留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源遥感数据在西准噶尔哈拉阿拉特山地区1:5万地质填图中的对比研究

程三友 王曦 李永军 王冉

程三友, 王曦, 李永军, 等, 2022. 多源遥感数据在西准噶尔哈拉阿拉特山地区1:5万地质填图中的对比研究. 地质力学学报, 28 (1): 143-154. DOI: 10.12090/j.issn.1006-6616.2021035
引用本文: 程三友, 王曦, 李永军, 等, 2022. 多源遥感数据在西准噶尔哈拉阿拉特山地区1:5万地质填图中的对比研究. 地质力学学报, 28 (1): 143-154. DOI: 10.12090/j.issn.1006-6616.2021035
CHENG Sanyou, WANG Xi, LI Yongjun, et al., 2022. Comparative study of multi-source remote sensing data for regional geologic mapping at 1: 50, 000 scale in the Hala'alate Mountains, west Junggar. Journal of Geomechanics, 28 (1): 143-154. DOI: 10.12090/j.issn.1006-6616.2021035
Citation: CHENG Sanyou, WANG Xi, LI Yongjun, et al., 2022. Comparative study of multi-source remote sensing data for regional geologic mapping at 1: 50, 000 scale in the Hala'alate Mountains, west Junggar. Journal of Geomechanics, 28 (1): 143-154. DOI: 10.12090/j.issn.1006-6616.2021035

多源遥感数据在西准噶尔哈拉阿拉特山地区1:5万地质填图中的对比研究

doi: 10.12090/j.issn.1006-6616.2021035
基金项目: 

中国地质调查局地质调查项目 DD1212011220619

中国地质调查局地质调查项目 DD20190069

中央高校基本科研业务费专项资金 300102279105

详细信息
    作者简介:

    程三友(1977-), 女, 博士, 副教授, 主要从事遥感地质方面的研究工作。E-mail: chengsanyou@126.com

  • 中图分类号: TP79

Comparative study of multi-source remote sensing data for regional geologic mapping at 1: 50, 000 scale in the Hala'alate Mountains, west Junggar

Funds: 

the Geological Survey Projects of the China Geological Survey DD1212011220619

the Geological Survey Projects of the China Geological Survey DD20190069

the Fundamental Research Fund for Central Universities 300102279105

  • 摘要: 以ETM、SPOT5和Quickbird为主要信息源,在哈拉阿拉特山地区开展1:5万区域地质填图,对该地区的地层单元、中—小规模地质体(如岩脉、小岩体和火山口)和地质构造特征进行了详细地遥感解译分析,并开展了大量的遥感野外地质调查验证。结果表明,采用彩色空间HSV变换融合法将SPOT5高精度遥感图像数据与ETM图像数据融合,保持了波谱信息的一致性;选择主成分PC1、2、3之SPOT5 1~4、主成分PC1、2、3之ETM 1~7、主成分PC6、5、4之ETM 1~7假彩色合成的图像,清晰地显示了主要岩性地层单元界线的多光谱信息,提高了遥感影像底图的信息量和易解译程度。将野外采集的地质资料与Quickbird高精度遥感图像相结合,可准确而快速地勾绘地质界线,显著提高了对构造和地质体边界勾绘的精度。ETM、SPOT5和Quickbird数据综合遥感解译成果很好地指导了哈拉阿拉特山地区野外地质调查工作,高分辨率遥感影像准确解译中—小规模地质体在该区域地质调查工作中起到了关键作用。

     

  • 遥感技术不受地形的限制, 具有覆盖面积大、获取信息速度快等优点, 随着空间信息技术的进步及影像获取成本的降低, 已经成为区域地质调查工作的重要技术手段之一(薛重生, 1997; 陈星等, 2014; 何鹏等, 2016; 史俊波等, 2016; 潘明等, 2019; 王烜等, 2019; 刘小雨等, 2020; 苏永江和李东, 2020; 杨星辰等, 2020; 冀全伟等, 2021)。现代遥感技术的发展, 使各种对地观测卫星源源不断地提供不同空间分辨率的遥感图像成为现实。不同分辨率的遥感数据所提供的信息具有很好的互补性和合作性, 可以将同一地质环境或对象进行综合, 产生比单一信息源更精确、更完全、更可靠的解译和判读。基于ETM融合后的15 m遥感影像, 对于区域地质调查项目设计阶段全区初步的遥感解译非常有利。SPOT5数据适用于对研究区域进行详细解译, 利用其全色波段与ETM多光谱数据融合生成的2.5 m ETM SPOT5融合影像进行对比补充, 可完善解译结果。对于局部解译难度大的区域, 可使用高分辨率遥感影像Quickbird或WorldView数据。在"新疆西准噶尔玛依塔巴克地区1∶5万四幅区调"项目实施过程中, 采用SPOT5、Quickbird和ETM数据, 选择主成分组分假彩色合成和数据融合影像, 结合目视解译和野外踏勘, 对新疆西准噶尔哈拉阿拉特山地区开展了地层单元、中—小规模地质体(如岩脉和小岩体)边界准确勾画以及地质构造解译工作。结果表明, 高分辨率遥感影像在区域地质调查中准确解译并勾画中—小规模地质体方面具有极大的优势, SPOT5、Quickbird和ETM遥感数据可很好地指导野外地质调查工作。

