SHI Wei, DONG Shuwen, HUANG Xingfu, et al., 2017. JURASSIC DEFORMATION AT THE WESTERN MARGIN OF THE EAST ASIA CONTINENT: A CASE STUDY OF DUCTILE DEFORMATION IN THE CENTRAL SEGMENT OF THE BANGONG CO-NUJIANG BELT. Journal of Geomechanics, 23 (4): 515-525.
Citation: WANG Zhi-hua, DU Ming-liang, GUO Zhao-cheng, et al., 2012. STUDY ON THE GEOMECHANICAL MODEL OF LANDSLIDE WITH LOW DIP ANGLE STRATA STRUCTURE:TAKING FENGDIAN LANDSLIDE AS AN EXAMPLE. Journal of Geomechanics, 18 (2): 97-109, 186.

STUDY ON THE GEOMECHANICAL MODEL OF LANDSLIDE WITH LOW DIP ANGLE STRATA STRUCTURE:TAKING FENGDIAN LANDSLIDE AS AN EXAMPLE

More Information
  • On the basis of research at home and abroad, starting from the landslide mechanism establish geomechanical model of landslides with low dip angle strata, all the parameters in the model, such as landslide size, slip angle, back edge ripping slot seeper depth and so on, were obtained by digital landslide technology and fields investigation and put them into the model formula then landslide critical friction coefficient can be obtained, and landslide total down-slide and total resistance slippery force shall be get. This is the first putting forward the concept of critical friction coefficient and calculating methods, and the coefficient directly related to the slippery ability or stability of the landslide. Analysis shows that the critical friction coefficient and landslide sliding body size (the length and width of the sliding surface), sliding plane obliquity are positive correlation, with landslide weight inversing relationship. The influence of the dip angle of the back wall changing in 60°-90° on slippery ability of the landslide with low angle strata is very weak.

     

  • 东亚大陆经历燕山运动[1~12],受东亚汇聚作用控制,形成了以华北—华南地块为核心的陆缘造山带,即北部蒙古—鄂霍次克造山带、东部陆缘造山带和西部班公湖—怒江造山带[12],陆内则遭受强烈的陆内造山作用[12~25],形成分别以鄂尔多斯地块和四川地块为中心的周缘造山带[18~19]和陆内大尺度的叠加褶皱[20~25],奠定了东亚大陆的基本构造格局[12]

    已有的研究表明,中—晚侏罗世东亚大陆几乎同时受古太平洋板块、特堤斯洋板块、西伯利亚板块汇聚作用,形成了3条陆缘造山带[12~13]。东亚大陆北部蒙古—鄂霍茨克造山带由于其两侧陆块(西伯利亚克拉通和华北克拉通),自西向东呈“剪刀式”汇聚碰撞[3, 26~30],其西部汇聚碰撞始于中侏罗世[29, 31~33],东部的碰撞一直持续到侏罗纪末期或白垩纪初期(175~135 Ma)[28, 32, 34~38],形成与大洋板块俯冲相关的侏罗纪—早白垩世的岩浆岩带[39, 40]。东亚大陆东缘造山带缘于古太平洋板块俯冲作用形成安第斯型造山带[2, 4, 41~45],其来自陆缘增生杂岩的年龄测试表明其主要发育时间为中—晚侏罗世到早白垩世[41, 45~47]。同时大量的东亚陆缘岩浆岩与火山岩[42~44, 47~49]与下白垩统之下的区域性角度不整合[11, 50~53],证实该带形成于中侏罗世—早白垩世期间(170~135 Ma)。

    东亚大陆西缘班公湖—怒江构造带是青藏高原中部分割北侧羌塘地体和南侧拉萨地体的一条地块边界带[54~56]。已有的岩石学研究显示该带南侧拉萨地体经历中侏罗世晚期(170 Ma)和晚白垩世初期(90 Ma)两期变质事件[56~59],但对班公湖—怒江缝合带变形时代与汇聚方向仍然缺乏直接的依据。本文通过对班公湖—怒江构造带中段安多微地块的韧性剪切带开展同构造年代学研究,获得东亚大陆西缘侏罗纪聚合方位与时限。

