LIU Wei, YU Chuan-mou, 2009. CHARACTERISTICS OF FAULTS IN THE PU-WEI RING DEPRESSION AND ITS CONTRIBUTION TO MIGRATION AND ACCUMULATION OF OIL AND GAS. Journal of Geomechanics, 15 (2): 190-200.
Citation: ZHANG Duo, WU Zhong-hai, LI Jia-cun, et al., 2013. AN OVERVIEW ON EARTHQUAKE-INDUCED LANDSLIDE RESEARCH. Journal of Geomechanics, 19 (3): 225-241.

AN OVERVIEW ON EARTHQUAKE-INDUCED LANDSLIDE RESEARCH

More Information
  • Earthquake induced landslide is one of the most common geological disasters in great earthquake of continent internal mountain. It not only has large amount and great scale, but also causes serious damage for human activities. So, it is extraordinarily significant to analysis the earthquake induced landslide for evaluating the seismic risk. This paper scientifically concludes the research status of landslide at domestic and overseas, based on the law of earthquake induced landslide development and dynamics mechanism. Then, it summarizes the 3S technique specific application to the landslides.

     

  • 东濮凹陷位于渤海湾盆地西南临清坳陷的南部, 凹陷内发育规模和活动周期不尽相同的断裂, 这些断裂的长期继承性发育不仅控制了东濮凹陷的形成和发育, 也控制了盆地内油气分布与富集[1~7]。濮卫环洼带隶属于东濮凹陷中央隆起带, 为北部卫东-文东断裂系和濮城-陈营断裂系相向下落所形成的“断洼型”负向构造单元, 地质结构复杂, 储层空间展布变化大。目前, 构造高部位的勘探程度较高, 而洼陷带勘探程度还较低。因此, 深入研究该区断裂特征及其对油气运聚的作用, 对滚动勘探开发和隐蔽油气藏勘探具有重要意义。渤海湾及其周缘乃至华北地区油气成藏条件与油气运聚过程研究日亦深入, 已取得许多新成果[8~19]可以借鉴。

    卫东-文东断裂系由复杂的卫东断裂破碎带和文东断层、文51断层等组成(图 1表 1)。

    图  1  濮卫环洼带主要断裂分布图
    Figure  1.  Distribution chart of main faults in the Pu-Wei ring depression
    表  1  濮卫环洼带主要断裂要素表
    Table  1.  Main fault elements in Pu-Wei ring depression
    下载: 导出CSV 
    | 显示表格

    (1) 卫东断层

    由3条呈雁行式排列的断层组成, 是一组东倾的滑脱性大断层, 北起古云集地区, 南至卫70井附近消失。断层在沙二下亚段沉积晚期产生, 至东营组沉积末期停止活动。断层走向NNE, 倾向SEE, 倾角15~50°, 落差为50~1130m。剖面上, 在沙三段盐层顺层滑动, 并在盐层内消失, 向下不切割基底。卫东断层下降盘伴生一系列反向“Y”字型次级断层, 从深层到浅层多期发育, 明显控制沙二段、沙一段及东营组等地层的沉积。

    (2) 文东断层

    文东断层是环洼带南部的西界断层, 向南断层落差逐渐增大。在研究区内, 断层走向NE、倾向SE, 延伸长度5km, 剖面上表现为上缓下陡, 落差为30~250m, 沙三下亚段沉积末期开始活动, 沙三中沉积期强烈活动, 至东营组沉积末期停止活动。

    (3) 文51断层

    属于卫东断层的伴生断层, 与卫东断层斜交, 呈反“ Y”形, 断层走向NEE, 倾向NWW, 倾角10~40°, 落差50~260m, 南大北小, 延伸长度约2.5km, 于沙二上至沙一期活动, 沙二上沉积期对沉积的控制作用明显。

    濮城-陈营断裂系展布于濮城和陈营地区, 发育濮城南断层、濮67断层、濮31断层、濮138断层和陈营断层(见图 1表 1)。

    (1) 濮城南断层

    断层走向NE, 倾向NW, 倾角25~60°, 落差50~560m, 延伸长度大于8.5km。断层活动时间为沙三中亚段早期至东营组沉积期。

    (2) 濮67断层

    濮67断层位于濮城-陈营断裂系的中段, 与濮城南断层和陈营断层首尾相接, 走向NNE, 倾向NWW, 延伸长度约10km。剖面上具有上陡下缓的特点, 倾角20~60°, 断层落差为50~360m, 北大南小。产生于沙三中亚段沉积期, 结束于沙二上亚段沉积末期。