    哈拉阿拉特山大地构造位置处于西准噶尔山区与准噶尔盆地交界处, 北部为缓倾斜的和什托勒盖盆地, 南部为戈壁平原区。哈拉阿拉特山山势低矮, 海拔500~600 m, 其区内地质体展布受北北东向的达尔布特断裂控制(晁文迪等, 2015; 李永军等, 2016a; 林伟等, 2017)。据1∶20万乌尔禾幅地质图, 研究区地层主要有下石炭统、上石炭统、下石炭统上段和下石炭统下段地层(图 1; 马宝林, 1987; 龚一鸣和纵瑞文, 2015; 李永军等, 2016b)。而据项目组最新编绘的1∶5万地质图, 研究区地层主要有下二叠统白杨河组(P1b)、下二叠统佳木河组二段(P1jm2)、下二叠统佳木河组一段(P1jm1)、上石炭统阿腊德伊克赛组(C2al)、上石炭统哈拉阿拉特山组(C2h)、下石炭统希贝库拉斯组(C1x)和下石炭统包谷图组(C1b)。研究区侵入岩总体不太发育, 有辉绿岩株(佟丽莉, 2009; 纵瑞文等, 2014; 晁文迪等, 2015; 贺新星等, 2015; 王乐民等, 2015; 向坤鹏等, 2015; 李甘雨等, 2016; 李永军等, 2016a, 2016b; 彭湘萍等, 2016), 以及此次1∶5万区域地质调查工作中新发现的乌尔禾基性岩脉群和乌尔禾花岗岩。

    图  1  西准噶尔哈拉阿拉特山地区区域地质简图
    a—研究区构造位置略图; b—研究区地质简图(据李永军等, 2016b修改)
    Figure  1.  Regional geological map of the Hala'alate mountains in west Junggar
    (a) Tectonic location; (b) Geological sketch map (modified after Li et al., 2016b)

    采用SPOT5、ETM和Quickbird数据为基础数据。ETM时相为2001年5月22日, 空间分辨率较低, 可获得地质体宏观分布规律和分布特征。SPOT5时相为2008年5月4日, 产品等级是L1A, 空间分辨率较高, 可解译判读中等规模的地质体和地质现象, 能确定地质体规模。Quickbird时相为2012年3月21日、2012年3月24日和2010年8月3日, 为三波段融合后的RGB图像, 空间分辨率高, 可解译判读中—小规模的岩脉、岩体和地质现象, 详细确定地质体边界及分布(李德仁和马洪超, 2001; 张自力等, 2007)。

    ETM、SPOT5和Quickbird均经过辐射定标、FLAASH大气校正, 以1∶5万地形图为标准图对ETM进行了几何校正, 对SPOT5和Quickbird采用了几何精校正(程三友等, 2021)、图像配准、坐标转换和裁剪等预处理。处理好的ETM和SPOT5图像按稍大于研究区的范围裁出。

    ETM全色波段(ETM Pan)空间分辨率15 m, 将其与30 m的多光谱数据采用Gram-Schmidt(GS)方法融合, 可提高影像质量。SPOT5 HRG多光谱数据(10 m)与全色波段数据(SPOT5 HRG Pan, 2.5 m)采用HSV方法融合生成2.5 m影像为基础解译影像, 采用ETM多光谱741与SPOT5的全色波段HSV方法融合生成2.5 m影像, 进行对比补充再解译(图 2)。数据融合对比之后, 发现SPOT5全色与波段213融合影像, 即采用彩色空间HSV变换融合, 得到色调信息丰富的影像, 作为基础解译影像效果最好(图 3)。将哈拉阿拉特山基岩区Quickbird三块影像数据镶嵌成整幅RGB影像, 空间分辩率为0.61 m。通过研究比较ETM、SPOT5和Quickbird 3类遥感影像, 发现QuickBird影像对于岩脉和小岩体边界的勾画更占优势。

    图  2  遥感图像融合增强处理流程图
    Figure  2.  Flow chart showing the merge and enhancement process of remote sensing images
    图  3  哈拉阿拉特山地区SPOT5全色与波段213融合影像的HSV变换图像
    Figure  3.  HSV transform image of remote sensing images of SPOT5 PAN and 213 Merge in the Hala'alate mountains

    利用ENVI软件对上述数据进行辐射校正、几何精校正和图像增强等处理, 得到了研究区空间分辨率2.5 m的无云雪覆盖的SPOT5高清晰影像(图 3), 能较好地呈现出研究区岩性单元影像纹理以及不同岩性单元间的界线等总体特征, 将其作为研究区基础解译影像。选择主成分PC1、2、3之SPOT5 1~4、主成分PC1、2、3之ETM1~7、主成分PC6、5、4之ETM 1~7的假彩色合成影像, 以及2.5 m ETM SPOT5融合影像, 作为遥感地质解译辅助影像, 对构造和地质岩性单元进行解译。在此基础上, 采用Qucikbird高分辨率影像剖析勾画小岩体和岩脉等细部构造, 通过野外验证反复解译, 完善遥感解译成果。

    通过野外地质现象与影像特征的对比研究和对遥感解译结果的野外调查、验证, 不断深化对遥感影像地质解译标志的认识, 建立完善各地质体遥感解译标志, 典型遥感影像及野外验证露头照片见表 1表 2