    班公湖—怒江构造带是分割羌塘地块与拉萨地块的一条巨型构造带,总体走向为南东东—北西西(见图 1),该带既构成古特提斯冈瓦纳大陆与欧亚大陆的分界线,又是三叠纪以来羌塘陆块和冈底斯陆块之间岩石圈结构和组成的重要分界线[54~55, 60~62]。该带西起阿里的班公湖,向东经日土、改则、双湖、东巧、安多、查吾拉、索县、丁青、嘉玉桥转向八宿县上林卡、在穿过左贡扎玉后沿怒江直下与沪水—龙陵结合带相连,再向南穿过滇西瑞丽江进入泰国,可能与清迈—清莱结合带和马来西亚劳勿—文冬结合带相接,中国境内长达2800 km,宽约20~160 km[63]。该带具有明显的布格重力梯度和剩余重力异常梯度,其南北两侧地壳结构、岩石圈厚度、热流值、地表位移量也存在显著差异[64]。班公湖—怒江构造带由前石炭纪变质岩系、古生界、晚三叠世确哈拉组和中—晚侏罗世木嘎岗日群深海复理石沉积岩、断续分布的晚古生代蛇绿岩、早—中侏罗世蛇绿岩以及沿构造侵位的晚三叠世、晚侏罗世—早白世世蛇绿质、泥砂质构造混杂岩组成(见图 2)。沿班公湖—怒江结合带分布有大量的蛇绿质构造混杂岩片,主要由变质橄榄岩、方(二)辉橄榄岩、辉长(绿)岩、枕状玄武岩和伴生的放射虫硅质岩组成。该带西段(班公错—那屋错—改则—色哇段)蛇绿岩呈长条状、透镜状、豆英状,以岩片形式产出,面积几平方公里,彼此间及其与确哈拉组、木嘎岗日群之间呈冲断层或剪切带接触。其中的玄武岩属拉班系列,被早白垩世阿普特—阿尔布期朗山组灰岩、东巧组角度不整合覆盖,蛇绿岩形成于早—中侏罗世(角闪石K-Ar同位素年龄179 Ma)。中段(尼玛—东巧—安多—索县段)蛇绿岩层序保存完好,超基性岩体似豆英状构造侵位于木嘎岗日群中,为早白垩世晚期东巧组不整合覆盖;硅质岩中发育晚侏罗世—早白垩世的放射虫化石,构造侵位时间为早白垩世晚期。东段(索县—巴青—丁青—八宿段)蛇绿岩呈北西西向长条状,由纯橄榄岩、斜辉橄榄岩、斜辉辉橄岩、层状辉长岩、辉绿岩、枕状玄武岩及放射虫硅质岩等岩片组成[56],蛇绿岩形成时代为中—晚侏罗世,构造侵位于中侏罗世末期[65]

    图  1  青藏高原及其邻区构造纲要图与东亚大陆晚中生代构造简图
    F1—喜马拉雅主冲断层;F2—雅鲁藏布江缝合带;F3—班公湖-怒江缝合带;F4—金沙江缝合带;F5—昆仑山断裂带;F6—阿尔金断裂带;F7—海原-祁连山构造带;F8—喀喇昆仑断裂带;F9—龙门山断裂带
    Figure  1.  Tectonic outline map of the Qinghai-Tibet Plateau and its adjacent areas and simplified tectonic map of the East Asia continent in late Mesozoic

    班公湖—怒江构造带中段(安多段)发育平面呈椭圆形的安多-聂荣基底隆起(见图 2),基底主要为新元古代结晶基底(变质年龄为920~820 Ma)和寒武系—奥陶系(540~460 Ma)[56~57],并被早侏罗世花岗岩侵位[66],局部为早白垩世花岗岩侵入[67]。结晶基底以二长片麻岩和斜长片麻岩为主,夹有斜长角闪岩、英云闪长岩等透镜体,发育镁铁质高压麻粒岩相的峰期矿物组合,峰期变质的温-压条件为860~920 ℃和1.5~1.6 Gpa,变质时限为170 Ma[59, 68],指示班公湖—怒江缝合带东段可能形成于中—晚侏罗世[56, 69]。该基底隆起北缘发育蛇绿混杂岩带,内部及边缘发育多条近东西向韧性剪切带,以发育糜棱岩征为特征(见图 2)。

    图  2  班公湖—怒江缝合带中段地质简图[70~71]
    Figure  2.  Geological sketch of the middle segment of the Bangong Co-Nujiang suture belt[70~71]