    (3) 濮31断层

    濮31断层断面下陡上缓, 为濮67断层的伴生断层, 从沙三中后期一直活动至东营组沉积期。断层走向NNE、倾向NWW, 倾角40~60°, 落差50~200m, 延伸长度约10km。

    (4) 濮138断层

    位于濮31断层的西侧, 断层走向NNE向, 倾向NWW, 倾角40~60°, 落差为50~350m, 延伸长度约8km。剖面上, 向深部交接到濮67断层上。断层活动时间为沙三中-上亚段沉积期。

    (5) 陈营断层

    陈营断层是一条切割基底的区域性控制沉积断层, SN走向、倾向正西, 断层落差为50 ~1000m, 南端小、北端大, 延伸长度约10km。断裂活动开始于沙三下亚段沉积早期, 结束于沙二上亚段沉积晚期, 沙三下-中期剧烈活动。陈营断层与濮67断层呈雁行式排列, 向北斜交于古云集的云3断层。

    目前主要采用断层生长指数、断层落差、断层活动速率等参数来定量表示断层的活动性[20~22]。濮卫环洼带主要断层生长指数和断层落差统计表明, 同一条断层的不同部位、甚至同一部位的不同时期, 其活动性都存在着较大的差异。

    卫东断层是卫东-文东断裂系的主体, 沙二上亚段至东营组沉积期间, 持续较强的断裂活动, 是一条长期活动的控洼断层。卫东三号断层活动范围最广泛, 活动强度大, 断层最大落差高达1130m。东营组沉积期, 卫东断层的活动性最强, 断层中段生长指数高达3.5, 在601测线上断层落差达518m。沿走向分段性明显, 断层中段活动强度最大, 向两端活动性减弱(图 2ab)。

    图  2  濮卫环带主要断层生长指数与落差直方图
    Figure  2.  The growth index and paleo-fall bar chart of the main faults in the Pu-Wei ring depression

    濮城南断层位于濮城-陈营断裂系南端, 活动时间较长, 但整体活动性较弱, 最大落差为560m。沙三中-上亚段沉积期是该断裂主要活动期, 活动范围最广泛, 最大生长指数为1.8, 901测线上的断层落差达460m。沙二下开始活动强度逐渐减弱, 活动范围也缩小至中南部, 至东营期仅在1001测线附近活动, 落差为60m (图 2cd)。

    濮67断层活动时间相对较短, 沙三中-上亚段沉积时期断层活动最为强烈, 沙二下次之, 沙二上活动强度最小。沙三中-上亚段沉积时期, 在701~801测线附近活动性最强, 断层生长指数近1.8, 最大落差达360m, 为濮卫环洼带早期的控洼断裂之一(图 2ef)。

    濮31断层活动时间长, 不同时期、不同部位的断层活动强度变化较大。从断层生长指数来看, 沙三中-上沉积期断层活动性最强, 沙二下开始断层活动相对减弱, 沙一和东营期仅在741测线附近活动, 断层活动微弱。(图 2g)。

    濮138断层活动时间较短, 沙三中亚段沉积期断层活动强度弱, 至沙三上亚段沉积期断层活动较为强烈, 且向西南方向活动性增强(图 2h)。

    断层和连通砂体是濮卫环洼带最主要的运移通道, 二者共同构成了断层型、断-砂组合型油气输导体系, 它们在平面分布以及成藏模式上均具有较大的差异。

    (1) 断层输导体系

    该输导体系类型分布较为局限, 仅分布于文明寨的主体高部位、濮城断阶带和卫城卫东断层附近, 其中以文明寨主体部位最具代表性。文明寨主体构造位置较高, 自身生烃能力差, 区内断裂发育, 由于卫东断层沟通了烃源岩和储集层, 油气沿断层面向上垂向运移, 在适当部位聚集成藏, 油气的垂向运移距离远远大于侧向运移距离。