    表  1  哈拉阿拉特山地区重要地质单元解译标志
    Table  1.  Interpretation keys of the important geological units in the Hala'alate mountains
    地层名称 地层岩性 代号 遥感解译标志
    下石炭统包古图组 灰色细碎屑岩为主, 夹生物灰岩 C1b 在SPOT影像上呈浅灰紫色, ETM影像呈暗红色, 主要分布于达尔布特断裂北侧, 色调基本均匀, 影纹呈断续条带状或蠕虫状, 纹理中度粗糙, 发育稀疏的树枝状水系及羽状水系, 植被不发育, 层理明显, 呈低山—丘陵地貌。
    下石炭统希贝库拉斯组 杂色粗碎屑岩类为主, 夹岩屑杂砂岩等 C1x 在SPOT影像上呈绿灰色, ETM影像呈红色, 主要分布于达尔布特断裂南西侧, 影纹呈斑纹状, 纹理略显粗糙, 其上经常被第四系覆盖, 发育树枝状水系及羽状水系, 宏观特征呈条带状或面状, 低山—丘陵地貌。线理较发育, 宏观上呈弯曲形褶皱, 岩层走向清晰。
    上石炭统哈拉阿拉特山组 以火山岩和火山碎屑岩为主, 夹砾岩 C2h 在SPOT影像上呈浅绿色和淡紫色, ETM影像呈绿灰色, 少见红色, 色调均匀, 主要分布于达尔布特断裂北东侧, 纹理粗糙, 影纹图案呈细纹状、弯弧短线条纹状, 发育密集型树枝状水系, 植被不发育。
    上石炭统阿腊德伊克赛组 砂岩、粉砂岩、凝灰岩、玄武岩、安山岩, 夹生物碎屑灰岩条带 C2al 在SPOT影像上呈深绿色和绿灰色, ETM影像呈红色, 主要在达尔布特断裂南侧分布, 影纹呈条带状, 纹理中度粗糙, 发育树枝状水系及网状水系, 宏观特征呈条带状或面状, 低山—丘陵地貌, 解译标志比较清楚。岩层走向清晰, 色调较为深暗, 褶皱较发育。
    下二叠统佳木河组 岩性以陆相砾岩、粗砂岩、砂岩等磨拉石建造为主 P1jm1(一段)
    P1jm2(二段)
    在SPOT影像上呈浅绿色和灰绿色, ETM影像呈暗红色, 色调不均匀, 可能受第四系覆盖的影响, 纹理较粗糙, 影纹图案呈粗大短线条状, 发育稀疏型树枝状水系, 地势较低。在SPOT影像呈浅绿色, ETM影像呈暗红色, 色调较均匀, 纹理较光滑, 影纹图案呈细纹状, 发育细小羽毛状水系, 地势较低。
    下二叠统白杨河组 发育火山构造的陆相火山集块岩-火山角砾岩-晶屑岩屑凝灰岩-玄武岩-玄武安山岩组合 P1b 在SPOT影像上呈深绿色, ETM影像呈深绿色, 少见红色, 影纹呈斑点状, 纹理中度粗糙, 发育树枝状水系, 宏观特征呈面状, 地貌呈山梁状, 解译标志比较清楚, 界线较清晰。
    下载: 导出CSV 
    | 显示表格
    表  2  哈拉阿拉特山地区重要地质单元典型遥感影像及野外验证露头照片
    Table  2.  Remote sensing image features and field verification of the important geological units in the Hala'alate mountains
    地层名称 典型遥感影像特征 野外露头照片
    SPOT5影像 ETM与SPOT5融合影像 ETM影像
    下石炭统包古图组(C1b)
    下石炭统希贝库拉斯组(C1x)
    上石炭统哈拉阿拉特山组(C2h)
    上石炭统阿腊德伊克赛组(C2al)
    下二叠统佳木河组(P1jm)
    下二叠统白杨河组(P1b)
    下载: 导出CSV 
    | 显示表格
    3.2.1   断裂带地质解译

    研究区线性和环形构造遥感影像极为清晰。达尔布特断裂带是区内最重要且最显而易见的地质界线, 在对ETM影像和SPOT5影像进行主成分变换和HSV变换获得的影像上均有清晰反映。达尔布特断裂带南侧发育较为复杂的褶皱变形、小断层、节理或者是小岩脉, 解译显示达尔布特断裂带在区域上具有左旋走滑性质, 是一斜向断裂(孙自明等, 2008; 樊春等, 2014; 薛雁等, 2015, 2017; 林伟等, 2017)。C1x—C2al特定层位中发育连续左旋错动, 如图 4a4c中侧列的小滑动断裂。达尔布特断裂带北东—南西向横贯研究区, 断裂带北侧主要表现为一系列第四系洪积扇呈线性排列(图 4d), 断裂带南侧发育的线理或小岩脉呈北东向线性排列, 为主断裂带出露的线索。达尔布特断裂带控制了岩脉走向, 岩脉整体呈北东走向(图 4d)。

    图  4  达尔布特断裂带遥感地质解译影像特征
    a—SPOT5影像; b—ETM与SPOT5融合影像; c—ETM影像C1x—C2al特定层位的连续左旋错动影像特征; d—达尔布特断裂带北东—南西向横贯研究区宏观特征SPOT5影像
    Figure  4.  Geological interpretation of the Dalabute fault zone
    (a)SPOT5 image; (b)ETM and SPOT5 merge image; (c)ETM image showing the continuous left-handed staggered image features of C1x—C2al; (d) SPOT5 image showing the Dalabute fault zone NE-SW transversing the study area
    3.2.2   小岩体发现

    研究区岩体发育较少, 此次解译发现的乌尔禾花岗岩小岩体, 位于哈拉阿拉特山南麓, 长约1.5 km, 最宽约300 m, 长条状, 长轴展布方向和达尔布特断裂延伸方向小角度斜交。在Quickbird遥感影像上为淡黄色色调, 界线清晰, 易被确认和准确圈定其边界(图 5a), 并在SPOT5遥感影像上圈定了其范围(图 5b)。项目组此次区域地质填图野外调查时, 验证了其客观存在(图 5c)。

    图  5  乌尔禾小岩体遥感解译范围圈定
    a—乌尔禾小岩体Quickbird影像特征; b—乌尔禾小岩体SPOT5影像特征; c—乌尔禾小岩体野外露头照片(镜向240°)
    γ—花岗岩
    Figure  5.  The remote sensing interpretation range of Urho small rock mass
    (a) Quickbird image features of Urho small rock mass; (b) SPOT5 image features of Urho small rock mass; (c) Field photo of Urho small rock mass
    γ—Granite
    3.2.3   岩脉和火山口圈定