    构造编图与野外调查表明,安多—聂荣地块内部及其南、北两侧均发育韧性剪切带,剪切带总体上围绕眼球状的基底隆起近东西向展布。本文主要对安多-聂荣基底隆起内部发育的多条近东西—北西向韧性剪切带开展构造变形与构造年代学研究,获得了构造变形和年代学证据。

    野外调查主要对不同方向剪切带进行构造测量,结果显示剪切带面理产状变化较大,但线理产状基本一致,其方位总体上为北东—南西方向。面理和线理构造统计分析,指示安多—聂荣地块韧性剪切带的形成主要受北东—南西向挤压应力场控制(见表 1图 3)。

    表  1  安多—聂荣地块韧性剪切变形测量结果与北东—南西向挤压构造应力场
    Table  1.  Results of ductile shear deformation analysis and the NE-SW direction compressional tectonic stress field in the Ando-Nyainrong block
    点号 经度(E) 纬度(N) 数据量 σ1(az°/pl°) σ2(az°/pl°) σ3(az°/pl°) R
    D20 92°20′01″ 32°07′16″ 19 333/41 085/22 196/39 0.7
    D21 92°18′45″ 32°07′29″ 5 186/34 047/47 292/21 0.7
    D22 92°17′44″ 32°06′26″ 5 153/29 248/08 353/58 0.2
    D25 92°12′14″ 32°03′23″ 4 320/43 111/42 215/15 0.3
    D28 92°04′05″ 31°47′32″ 4 NNE-SSW
    D45 93°06′34″ 31°50′10″ 9 320/18 097/65 225/15 0.1
    D53 91°42′06″ 31°52′51″ 7 244/24 137/33 002/46 0.8
    D55 91°41′49″ 32°06′05″ 4 063/05 157/29 323/59 0.5
    D56 91°42′45″ 32°07′15″ 7 100/17 209/45 355/39 0.5
    D70 91°40′56″ 32°02′05″ 5 030/15 297/11 172/70 0.4
    注:σ1—最大主应力;σ2—中间主应力;σ3—最小主应力;az—倾伏向;pl—倾伏角;R=(σ2-σ3/σ1-σ3)
    下载: 导出CSV 
    | 显示表格
    图  3  安多—聂荣地块韧性剪切带北东—南西向构造应力场特征(下半球等角投影(吴氏网))
    Figure  3.  The characteristics of the NE-SW direction tectonic stress field of the ductile shear belts in the Ando-Nyainrong block

    在位于安多—聂荣微地块西南缘的观测点D53(见图 3),英云闪长岩内发育北东—南西走向的糜棱岩带,沿糜棱面理,黑云母与钾长石呈定向排列,形成矿物线理。糜棱面理总体倾向为北东东向,线理倾伏向为北东向或西南向,旋转碎斑指示剪切方向由南西转向北东。剪切变应力分析指示为北东—南西向挤压(见图 4)。鉴于该点位于眼球状安多—聂荣基底隆起区的西缘,且剪切方向由南向北,可能指示该基底块体南缘在挤压和缩短过程中,主要受其南侧地层仰冲影响。对该点糜棱岩中的同变形矿物钾长石和黑云母进行40Ar/39Ar年代学研究,获得一个白云母的坪年龄为167.1±1.8 Ma(见图 4表 2)。尽管黑云母的40Ar/39Ar年代学测试结果没有形成一个统一的坪年龄,但这些视年龄范围介于160 Ma和168 Ma之间,与钾长石测试结果基本一致。一般认为,钾长石和黑云母的40Ar/39Ar封闭温度介于350 ℃和150 ℃之间[72]。这表明,目前暴露在安多—聂荣微地块西南缘的剪切带的形成深度大约为5~10 km,时间为中—晚侏罗世。

