题[J]. 中国科学·地球科学, 43(10): 1543-1582.
    张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25(5): 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
    张训华, 郭兴伟, 杨金玉, 等, 2010. 中国及邻区重力特征与块体构造单元初划[J]. 中国地质, 37(4): 881-887.
    张彦杰, 周效华, 廖圣兵, 等, 2010. 皖赣鄣公山地区新元古代地壳组成及造山过程[J]. 地质学报, 84(10): 1401-1427.
    中国地质科学院地质研究所, 2006. 中国西部及邻区地质图[M]. 北京: 地质出版社.
    钟玉芳, 马昌前, 佘振兵, 等, 2005. 江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学[J]. 地球科学—中国地质大学学报, 30(6): 685-691.
    朱安庆, 张永山, 陆祖达, 等, 2009. 浙江省金属非金属矿床成矿系列和成矿区带研究[M]. 北京: 地质出版社: 8-15.
    朱清波, 靳国栋, 赵希林, 等, 2020. 赣北晚中生代岭上超镁铁岩的岩石成因: 年代学与地球化学制约[J]. 中国地质, 47(4): 1092-1108.
  • 期刊类型引用(1)

    1. 吴芳,马杰,刘博华,王婧,史保胤,张耀玲,谢非. 六盘山西缘前庄地区水资源特征及开发利用建议. 水利水电技术(中英文). 2023(10): 49-58 . 百度学术

    其他类型引用(0)

  • 加载中
图(14)
计量
  • 文章访问数:  1199
  • HTML全文浏览量:  290
  • PDF下载量:  171
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-12-01

目录

/

返回文章
返回