    据地层水矿化度对比分析, 濮卫环洼带沙二段地层水具有异常高矿化度, 其值与下部沙三段地层水矿化度较接近。平面上, 异常高矿化度的CaCl2型地层水主要沿濮31、濮城南、卫东断层分布(图 3), 表明这些断层是流体运移的主要通道, 它们沟通了深部的地层, 使高矿化度地层水沿断裂带向上运移。

    图  3  濮卫环洼带沙二段异常高矿化度地层水平面分布图
    Figure  3.  Distribution of exceedingly high-mineralization water in Sha-2 Member in the Pu-Wei ring depression

    然而, 断层输导体系若输送大量的油气, 往往需要断层沟通有效烃源岩, 且在烃源岩层系内存在大量的砂体, 这些砂体可以汇聚生烃层系的油气, 然后借助于断层的沟通作用向上部垂向运移, 运移至地层倾角不大的地层进入断层面两侧砂体中形成油气藏。

    (2) 断-砂复合输导体系

    断层与砂体相互配置构成了濮卫环洼带运载油气的主要输导体系, 分布范围较广, 在卫城和濮城的主体部位最具代表性。目前已经发现的濮城油田、濮城南地区的文213含油气区等, 均具有此类运聚特征。

    濮卫环洼带砂岩厚度较大, 断-砂匹配关系良好, 构成了良好的输导体系。该区域的多套砂岩储层呈层状分布于洼陷内及斜坡带, 纵向上每套输导层之上均有泥岩和盐岩盖层封隔, 以侧向输导为主(图 4)。此时, 砂体主要起运移通道的作用, 而断层主要起阻挡油气, 并调节油气运移层系和方向的作用。因此, 随着油气运移层系的不断变浅, 运移动力具有明显的衰减, 在断层活动停止、封堵条件较好的地区聚集成藏, 形成主断层附近的构造-地层油气藏和远离主断层的边部岩性油气藏。

    图  4  断-砂输导体系剖面模式图
    Figure  4.  A model for the fault-sand transforming system

    断层活动时间与大规模油气运聚时间的匹配关系, 决定了断层在油气运移成藏中的贡献, 同时也决定了油气藏的分布特征[23]。濮卫环洼带烃源岩生排烃史、油气藏饱和压力及流体包裹体分析表明, 东营组沉积期沙三段烃源岩已经进入生烃门限, 是油气生成和成藏高峰期。东营组地层的剥蚀, 使烃源岩热演化生烃受到抑制甚至停止。新近纪以来研究区再次下沉接受沉积, 至新近纪晚期发生明显的二次生烃作用, 但此时构造活动弱, 生排烃量相对较小。故该地区成藏关键时期是在东营组沉积时期[24]

    ① 高平.濮卫洼陷岩性油气藏成藏规律与精细勘探[R].河南濮阳:中原油田分公司勘探开发科学研究院, 2008.

    濮卫环洼带主要断层活动时间与油气运移期对比分析表明(表 2), 卫东断层活动时间长, 油气大规模运移时期强烈活动, 与成藏时间匹配好, 是油气从深层向浅层运移的重要通道。文东、濮31及濮城南等断层活动强度微弱, 活动范围局限, 但与油气大规模运移时间相匹配, 可充当油气运移的有效通道。文51、濮67、濮138和陈营等断层活动时间较早, 东营期已经停止活动或基本停止活动, 主要对油气的聚集成藏起圈闭遮挡的作用。

    表  2  濮卫环洼带主要断层活动时间与油气运移期对比表
    Table  2.  Comparison of growth index to main fault and migration phase of the hydrocarbon
    下载: 导出CSV 
    | 显示表格

    此外, 断层本身活动的不均衡性也使油气运聚成藏情况复杂化。同一条断层(或断层的某一段)在不同时期或不同部位, 由于活动强度的不一致, 对油气成藏所起的作用也不尽相同, 某一时期作为油气运移的通道, 输导油气, 另一时期则成为阻止油气运移的屏障, 使油气在断层附近聚集成藏。

    (1) 濮卫环洼带主要发育卫东-文东断裂系和濮城-陈营断裂系, 均为较大规模的二级断裂。卫东-文东断裂系由复杂的卫东断裂破碎带和文东断层、文51断层等组成, 濮城-陈营断裂系自东而西发育陈营断层、濮67断层、濮城南断层、濮31断层和濮138断层。