    此次区域调查中发现乌尔禾岩脉和火山口, 遥感发挥了极为重要的作用(图 6)。在项目设计阶段基于ETM影像发现并解译出了岩脉和火山口分布特征(图 6a), 在项目实施阶段基于SPOT5影像(图 6b)和ETM与SPOT5融合影像的详细解译和判定, 即时进行野外验证, 显示解译结果与实地情况一致。岩脉在ETM和SPOT5彩色合成的遥感影像上为灰色或墨绿色等暗色调(图 6c), 在ETM影像上则表现为红色或淡红色条带, 呈沟谷负地形(图 6a), 走向稳定。在高分辨率Quickbird遥感影像上, 岩脉形态和产状非常清晰, 在影像上呈北东向长条状负地形(图 6d), 岩脉出露呈平行展布, 展布方向基本上与达尔布特断裂平行, 利用Quickbird遥感影像较好地勾画出了每一条岩脉的边界, 可直接应用于地质填图。

    图  6  岩脉和火山口解译遥感影像特征
    a—岩脉ETM影像特征; b—岩脉SPOT5影像特征; c—岩脉ETM与SPOT5影像特征; d—岩脉Quickbird影像特征; e—乌尔禾岩脉和火山口露头宏观照片(镜向310°)
    Figure  6.  Remote sensing image features of minor dyke swarms and crater interpretation
    (a) ETM image features of dyke swarms; (b) SPOT5 image features of dyke swarms; (c) ETM and SPOT5 merge image features of dyke swarms; (d) Quickbird image features of dyke swarms; (e) Field photo of Urho dyke swarms and crater

    火山口在ETM和SPOT5彩色合成遥感影像上呈清晰的凹形、环形构造(图 6c), 在ETM影像上也表现出模糊的凹形负地形特征(图 6a)。在高分辨率Quickbird遥感影像上, 火山口形态和边界非常清晰, 在影像上呈凹形、环形状负地形(图 6d), Quickbird遥感影像极好地勾画出了火山口边界, 可直接应用于地质填图, 野外验证效果极好(图 6e)。

    3.2.4   喷发不整合解译

    喷发不整合主要见于哈拉阿拉特山南坡, 影像清晰。在SPOT5影像上, 二叠系佳木河组(P1jm)显示为绿灰色调, 纹理较细腻, 发育稀疏树枝状水系, 宏观特征呈面状, 平坦地形, 解译标志比较清楚, 界线较清晰(图 7a); 在ETM与SPOT5影像上, 色调以浅绿色调为主, 色调较均匀, 纹理较光滑, 影纹图案为细纹状, 发育细小羽毛状水系(图 7b7c)。在SPOT5影像上, 二叠系白杨河组(P1b)色调以深绿色、绿灰色为主, 影纹呈斑点状, 纹理中度粗糙, 发育树枝状水系, 宏观特征呈面状, 地貌呈山梁状, 解译标志比较清楚, 界线较清晰, 可直接应用于地质填图。两组间的喷发不整合在SPOT5和ETM等图像上极为清晰, 野外验证效果极好(图 7d)。

    图  7  喷发不整合遥感解译
    a—SPOT5影像特征; b—ETM与SPOT5影像特征; c—ETM影像特征; d—喷发不整合露头照片(镜向350°)
    Figure  7.  Remote sensing interpretation of eruptive unconformity
    (a) SPOT5 image features; (b) ETM and SPOT5 image features; (c) ETM image features; (d) Field photo of outcrops

    哈拉阿拉特山地区遥感解译取得了丰富详实的成果, 提高了哈拉阿拉特山的研究程度。解译成果见图 8, 对应的遥感影像为图 3。在哈拉阿拉特山地区地质剖面测量、路线地质调查以及野外遥感解译验证的基础上, 对遥感解译成果进行了系统全面地验证, 结果显示: 1达尔布特断裂带在区域上呈左旋走滑性质, 是一种斜向断裂, 经野外验证遥感解译勾绘的界线可直接用于区域地质填图, 精度优于历史区域调查; 2由于充分利用了SPOT5和Quickbird图像的高精度特性, 哈拉阿拉特山地区主要地层单元的边界勾绘精度与地面实况一致, 可以基于遥感影像进行填图, 减轻了野外工作艰辛程度; 3在新发现的乌尔禾花岗岩小岩体以及岩脉群中合理地利用了遥感解译界线, 同时补充遥感解译路线, 提高了填图路线的控制精度及总长度, 完全满足1∶5万区域地质调查地质填图技术标准规范(辜平阳等, 2016), 圆满地完成了1∶5万区域地质调查的相关目标。

    图  8  哈拉阿拉特山地区遥感解译成果
    Figure  8.  Remote sensing interpretation of the Hala'alate mountains

    此次多源遥感数据的应用较好地指导了新疆西准噶尔哈拉阿拉特山地区野外地质调查和1∶5万地质填图工作。以ETM、SPOT5和Quickbird数据为基础数据, 利用ENVI软件对其进行辐射校正和几何精校正, 并通过主成分组分假彩色合成和数据融合等获得SPOT5全色与波段213HSV变换融合影像、2.5m ETM SPOT5融合影像和Qucikbird高分辨率影像, 结合目视解译和野外踏勘, 对新疆西准噶尔哈拉阿拉特山地区开展了地层单元、中—小规模地质体(岩脉、小岩体、火山口)边界准确勾画以及地质构造解译工作。通过地质分析综合解译获得的西准噶尔哈拉阿拉特山地区最新遥感解译成果, 一方面支撑了区调项目的调查路线、调查重点等内容确定; 另一方面与实地野外调查结合, 指导野外调查, 发现了一些新的地质体, 深化了对地质单元、地质体等地质现象的认识。形成的结论与认识如下:

    (1) SPOT5全色与波段213HSV变换融合图像, 较好地呈现出了研究区岩性单元影像纹理以及不同岩性单元间的界线等总体特征, 可将其作为区调项目基础解译影像。采用彩色空间HSV变换融合法, 将SPOT5全色波段与ETM多光谱数据融合得到2.5 m ETM SPOT5融合影像, 可很好地发挥SPOT5空间分辨率和ETM的光谱分辨率优势, 清晰地显示了主要岩性地层单元界线的多光谱信息, 提高了遥感影像底图的信息量和易解译程度。