    图  4  安多—聂荣地块西南缘韧性剪切带(观测点D53)40Ar/39Ar坪年龄与等时线年龄
    Figure  4.  40Ar/39Ar plateau age and isochron age of the ductile shear belts at the southwest margin of the Ando-Nyainrong block(Site D53)
    表  2  安多—聂荣地块西南缘韧性剪切带(观测点D53)40Ar/39Ar坪年龄与等时线年龄
    Table  2.  40Ar/39Ar plateau age and isochron age of the ductile shear belts at the southwest margin of the Ando-Nyainrong block(Site D53)
    T/℃ (40Ar/ 39Ar) m (36Ar/ 39Ar) m (37Ar 0/ 39Ar) m (38Ar/ 39Ar) m 40Ar/% F 39Ar/10 -14mol 39Ar(Cum.)/% Age/Ma ±1σ/Ma
    D53-1钾长石 W=27.71 mg J=0.002684 Total age=161.0Ma
    700 165.8118 0.1561 0.7508 0.0540 72.22 119.8151 0.06 0.33 503.0 5.9
    800 31.5490 0.0041 0.0206 0.0137 96.14 30.3332 1.28 6.84 141.2 1.4
    860 28.0541 0.0010 0.0474 0.0129 98.90 27.7466 0.80 10.93 129.6 1.3
    920 28.3819 0.0031 0.1538 0.0141 96.81 27.4801 0.62 14.06 128.4 1.3
    980 28.7767 0.0015 0.1156 0.0130 98.46 28.3349 0.35 15.83 132.2 1.4
    1040 30.5556 0.0048 0.0293 0.0139 95.30 29.1211 0.64 19.07 135.8 1.4
    1100 34.8159 0.0072 0.0410 0.0148 93.85 32.6757 1.03 24.32 151.6 1.5
    1160 37.8379 0.0090 0.0237 0.0147 92.95 35.1694 1.65 32.70 162.7 1.6
    1210 38.8774 0.0080 0.0170 0.0147 93.90 36.5066 3.23 49.13 168.6 1.6
    1260 38.2769 0.0067 0.0052 0.0142 94.83 36.2989 6.82 83.80 167.7 1.6
    1290 37.4411 0.0059 0.0204 0.0141 95.33 35.6945 2.62 97.10 165.0 1.6
    1330 37.8766 0.0080 0.1179 0.0146 93.74 35.5089 0.43 99.27 164.2 1.7
    1400 40.3533 0.0196 0.3614 0.0165 85.72 34.5995 0.14 100.00 160.2 2.4
    D56-1黑云母 W=33.07 mg J=0.002735 Total age=165.6Ma
    700 56.7666 0.1419 1.2378 0.0440 26.28 14.9359 0.06 0.37 72.2 5.2
    760 36.0626 0.0190 0.1219 0.0169 84.48 30.4678 1.00 6.30 144.4 1.4
    800 36.3997 0.0037 0.0783 0.0139 96.99 35.3058 1.61 15.86 166.3 1.6
    840 36.1519 0.0021 0.0000 0.0133 98.24 35.5169 1.64 25.62 167.3 1.6
    880 36.0022 0.0024 0.1252 0.0138 98.05 35.3049 1.15 32.45 166.3 1.6
    920 36.0515 0.0017 0.0771 0.0134 98.59 35.5449 1.15 39.31 167.4 1.6
    960 36.0165 0.0019 0.1006 0.0134 98.47 35.4710 1.13 46.01 167.0 1.6
    1000 36.2395 0.0019 0.0167 0.0131 98.46 35.6825 1.13 52.75 168.0 1.6
    1040 35.9673 0.0014 0.0470 0.0134 98.82 35.5425 2.20 65.84 167.4 1.6
    1080 36.0125 0.0015 0.0312 0.0133 98.78 35.5726 2.63 81.46 167.5 1.6
    1200 36.1565 0.0014 0.0076 0.0130 98.88 35.7507 2.96 99.05 168.3 1.6
    1400 39.5904 0.0179 0.7467 0.0179 86.78 34.3776 0.16 100.00 162.1 2.3
    注:表中下标m代表样品中测定的同位素比值,F=40Ar*/39Ar, is the ratio of radiogenic Argon40 and Argon39
    下载: 导出CSV 
    | 显示表格

    在安多—聂荣微地块西北缘(观测点D56),其结晶基底发育北东东走向韧性剪切带,糜棱面理主体倾向东,石英脉剪切变形特征指示由北东向南西剪切。结合该观测点位置,可以大致确定安多-聂荣地块北缘的变形以由北向南仰冲为特征。对糜棱面理上发生定向排列的黑云母进行了单矿物分离和40Ar/39Ar年代学测试,获得的坪年龄为167.1±1.1 Ma,等时线年龄为167.8±2.1 Ma,与反等时线年龄在误差范围内一致(见图 5表 2),表明这期构造事件发生在中—晚侏罗世(大约167 Ma)。