    (2) 卫东、文东、濮城南及濮31等断层活动时间较长, 活动强度不一致, 与成藏时间匹配好, 是油气从深层向浅层运移的重要通道, 文东、濮31及濮城南等断层可充当油气运移的有效通道。

    (3) 断层和连通砂体构成了断层型、断-砂组合型油气输导体系。断层型输导体系沟通了烃源岩和储集层, 增强了油气垂向运移能力, 断-砂组合型油气输导体系以侧向输导为主, 断层主要起阻挡油气, 并调节油气运移层系和方向的作用。这些结论对本区油气田滚动勘探开发有重要意义。

  • [1]
    Keefer D K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 1984, 95(4):406~421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
    [2]
    李为乐, 伍霁, 吕宝雄.地震滑坡研究回顾与展望[J].灾害学, 2011, 26(3):103~108. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201103021.htm

    LI Wei-le, WU Ji, LÜ Bao-xiong. Research on landslide triggered by earthquake:Review and prospect[J]. Journal of Catastrophology, 2011, 26(3):103~108. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201103021.htm
    [3]
    黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报, 2009, 28(6):1239~1249. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906023.htm

    HUANG Run-qiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1239~1249. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906023.htm
    [4]
    李树德.活动断层分段研究[J].北京大学学报:自然科学版, 1999, 35(6):768~773. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199906006.htm

    LI Shu-de. Study on segmentation of active faults[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999, 35(6):768~773. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199906006.htm
    [5]
    Keefer D K, Wilson R C. Predicting earthquake-induced landslides, with emphasis on arid semi-arid environments[C]//Sadler P M, Morton D M. Landslides in a semi-arid environment with emphasis on the inland Valleys of Southern California. California:Publications of the Inland Geological Society, 1989.
    [6]
    Rodíigueza C E, Bommer J J, Chandler R J. Earthquake-induced landslides:1980-1997[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(5):325~346. doi: 10.1016/S0267-7261(99)00012-3
    [7]
    Papadopoulos G A, Plessa A. Magnitude-distance relations for earthquake-induced landslides in Greece[J]. Engineering Geology, 2000, 58(3-4):377~386. doi: 10.1016/S0013-7952(00)00043-0
    [8]
    Prestininzi A, Romeo R. Earthquake-induced ground failures in Italy[J]. Engineering Geology, 2000, 58(3-4):387~397. doi: 10.1016/S0013-7952(00)00044-2
    [9]
    李天池. 地震与滑坡的关系及地震滑坡预测探讨[C]//滑坡文集, 第二集. 北京: 中国铁道出版社, 1979: 127~132.

    LI Tian-chi. The relationship between earthquakes and landslides and explore seismic landslide forecast[C]//Landslide Anthology, Episode 2. Beijing:China Railway Publishing House, 1979:127~132.
    [10]
    周本刚, 王裕明.中国西南地区地震滑坡的基本特征[J].西北地震学报, 1994, 16(1):95~103. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ401.016.htm

    ZHOU Ben-gang, WANG Yu-ming. Some characteristics of earthquake-induced landslide in southwestern China[J]. Northwestern Seismological Journal, 1994, 16(1):95~103. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ401.016.htm
    [11]
    孙崇绍, 蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报, 1997, 6(1):25~30. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH701.004.htm

    SUN Chong-shao, CAI Hong-wei. Developing and distributing characteristics of collapses and landslides during strong historic earthquake in China[J]. Journal of Natural Disasters, 1997, 6(1):25~30. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH701.004.htm
    [12]
    辛鸿博, 王余庆.岩土边坡地震崩滑及其初判准则[J].岩土工程学报, 1999, 21(5):591~594. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199905014.htm