    (2) 结合适当地野外调查, 利用Quickbird和SPOT5高辨率遥感图像高清晰的纹理特征, 能准确快速获得各地质体边界, 如该区新发现的岩脉群、小岩体和火山口, 显著提高了对构造和地质体边界勾绘的精度。在新发现的乌尔禾花岗岩小岩体以及岩脉群中均较好地利用了遥感解译界线, 经野外验证遥感解译勾绘的界线可直接用于区域地质填图。

    (3) 基于ETM、SPOT5和Quickbird不同尺度的遥感数据综合解译成果, 很好地指导了野外地质调查工作, 提高了填图路线的控制精度及总长度, 完全满足1∶5万区域地质调查地质填图技术标准规范, 在自然地理条件极其恶劣的高海拔、艰险地区数字填图中具有极大的技术潜力和应用价值。

    责任编辑: 吴芳
  • 图  1  西准噶尔哈拉阿拉特山地区区域地质简图

    a—研究区构造位置略图; b—研究区地质简图(据李永军等, 2016b修改)

    Figure  1.  Regional geological map of the Hala'alate mountains in west Junggar

    (a) Tectonic location; (b) Geological sketch map (modified after Li et al., 2016b)

    图  2  遥感图像融合增强处理流程图

    Figure  2.  Flow chart showing the merge and enhancement process of remote sensing images

    图  3  哈拉阿拉特山地区SPOT5全色与波段213融合影像的HSV变换图像

    Figure  3.  HSV transform image of remote sensing images of SPOT5 PAN and 213 Merge in the Hala'alate mountains

    图  4  达尔布特断裂带遥感地质解译影像特征

    a—SPOT5影像; b—ETM与SPOT5融合影像; c—ETM影像C1x—C2al特定层位的连续左旋错动影像特征; d—达尔布特断裂带北东—南西向横贯研究区宏观特征SPOT5影像

    Figure  4.  Geological interpretation of the Dalabute fault zone

    (a)SPOT5 image; (b)ETM and SPOT5 merge image; (c)ETM image showing the continuous left-handed staggered image features of C1x—C2al; (d) SPOT5 image showing the Dalabute fault zone NE-SW transversing the study area

    图  5  乌尔禾小岩体遥感解译范围圈定

    a—乌尔禾小岩体Quickbird影像特征; b—乌尔禾小岩体SPOT5影像特征; c—乌尔禾小岩体野外露头照片(镜向240°)
    γ—花岗岩

    Figure  5.  The remote sensing interpretation range of Urho small rock mass

    (a) Quickbird image features of Urho small rock mass; (b) SPOT5 image features of Urho small rock mass; (c) Field photo of Urho small rock mass
    γ—Granite

    图  6  岩脉和火山口解译遥感影像特征

    a—岩脉ETM影像特征; b—岩脉SPOT5影像特征; c—岩脉ETM与SPOT5影像特征; d—岩脉Quickbird影像特征; e—乌尔禾岩脉和火山口露头宏观照片(镜向310°)

    Figure  6.  Remote sensing image features of minor dyke swarms and crater interpretation

    (a) ETM image features of dyke swarms; (b) SPOT5 image features of dyke swarms; (c) ETM and SPOT5 merge image features of dyke swarms; (d) Quickbird image features of dyke swarms; (e) Field photo of Urho dyke swarms and crater

    图  7  喷发不整合遥感解译

    a—SPOT5影像特征; b—ETM与SPOT5影像特征; c—ETM影像特征; d—喷发不整合露头照片(镜向350°)

    Figure  7.  Remote sensing interpretation of eruptive unconformity

    (a) SPOT5 image features; (b) ETM and SPOT5 image features; (c) ETM image features; (d) Field photo of outcrops

    图  8  哈拉阿拉特山地区遥感解译成果

    Figure  8.  Remote sensing interpretation of the Hala'alate mountains

    表  1  哈拉阿拉特山地区重要地质单元解译标志

    Table  1.   Interpretation keys of the important geological units in the Hala'alate mountains

    地层名称 地层岩性 代号 遥感解译标志
    下石炭统包古图组 灰色细碎屑岩为主, 夹生物灰岩 C1b 在SPOT影像上呈浅灰紫色, ETM影像呈暗红色, 主要分布于达尔布特断裂北侧, 色调基本均匀, 影纹呈断续条带状或蠕虫状, 纹理中度粗糙, 发育稀疏的树枝状水系及羽状水系, 植被不发育, 层理明显, 呈低山—丘陵地貌。
    下石炭统希贝库拉斯组 杂色粗碎屑岩类为主, 夹岩屑杂砂岩等 C1x 在SPOT影像上呈绿灰色, ETM影像呈红色, 主要分布于达尔布特断裂南西侧, 影纹呈斑纹状, 纹理略显粗糙, 其上经常被第四系覆盖, 发育树枝状水系及羽状水系, 宏观特征呈条带状或面状, 低山—丘陵地貌。线理较发育, 宏观上呈弯曲形褶皱, 岩层走向清晰。
    上石炭统哈拉阿拉特山组 以火山岩和火山碎屑岩为主, 夹砾岩 C2h 在SPOT影像上呈浅绿色和淡紫色, ETM影像呈绿灰色, 少见红色, 色调均匀, 主要分布于达尔布特断裂北东侧, 纹理粗糙, 影纹图案呈细纹状、弯弧短线条纹状, 发育密集型树枝状水系, 植被不发育。
    上石炭统阿腊德伊克赛组 砂岩、粉砂岩、凝灰岩、玄武岩、安山岩, 夹生物碎屑灰岩条带 C2al 在SPOT影像上呈深绿色和绿灰色, ETM影像呈红色, 主要在达尔布特断裂南侧分布, 影纹呈条带状, 纹理中度粗糙, 发育树枝状水系及网状水系, 宏观特征呈条带状或面状, 低山—丘陵地貌, 解译标志比较清楚。岩层走向清晰, 色调较为深暗, 褶皱较发育。
    下二叠统佳木河组 岩性以陆相砾岩、粗砂岩、砂岩等磨拉石建造为主 P1jm1(一段)
    P1jm2(二段)
    在SPOT影像上呈浅绿色和灰绿色, ETM影像呈暗红色, 色调不均匀, 可能受第四系覆盖的影响, 纹理较粗糙, 影纹图案呈粗大短线条状, 发育稀疏型树枝状水系, 地势较低。在SPOT影像呈浅绿色, ETM影像呈暗红色, 色调较均匀, 纹理较光滑, 影纹图案呈细纹状, 发育细小羽毛状水系, 地势较低。
    下二叠统白杨河组 发育火山构造的陆相火山集块岩-火山角砾岩-晶屑岩屑凝灰岩-玄武岩-玄武安山岩组合 P1b 在SPOT影像上呈深绿色, ETM影像呈深绿色, 少见红色, 影纹呈斑点状, 纹理中度粗糙, 发育树枝状水系, 宏观特征呈面状, 地貌呈山梁状, 解译标志比较清楚, 界线较清晰。
    下载: 导出CSV