    图  5  安多—聂荣地块西北缘韧性剪切带(观测点D56)40Ar/39Ar坪年龄与等时线年龄
    Figure  5.  40Ar/39Ar plateau age and isochron age of the ductile shear belts at the northwest margin of the Ando-Nyainrong block(Site D56)

    上述对安多—聂荣地块同构造年代学结果表明,班公湖-怒江缝合带中段构造变形主要受北东—南西向构造挤压作用控制,变形方式在浅表以安多—聂荣微地块为中心,两侧地壳同时向地块仰冲缩短,其变形时代发生于中侏罗世中期(大约167 Ma)。

    大量的研究表明,班公湖—怒江带作为中特提斯洋闭合界线[60],是拉萨地块与羌塘地块于侏罗纪—白垩纪汇聚结果[56~58, 73]。但实际上班公湖—怒江带的闭合过程并非有统一时限,越来越多的研究表明,班公湖—怒江古大洋可能经历了呈剪刀式的东早西晚的穿时闭合过程[74~75],在班公湖—怒江带东段北北西走向的鲜水河断裂带,断裂带西侧发育170 Ma的同构造淡色花岗岩。且其构造解析结果显示,其变形时代为中侏罗世[76]。而班公湖—怒江带西段一般在早白垩世晚期闭合[56~57, 77],在改则地区至少在早白垩世晚期(大约106 Ma)地壳仍然正在生长[78]。在班公湖—怒江带中段,该带南侧拉萨地体经历中侏罗世晚期(170 Ma)和晚白垩世初期(90 Ma)两期变质事件[56~58],内部安多—聂荣陆块也记录侏罗纪变质事件,出现镁铁质高压麻粒岩的峰期矿物组合(单斜辉石+石榴石+石英+金红石),峰期变质的温-压条件为860~920 ℃和1.5~1.6 Gpa,变质时间为170 Ma[59, 68]。拉萨地块发育早白垩世(140~120 Ma)过铝质和强过铝质(S型)花岗岩[56, 69],这可能与拉萨地体和羌塘地体的碰撞(J3—K1)引起地壳增厚之后的减压熔融有关,这次汇聚导致在拉萨地块的南部和北部至少持续缩短约187 km[79]。前文对班公湖-怒江带中段分析表明,该段以北东—南西向汇聚为主,变形特征在地壳浅部表现为以安多—聂荣地块为中心,南北两侧分别向该地块仰冲,深部则可能表现为该地块南北两侧的中特提斯洋壳向南北的双向俯冲[80]

    已有的班公湖—怒江带的研究为其形成演化提供了大量岩石学和深部信息,本次研究选取班公湖—怒江带中段安多—聂荣地块,其韧性剪切带的构造测量与同构造年代学研究表明,班公湖—怒江缝合带形成于中—晚侏罗世羌塘地块与拉萨地块近南北向汇聚碰撞构造背景下,为恢复东亚大陆西缘侏罗纪构造提供了依据。这些侏罗纪构造变形过程可能与班公湖—怒江缝合带两侧的拉萨地块和羌塘地块之间的碰撞有关。虽然其具体特征还需要进一步的深入研究和验证,但上述构造和年代学资料无疑具有一定的借鉴意义。

    本文通过安多—聂荣地块韧性剪切带的构造测量与同构造年代学研究,获得以下结论:(1) 班公湖—怒江带中段形成于中侏罗世中期(167 Ma);(2) 班公湖—怒江带中段形成于羌塘地块与拉萨地块北东—南西向汇聚碰撞的构造背景下。这一研究为重建东亚大陆西缘侏罗纪构造格局提供了关键构造证据。

    致谢: 本论文野外工作得到中国地质科学院研究生陆露和赵珍的大力协助,中国地质科学院地质研究所完成了40Ar/39Ar年龄测试,在此深表感谢。
  • [1]
    黄润秋, 李曰国.三峡库区水平岩层岸坡变形破坏机制的数值模拟研究[J].地质灾害与环境保护, 1991, 2(2):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB199102004.htm

    HUANG Run-qiu, LI Yue-guo. Numerical simulation on mechanisms of reservoir slope deformation and failure in the Three Gorges Reservoir[J]. Geological Hazards and Environment Preservation, 1991, 2(2):23~31. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB199102004.htm
    [2]
    伍四明, 李曰国.万县滑坡群形成机制的数值模拟研究[J].水文地质工程地质, 1994, (6):14~17. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG406.005.htm