    XIN Hong-bo, WANG Yu-qing. Earthquake induced landslide and avalanche[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5):591~594. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199905014.htm
    [13]
    Owen L A, Kamp U, Khattak G A, et al. Landslides triggered by the 8 October 2005 Kashmir earthquake[J]. Geomorphology, 2008, 94(1-2):1~9. doi: 10.1016/j.geomorph.2007.04.007
    [14]
    Masahiro Chigira, Hiroshi Yagii. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan[J]. Engineering Geology, 2006, 82(4):202~221. doi: 10.1016/j.enggeo.2005.10.006
    [15]
    Liao H W, Lee C T. Landslides triggered by the Chi-Chi earthquake, Asian association on remote sensing, Asian conference on remote sensing ACRS 2000[EB/OL]. (2002-01-13)[2010-10-23]. http://www.gisdevelopment.net/aars/acrs/2000/ts8/hami0007.asp.
    [16]
    Hiroshi P S, Hiroyuki H, Fujiwara S, et al. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT5 imagery[J]. Landslides, 2007, 4(2):113~122. doi: 10.1007/s10346-006-0069-5
    [17]
    康来迅.昌马断裂带滑坡之研究[J].内陆地震, 1988, 2(4):376~381. http://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ198804005.htm

    KANG Lai-xun. Study on the characteristics of landslide of Changma fault zone[J]. Inland Earthquake, 1988, 2(4):376~381. http://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ198804005.htm
    [18]
    黄润秋, 李为乐."5. 12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 2008, 27(12):2585~2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Run-qiu, LI Wei-le. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12):2585~2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
    [19]
    许强, 李为乐.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报, 2010, 18(6):818~826. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006002.htm

    XU Qiang, LI Wei-le. Distribution of large-scale landslide induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(6):818~826. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006002.htm
    [20]
    吴树仁, 石菊松, 姚鑫, 等.四川汶川地震地质灾害活动强度分析评价[J].地质通报, 2008, 27(11):1900~1906. doi: 10.3969/j.issn.1671-2552.2008.11.020

    WU Shu-ren, SHI Ju-song, YAO Xin, et al. Analysis and evaluation of geohazard intensity of the Wenchuan earthquake, Sichuan, China[J]. Geological Bulletin of China, 2008, 27(11):1900~1906. doi: 10.3969/j.issn.1671-2552.2008.11.020
    [21]
    刘洪兵, 朱晞.地震中地形放大效应的观测和研究进展[J].世界地震工程, 1999, 15(3):20~25. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htm

    LIU Hong-bing, ZHU Xi. Advances on topographic amoplification effects of seismic response[J]. World Information on Earthquake Engineering, 1999, 15(3):20~25. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htm
    [22]
    Celebi M. Topographic and geological amplification determined from strong motion and aftershock records of 3 March 1985 Chile earthquake[J]. Bulletin of the Seismological Society of America, 1987, 77(4):1141~1147.
    [23]
    Hartzell S H, Carver D L, King K W. Initial investigation of site and topographic effects at Robinwood Ridge, California[J]. Bulletin of the Seismological Society of America, 1994, 84(5):1336~1349.
    [24]
    Hutchinson J N. General report:Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology[C]//Bonnard C. Proceedings of the 5th International Symposium on Landslides. Lausanne:Rotterdam/Brookfield, 1988:3~35.
    [25]
    周维垣.高等岩石力学[M].北京:水利电力出版社, 1990.

    ZHOU Wei-yuan. Advanced rock mechanics[M]. Beijing:China Water Power Press, 1990.
    [26]
    胡广韬.滑坡动力学[M].北京:地质出版社, 1995.

    HU Guang-tao. Landslide dynamics[M]. Beijing:Geological Publishing House, 1995.
    [27]
    张倬元, 王士天, 王兰生.工程地质分析原理[M].北京:地质出版社, 1993.

    ZHANG Zhuo-yuan, WANG Shi-tian, WANG Lan-sheng. Principle of engineering geological analysis[M]. Beijing:Geological Publishing House, 1993.
    [28]
    毛彦龙, 胡广韬, 毛新虎, 等.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质报, 2001, 9(1):74~80. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200101012.htm

    MAO Yan-long, HU Guang-tao, MAO Xin-hu, et al. Mechanism of set-out violent-slide of slope mass during earthquake and its simulation by using discrete element method[J]. Journal of Engineering Geology, 2001, 9(1):74~80. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200101012.htm
    [29]
    祁生文, 伍法权, 刘春玲, 等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报, 2004, 23(16):2792~2796. doi: 10.3321/j.issn:1000-6915.2004.16.024

    QI Sheng-wen, WU Fa-quan, LIU Chun-ling, et al. Engineering geology analysis of seismic slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16):2792~2796. doi: 10.3321/j.issn:1000-6915.2004.16.024
    [30]
    Shin Aoi, Takashi Kunugi, Hiroyuki Fujiwara. Trampoline effect in extreme ground motion[J]. Science, 2008, 322:727~730. doi: 10.1126/science.1163113
    [31]
    唐春安, 左宇军, 秦泗凤, 等. 汶川地震中的边坡浅层散裂与抛射模式及其动力学解释[C]//第十届全国岩石力学与工程学术大会论文集. 北京: 中国电力出版社, 2009: 258~262.