    表  2  哈拉阿拉特山地区重要地质单元典型遥感影像及野外验证露头照片

    Table  2.   Remote sensing image features and field verification of the important geological units in the Hala'alate mountains

    地层名称 典型遥感影像特征 野外露头照片
    SPOT5影像 ETM与SPOT5融合影像 ETM影像
    下石炭统包古图组(C1b)
    下石炭统希贝库拉斯组(C1x)
    上石炭统哈拉阿拉特山组(C2h)
    上石炭统阿腊德伊克赛组(C2al)
    下二叠统佳木河组(P1jm)
    下二叠统白杨河组(P1b)
    下载: 导出CSV
  • CHAO W D, LI Y J, WANG R, et al., 2015. Lagged arc magmatism in Western Junggar: evidence from early Permian intermediate to mafic dyke swarms in Urho area, east of Western Junggar[J]. Acta Petrologica et Mineralogica, 34(2): 171-183. (in Chinese with English abstract)
    CHEN X, ZHANG X B, JIA X Q, et al., 2014. Information extraction and application of stratum and structures based on SPOT5 and ASTER data: a case study of Maodeng area of Inner Mongolia[J]. Journal of Liaoning Technical University (Natural Science Edition), 33(8): 1063-1069. (in Chinese with English abstract)
    CHENG S Y, CHEN J, LIN H X, et al., 2021. Application of geometric precision correction based on high-resolution remote sensing image in 1: 50000 geological mapping[J]. Geological Bulletin of China, 40(4): 520-526. (in Chinese with English abstract)
    FAN C, SU Z, ZHOU L, 2014. Kinematic features of Darlbute fault in northwestern margin of Junggar basin[J]. Chinese Journal of Geology, 49(4): 1045-1058. (in Chinese with English abstract)
    GONG Y M, ZONG R W, 2015. Paleozoic stratigraphic regionalization and paleogeographic evolution in western Junggar, Northwestern China[J]. Earth Science-Journal of China University of Geosciences, 40(3): 461-484. (in Chinese with English abstract) doi: 10.3799/dqkx.2015.038
    GU P Y, CHEN R M, CHA X F, et al, 2016. Exploration and Practice of 1: 50000 geological mapping techniques for Alpine-Gorge Area: a case study in Beishan Area of Wushi, Xinjiang[J]. Journal of Geomechanics, 22(4): 837-855. (in Chinese with English abstract)
    HE P, TENG X J, LIU Y, et al., 2016. Application of remote sensing interpretation for 1: 50000 geologic mapping in Langshan Gobi desert area, inner Mongolia[J]. Journal of Geomechanics, 22(4): 882-892. (in Chinese with English abstract)
    HE X X, XIAO L, WANG G C, et al., 2015. Petrogenesis and geological implications of late paleozoic intermediate-basic dyke swarms in Western Junggar[J]. Earth Science-Journal of China University of Geosciences, 40(5): 777-796. (in Chinese with English abstract)
    JI Q W, WANG W L, LIU Z B, et al., 2021. A machine learning-based lithologic mapping method[J]. Journal of Geomechanics, 27(3): 339-349. (in Chinese with English abstract)
    LI G Y, LI Y J, XIANG K P, et al., 2016. Revision and regional correlation of the Hala'alate formation in western Junggar basin[J]. Journal of Stratigraphy, 40(1): 76-84. (in Chinese with English abstract)
    LI Y J, XU Q, YANG G X, et al., 2016a. Intracontinental "lagged arc volcanic rocks" and its geological significance: evidence from early Permian lagged arc magmatism in northern Urho area of western Junggar[J]. Earth Science Frontiers, 23(4): 190-199. (in Chinese with English abstract)
    LI Y J, XU Q, LIU J, et al., 2016b. Redefinition and geological significance of Jiamuhe formation in Hala'alate mountain of west Junggar, Xinjiang[J]. Earth Science, 41(9): 1479-1488. (in Chinese with English abstract)
    LIN W, SUN P, XUE Z H, et al., 2017. Structural analysis of Late Paleozoic deformation of central Dalabutefault zone, west Junggar, China[J]. Acta Petrologica Sinica, 33(10): 2987-3001. (in Chinese with English abstract)
    LIU X Y, LI W F, CHEN R, et al., 2020. Application of multi-source remote sensing data to the prospecting at Nianza gold mine in Tibet[J]. Contributions to Geology and Mineral Resources Research, 35(3): 314-321. (in Chinese with English abstract)
    MA B L, 1987. The stratum and sedimentary environments of Hala'alate mountain area, Xinjiang[J]. Acta Sedimentologica Sinica, 5(4): 66-77. (in Chinese with English abstract)