    WU Si-ming, LI Yue-guo. Numerical simulation on formation mechanisms of landslides in Wanxian County[J]. Hydrogeology and Engineering Geology, 1994, (6):14~17. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG406.005.htm
    [3]
    李保雄, 苗天德.红层软岩滑坡运移机制[J].兰州大学学报:自然科学版, 2004, 40(3):94~98. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200403020.htm

    LI Bao-xiong, MIAO Tian-de. The sliding mechanism of red-mudstone layer landslides[J]. Journal of Lanzhou University:Natural Sciences, 2004, 40(3):94~98. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200403020.htm
    [4]
    殷坤龙, 吴益平.三峡库区一个特殊古滑坡的综合研究[J].中国地质灾害与防治学报, 1998, 9(S):200~206. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH8S1.031.htm

    YIN Kun-long, WU Yi-ping. The comprehensive study of a special ancient landslide in Three Gorges Reservoir Area[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(S):200~206. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH8S1.031.htm
    [5]
    简文星, 殷坤龙, 马昌前, 等.万州侏罗纪红层软弱夹层特征[J].岩土力学, 2005, 26(6):901~906. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200506017.htm

    JIAN Wen-xing, YIN Kun-long, MA Chang-qian, et al. Characteristics of incompetent beds in Jurassic red clastic rocks in Wanzhou[J]. Rock and Soil Mechanics, 2005, 26(6):901~906. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200506017.htm
    [6]
    王志俭, 殷坤龙, 简文星.万州区红层软弱夹层蠕变试验研究[J].岩土力学, 2007, 28(增刊):40~44. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1008.htm

    WANG Zhi-jian, YIN Kun-long, JIAN Wen-xing. Experimental research on creep of incompetent beds in Jurassic red clastic rocks in Wanzhou[J]. Rock and Soil Mechanics, 2007, 28(Supp.):40~44. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1008.htm
    [7]
    刘军, 秦四清, 张倬元.缓倾角层状岩体失稳的尖点突变模型研究[J].岩土工程学报, 2001, 23(1):42~44. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200101008.htm

    LIU Jun, QIN Si-qing, ZHANG Zhuo-yuan. Study on catastrophic model with cusp point for failure of stratified rock mass with a gentle inclination[J]. Chinese Journal Geotechnical Engineering, 2001, 23(1):42~44. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200101008.htm
    [8]
    黄润秋, 赵松江, 宋肖冰, 等.四川省宣汉县天台乡滑坡形成过程和机理分析[J].水文地质工程地质, 2005, (1):13~15. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200501003.htm

    HUANG Run-qiu, ZHAO Song-jiang, SONG Xiao-bing, et al. The formation and mechanism analysis of Tiantai landslide, Xuanhan County, Sichuan Province[J]. Hydrogeology and Engineering Geology, 2005, (1):13~15. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200501003.htm
    [9]
    吉随旺, 张倬元, 王凌云, 等.近水平软硬互层斜坡变形破坏机制[J].中国地质灾害与防治学报, 2000, 11(3):49~52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200003011.htm

    JI Sui-wang, ZHAGN Zhuo-yuan, WANG Ling-yun, et al. The mechanism of deformation and failure for the slope composed of nearly horizontal competent and incompetent intercalated rock mass strata[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(3):49~52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200003011.htm
    [10]
    范宣梅, 许强, 黄润秋, 等.四川宣汉天台特大滑坡的成因机理及排水工程措施研究[J].成都理工大学学报:自然科学版, 2006, 33(5):448~454. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200605001.htm

    FAN Xuan-mei, XU Qiang, HUANG Run-qiu, et al. The formation mechanism of the Tiantai landslide induced by precipitation in Xuanhan, Sichuan and the design of drainage[J]. Journal of Chendu University of technology:Science & Technology Edition, 2006, 33(5):448~454. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200605001.htm
    [11]
    范宣梅, 许强, 张倬元, 等.平推式滑坡成因机制研究[J].岩石力学与工程学报, 2008, 27(z2):3753~3759. doi: 10.3321/j.issn:1000-6915.2008.z2.067

    FAN Xuan-mei, Xu Qiang, ZHANG Zhuo-yuan, et al. Study on genetic mechanism of translational landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(z2):3753~3759. doi: 10.3321/j.issn:1000-6915.2008.z2.067
    [12]
    缪海波, 殷坤龙, 李远耀.近水平地层滑坡平面失稳模型与破坏判据研究[J].水文地质工程地质, 2009, 36(1):69~74. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200901020.htm