    PAN M, HAO Y Z, LYU Y, et al., 2019. Application of remote sensing image based on the Ovi map to 1: 50, 000 geological mapping in the Weixin area[J]. Carsologica Sinica, 38(5): 774-784. (in Chinese with English abstract)
    PENG X P, LI Y J, LI W D, et al., 2016. The stratigraphic sequence, fossil assemblage and sedimentary environment of Aladeyikesai formation in Hala'alate mountain, west Junggar[J]. Xinjiang Geology, 34(3): 297-301. (in Chinese with English abstract)
    SHI J B, KANG K Y, ZHANG H S, et al., 2016. Application of SPOT5 data to geological mapping of Mazha tectonic melange belt in West Kunlun Mountains[J]. Remote Sensing for Land & Resources, 28(1): 107-113. (in Chinese with English abstract)
    SU Y J, LI D, 2020. Remote sensing geological interpretation of gangganhar area in east Ujimqin of inner Mongolia[J]. China's Manganese Industry, 38(3): 1-4. (in Chinese with English abstract)
    SUN Z M, HONG T Y, ZHANG T, 2008. Strike-slip-thrust composite structures and its relationships to hydrocarbon in Hala'alate mountains, northern Xinjiang[J]. Chinese Journal of Geology, 43(2): 309-320. (in Chinese with English abstract)
    TONG L L, LI Y J, ZHANG B, et al., 2009. Zircon LA-ICP-MS U-PB dating and geologic age of the Baogutu formation and esite in the south of Daerbute faulted zone, western Junggar[J]. Xinjiang Geology, 27(3): 226-230. (in Chinese with English abstract)
    WANG L M, CHAO W D, LI Y J, et al., 2015. Zircon LA-ICP-MS U-Pb dating and tectonic settings implication of the early Permian intermediate to mafic dyke swarms in Urho area, west Junggar[J]. Xinjiang Geology, 33(3): 297-304. (in Chinese with English abstract)
    WANG X, WANG H P, WANG R, et al., 2019. Geological interpretation of remote sensing images based on data fusion of GF2 and landsat 8: A case study of the Wafangdian 1: 50000 quadrangle map[J]. Geological Review, 65(4): 918-928. (in Chinese with English abstract)
    XIANG K P, LI Y J, LI Z, et al., 2015. LA ICP-MS Zircon age and geochemistry of the aladeyikesai formation volcanic rocks in the Halaalate mountain of west Junggar, Xinjiang, and their tectonic significance[J]. Acta Geologica Sinica, 89(5): 843-855. (in Chinese with English abstract)
    XUE C S, 1997. Application and progress of remote sensing techniques in regional geological surveying[J]. Geological Science and Technology Information, 16(S1): 15-22. (in Chinese with English abstract)
    XUE Y, LIN H X, ZHANG K H, et al., 2017. Tectonic characteristics and genetic simulation of Hala'alate Mountain Area[J]. Geotectonica et Metallogenia, 41(5): 843-852. (in Chinese with English abstract)
    XUE Y, ZHANG K H, WANG Y H, et al., 2015. Techtonic evolution of Hala'alate mountain area and implications in petroleum geology[J]. Xinjiang Petroleum Geology, 36(6): 687-692.
    YANG X C, YE M N, YE P S, et al., 2020. Information construction method of geological survey projects based on digital mapping technology[J]. Journal of Geomechanics, 26(2): 263-270. (in Chinese with English abstract)
    ZHANG Z L, QIN Q M, CAO B, et al., 2007. Application of high-resolution satellite images to extraction of dyke attributes[J]. Geography and Geo-Information Science, 23(3): 15-18. (in Chinese with English abstract)
    ZONG R W, FAN R Y, JIANG T, et al., 2014. New information about the carboniferous Hala'alate formation in western Junggar, Xinjiang[J]. Journal of Stratigraphy, 38(3): 290-298. (in Chinese with English abstract)
    晁文迪, 李永军, 王冉, 等, 2015. 西准噶尔"滞后型"弧岩浆作用: 来自西准东部乌尔禾早二叠世中基性岩墙群的证据[J]. 岩石矿物学杂志, 34(2): 171-183. doi: 10.3969/j.issn.1000-6524.2015.02.004
    陈星, 张学斌, 贾晓青, 等, 2014. SPOT5、ASTER数据的地层、构造信息提取及应用[J]. 辽宁工程技术大学学报(自然科学版), 33(8): 1063-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201408012.htm
    程三友, 陈静, 林海星, 等, 2021. 高分辨率遥感图像几何精校正在高山峡谷区1: 5万地质填图中的应用[J]. 地质通报, 40(4): 520-526. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104008.htm
    樊春, 苏哲, 周莉, 2014. 准噶尔盆地西北缘达尔布特断裂的运动学特征[J]. 地质科学, 49(4): 1045-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201404002.htm
    龚一鸣, 纵瑞文, 2015. 西准噶尔古生代地层区划及古地理演化[J]. 地球科学-中国地质大学学报, 40(3): 461-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201503008.htm
    辜平阳, 陈瑞明, 查显峰, 等, 2016. 高山峡谷区1: 50000地质填图技术方法探索与实践: 以新疆乌什北山为例[J]. 地质力学学报, 22(4): 837-855. doi: 10.3969/j.issn.1006-6616.2016.04.004
    何鹏, 滕学建, 刘洋, 等, 2016. 遥感解译在内蒙古狼山戈壁荒漠地区1: 50000地质填图中的应用[J]. 地质力学学报, 22(4): 882-892. doi: 10.3969/j.issn.1006-6616.2016.04.007
    贺新星, 肖龙, 王国灿, 等, 2015. 西准噶尔晚古生代中基性岩墙群岩石学成因及地质意义[J]. 地球科学-中国地质大学学报, 40(5): 777-796. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201505002.htm
    冀全伟, 王文磊, 刘治博, 等, 2021. 一种基于机器学习算法的岩性填图方法[J]. 地质力学学报, 27(3): 339-349. doi: 10.12090/j.issn.1006-6616.2021.27.03.031
    李德仁, 马洪超, 2001. 地球空间信息技术及其在国土资源调查中的应用[J]. 国土资源情报(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG902.000.htm
    李甘雨, 李永军, 向坤鹏, 等, 2016. 西准噶尔哈拉阿拉特组的重新厘定及区域对比[J]. 地层学杂志, 40(1): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201601009.htm
    李永军, 徐倩, 杨高学, 等, 2016a. 陆内"滞后"弧岩浆岩特征及其地质意义: 来自西准噶尔乌尔禾北早二叠世岩浆作用的证据[J]. 地学前缘, 23(4): 190-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604020.htm
    李永军, 徐倩, 刘佳, 等, 2016b. 新疆西准噶尔哈山地区佳木河组的重新厘定及地质意义[J]. 地球科学, 41(9): 1479-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609004.htm
    林伟, 孙萍, 薛振华, 等, 2017. 西准噶尔达拉布特断裂带中段晚古生代构造分析[J]. 岩石学报, 33(10): 2987-3001. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710001.htm
    刘小雨, 黎文甫, 陈蓉, 等, 2020. 多源遥感数据在西藏念扎金矿地质勘查工作中的应用[J]. 地质找矿论丛, 35(3): 314-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202003007.htm
    马宝林, 1987. 新疆哈拉阿拉特山地区的地层和沉积环境[J]. 沉积学报, 5(4): 66-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198704006.htm
    潘明, 郝彦珍, 吕勇, 等, 2019. 奥维地图遥感影像在威信地区1: 5万地质填图中的应用[J]. 中国岩溶, 38(5): 774-784. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201905017.htm
    彭湘萍, 李永军, 李卫东, 等, 2016. 西准哈拉阿拉特山一带阿腊德依克赛组层序、化石组合及沉积环境[J]. 新疆地质, 34(3): 297-301. doi: 10.3969/j.issn.1000-8845.2016.03.001
    史俊波, 康孔跃, 张辉善, 等, 2016. SPOT5数据在西昆仑麻扎构造混杂岩带填图中的应用[J]. 国土资源遥感, 28(1): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201601017.htm
    苏永江, 李东, 2020. 内蒙古东乌珠穆沁旗冈干哈尔地区遥感地质解译[J]. 中国锰业, 38(3): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM202003001.htm
    孙自明, 洪太元, 张涛, 2008. 新疆北部哈拉阿拉特山走滑-冲断复合构造特征与油气勘探方向[J]. 地质科学, 43(2): 309-320. doi: 10.3321/j.issn:0563-5020.2008.02.007
    佟丽莉, 李永军, 张兵, 等, 2009. 新疆西准噶尔达尔布特断裂带南包古图组安山岩LA-ICP-MS锆石U-Pb测年及地质时代[J]. 新疆地质, 27(3): 226-230. doi: 10.3969/j.issn.1000-8845.2009.03.006
    王乐民, 晁文迪, 李永军, 等, 2015. 西准噶尔乌尔禾早二叠世中基性岩墙群LA-ICP-MS锆石U-Pb测年及构造意义[J]. 新疆地质, 33(3): 297-304. doi: 10.3969/j.issn.1000-8845.2015.03.001
    王烜, 王海鹏, 王然, 等, 2019. 基于GF2号与Landsat8数据融合的遥感图像地质解译: 以1: 5万瓦房店市幅为例[J]. 地质论评, 65(4): 918-928. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201904012.htm
    向坤鹏, 李永军, 李钊, 等, 2015. 新疆西准噶尔哈拉阿拉特山火山岩LA ICP-MS锆石U-Pb年龄、地球化学特征及意义[J]. 地质学报, 89(5): 843-855. doi: 10.3969/j.issn.0001-5717.2015.05.002
    薛重生, 1997. 遥感技术在区域地质调查中的应用研究进展[J]. 地质科技情报, 16(S1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ7S1.002.htm
    薛雁, 张奎华, 王艺豪, 等, 2015. 哈拉阿拉特山地区构造演化及其石油地质意义[J]. 新疆石油地质, 36(6): 687-692. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201506010.htm
    薛雁, 林会喜, 张奎华, 等, 2017. 哈拉阿拉特山地区构造特征及成因机制模拟[J]. 大地构造与成矿学, 41(5): 843-852. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201705004.htm
    杨星辰, 叶梦旎, 叶培盛, 等, 2020. 地质调查成果信息化建设方法探索: 基于数字填图技术[J]. 地质力学学报, 26(2): 263-270. doi: 10.12090/j.issn.1006-6616.2020.26.02.025
    张自力, 秦其明, 曹宝, 等, 2007. 高分辨率遥感影像在岩墙地质体信息提取中的应用[J]. 地理与地理信息科学, 23(3): 15-18. doi: 10.3969/j.issn.1672-0504.2007.03.004
    纵瑞文, 范若颖, 蒋涛, 等, 2014. 西准噶尔石炭系哈拉阿拉特组新知[J]. 地层学杂志, 38(3): 290-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201403004.htm
  • 期刊类型引用(2)

    1. 陈国良,时洪涛,汪云甲,周大伟,刘鑫,王行风,庄会富. 矿山地质环境“天—空—地—人”协同监测与多要素智能感知. 金属矿山. 2023(01): 9-16 . 百度学术
    2. 陶从咏,郭晓宁,于玉帅,许笑玮,张世晖,周文孝,骆满生,朱云海,徐亚东. 基于通道注意力机制的智能地质填图. 工程地球物理学报. 2023(03): 427-436 . 百度学术

    其他类型引用(2)

  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  660
  • HTML全文浏览量:  200
  • PDF下载量:  74
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-04-28
  • 修回日期:  2021-11-28

目录

/

返回文章
返回