    MIAO Hai-bo, YIN Kun-long, LI Yuan-yao. Study on plane instability model and failure criterion of horizontal-strata landslide[J]. Hydrogeology and Engineering Geology, 2009, 36(1):69~74. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200901020.htm
    [13]
    胡新丽, 殷坤龙.大型水平顺层滑坡形成机制数值模拟方法——以重庆钢铁公司古滑坡为例[J].山地学报, 2001, 19(2):175~179. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200102016.htm

    HU Xin-lin, YIN Kun-long. Study on the numerical simulation method of large translational landslide in horizontal sedimentary rocks:Taking Chongqing Iron & Steel Co. landslide as an example[J]. Journal of Mountain Science, 2001, 19(2):175~179. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200102016.htm
    [14]
    成国文, 李善涛, 李晓, 等.万州近水平地层区堆积层滑坡成因与变形破坏特征[J].工程地质学报, 2008, 16(3):304~310. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200803004.htm

    CHENG Guo-wen, LI Shan-tao, LI Xiao, et al. Forming causes and deformation-destruction characters of accumulative stratum landslide in horizontal stratum in Wanzhou[J]. Journal of Engineering Geology, 2008, 16(3):304~310.. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200803004.htm
    [15]
    Hart M W.Bedding-parallel shear zones as landslide mechanisms in horizontal sedimentary rocks[J]. Environmental and Engineering Geoscience, 2000, 6(2):95~113. doi: 10.2113/gseegeosci.6.2.95
    [16]
    Petley D N, Bulmer M H, Murphy W. Patterns of movement in rotational and translational landslides[J]. Geology, 2002, 30(8):719~722. doi: 10.1130/0091-7613(2002)030<0719:POMIRA>2.0.CO;2
    [17]
    Muller J R, Martel S J. Numerical models of translational landslide rupture surface growth[J]. Pure and Applied Geophysics, 2000, 157(6~8):1009~1038. doi: 10.1007/s000240050015
    [18]
    四川地质局航空区域地质调查队. 简阳幅1: 20万区域地质图(H-48-15). 1981.

    Geological Bureau of Sichuan Airlines Regional Geological Survey Team. 1:200000 regional geological map of Jianyang site(H-48-15). 1981.
    [19]
    中国科学院成都山地灾害与环境研究所滑坡室. 中江县冯店公社三大队滑坡调查简报[R]. 成都: 中国科学院成都山地灾害与环境研究所, 1974.

    Landslide Department of Institute of Mountain Hazards and Environment, CAS. Investigation report of landslide in the three group of Fengdian town, Zhongjiang County[R]. Chengdu:Institute of Mountain Hazards and Environment, CAS, 1974.
    [20]
    钟仕科, 吴大江.简明物理手册[M].南昌:江西人民出版社, 1982.

    ZHONG Shi-ke, WU Da-jiang. Simple physical manual[M]. Nanchang:Jiangxi People's Publishing House, 1982.
    [21]
    叶金汉.岩石力学参数手册[M].北京:水利电力出版社, 1991.

    YE Jin-han. Handbook of rock mechanics parameters[M]. Beijing:Water Conservancy and Electric Power Press, 1991.
  • Relative Articles

    HU Jianmin, WANG Wei, ZHAO Yue, LIU Xiaochun, CHEN Hong, DONG Xiaopeng. 2021: Sequence and tectonic deformation process of metamorphic complex in the Larsemann Hills, East Antarctica. Journal of Geomechanics, 27(5): 719-735. doi: 10.12090/j.issn.1006-6616.2021.27.05.059
    WANG Lei, LI Xiaobo, SU Zhandong, CHANG Chaoyu, PENG Da. 2019: APPLICATION OF HIGH-DENSITY ELECTRICAL METHOD IN LOESS-MUDSTONE INTERFACE LANDSLIDE INVESTIGATION. Journal of Geomechanics, 25(4): 536-543. doi: 10.12090/j.issn.1006-6616.2019.25.04.052
    XU Xingwang, NIU Lei, HONG Tao, KE Qiang, LI Hang, WANG Xuehai. 2019: TECTONIC DYNAMICS OF FLUIDS AND METALLOGENESIS. Journal of Geomechanics, 25(1): 1-8. doi: 10.12090/j.issn.1006-6616.2019.25.01.001
    SUN Jian, SUN Dongliang. 2017: THE GEOCHEMICAL CHARACTERISTICS AND TECTONIC SIGNIFICANCE OF LA-ICP-MS ZIRCON U-PB DATING OF YAMATUO INTRUSIVE ROCKS, QINHAI PROVINCE. Journal of Geomechanics, 23(4): 567-576.
    NIMA Ciren, WANG Guocan, DU Dun, PU Chi, Ciren Yangzong, JIAO Wenlong, Li Kaiyun, YE Qiang, LUOSANG Langjie, DA Wa. 2017: ZIRCON U-PB AGES, GEOCHEMICAL CHARACTERISTICS AND TECTONICS IMPLICATIONS OF LATE JURASSIC INTERMEDIATE INTRUSIVE ROCKS IN SHIQUANHE AREA, WESTERN TIBET. Journal of Geomechanics, 23(5): 673-685.
    WU Ze-dong, Xue Ai-min, Cao Ding-tao. 2013: CONTACT ALGORITHM OF 3D MECHANICAL FINITE ELEMENT MODELING FOR SEPARATION OF OVERBURDEN LAYERS AND ITS APPLICATION. Journal of Geomechanics, 19(3): 325-333.
    SUN Zhan-qang, LIU De-liang, ZHENG De-san, YANG Xao-yong, WANG Bai-chang, CHEN Yong-jian, ZHANG Giao-dong, TAN Ying, LE Zhen-sheng. 2001: THE STUDY OF RELEASING AND QUANTITATIVE CALCULATION OF CO2 UNDER THE CONTACT METAMORPHOSE EFFECT. Journal of Geomechanics, 7(2): 144-150.
    HU Bao-qun, WANG Fang-zheng, XIAO Long. 2000: A PRESSURE MODEL FOR ULTRAHIGH-PRESSURE METAMORPHISM. Journal of Geomechanics, 6(3): 63-68.
    Zhu Dagang, Lü Guxian, Guo Chusun, Deng Jun, Lu Anhuai, Zhang Zhenjiang. 1998: TECTONIC-LITHOFACIES FEATURES OF GOLD DEPOSIT OF METAMORPHIC ROCK TYPE IN EASTERN SHANDONG AND ITS ORE-CONTROLLING. Journal of Geomechanics, 4(2): 67-74.
    Zhang Fan, Pan Lizhou. 1996: NUMERICAL TREATMENT OF MEASURING GROUND STRESS BY THE BOREHOLE DEFORMATION METHOD USING PRE-PRESSED PROBES OF CONTACT TYPE. Journal of Geomechanics, 2(2): 75-82.
    Chen Changyan, Wang Sijing, Wang Guirong, Hang Kexing. 1996: CENOZOIC EXTENSIONAL TECTONIC SYSTEM CONTROL OF THE UNDERGROUND WATER IN ORDOVICIAN LIMESTONE IN EAST WEIBEI, SHAANXI PROVINCE. Journal of Geomechanics, 2(4): 21-30.
    Wang Zhishun, Zhu Dagang. 1995: A PRELIMINARY NOTE ON DYNAMOMETAMORPHISM DUE TO TECTONIC FORCES. Journal of Geomechanics, 1(1): 60-66.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0305101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.1 %FULLTEXT: 17.1 %META: 76.3 %META: 76.3 %PDF: 6.7 %PDF: 6.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %United States: 0.8 %United States: 0.8 %上海: 0.4 %上海: 0.4 %北京: 1.7 %北京: 1.7 %南昌: 0.4 %南昌: 0.4 %台州: 0.8 %台州: 0.8 %广州: 0.4 %广州: 0.4 %张家口: 7.1 %张家口: 7.1 %昆明: 0.8 %昆明: 0.8 %湖州: 0.4 %湖州: 0.4 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 26.7 %芒廷维尤: 26.7 %苏州: 0.4 %苏州: 0.4 %衢州: 1.3 %衢州: 1.3 %西宁: 47.9 %西宁: 47.9 %金华: 0.4 %金华: 0.4 %其他United States上海北京南昌台州广州张家口昆明湖州福州秦皇岛芒廷维尤苏州衢州西宁金华

Catalog

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (272) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return