    TANG Chun-an, ZUO Yu-jun, QIN Si-feng, et al. Slope in Wenchuan earthquake shallow spallation and projectile model and dynamic interpretation[C]//Proceedings of the 10th Academic Conference of Rock Mechanics and Engineering. Beijing:China Electric Power Press, 2009:258~262.
    [32]
    殷跃平.汶川八级地震地质灾害研究[J].工程地质学报, 2008, 16(4):433~444. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200904001024.htm

    YIN Yue-ping. Researchs on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4):433~444. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200904001024.htm
    [33]
    黄润秋, 李为乐.汶川地震触发地质灾害的断层效应分析[J].工程地质学报, 2009, 17(1):19~28. http://www.cnki.com.cn/Article/CJFDTOTAL-CSDI201508040.htm

    HUANG Run-qiu, LI Wei-le. Faulty effect analysis of geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1):19~28. http://www.cnki.com.cn/Article/CJFDTOTAL-CSDI201508040.htm
    [34]
    黄润秋, 向喜琼, 巨能攀.我国区域地质灾害评价的现状及问题[J].地质通报, 2004, 23(11):1078~1082. doi: 10.3969/j.issn.1671-2552.2004.11.005

    HUANG Run-qiu, XIANG Xi-qiong, JU Neng-pan. Assessment of China's regional geohazards:Present situation and problems[J]. Geological Bulletin of China, 2004, 23(11):1078~1082. doi: 10.3969/j.issn.1671-2552.2004.11.005
    [35]
    Terzaghi K, Peek R B. Soil mechanics in engineering practice[M]. New York:John Wile, 1948.
    [36]
    Seed H B. Landslides during earthquakes due to soil liquefaction[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(SM5):1053~1122.
    [37]
    丁彦慧, 王余庆, 孙进忠.地震崩滑与地震参数的关系及其在边坡震害预测中的应用[J].地球物理学报, 1999, 42(S1):101~107. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1999S1014.htm

    DING Yan-hui, WANG Yu-qing, SUN Jin-zhong. Correlation between landslides and seislides and seismic parameters and its application in predicting slope earthquake disaster[J]. Chinese Journal of Geophysics, 1999, 42(S1):101~107. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1999S1014.htm
    [38]
    Newmark N M. Effects of earthquake on dams and embankments[J]. Geotechnique, 1965, 15(2):139~160. doi: 10.1680/geot.1965.15.2.139
    [39]
    Wieczorek G F, Wilson R C, Harp E L. Map showing slope stability during earthquakes in San Mateo County, California[C]//US Geological Survey. Miscellaneous investigation maps. Reston:USGS, 1985:I-1257-E.
    [40]
    Jibson R W, Keefer D K. Analysis of the seismic origin of landslide:Examples from the New Madrid seismic zone[J]. Geological Society of American Bulletin, 1993, 105(4):521~536. doi: 10.1130/0016-7606(1993)105<0521:AOTSOO>2.3.CO;2
    [41]
    Broecker W S. Abrupt climate change:Causal constraints provided by the paleoclimate record[J]. Earth Science Reviews, 2000, 51(1-4):137~154. doi: 10.1016/S0012-8252(00)00019-2
    [42]
    Ambraseys N N, Menu J M. Earthquake-induced ground displacements[J]. Earthquake Engineering and Structural Dynamics, 1988, 16(7):985~1006. doi: 10.1002/(ISSN)1096-9845
    [43]
    Jibson R W. Predicting earthquake-induced landslide displacement using Newmarks Sliding Block Analysis[M]//Transportation Research Board Business Office. Transportation research record No.1411:Earthquake-induced ground failure hazards. Washington, DC:Transportation Research Board, 1993:9~17.
    [44]
    黄润秋.灾害性崩滑地质过程的全过程模拟[J].中国地质灾害与防治学报, 1994, (增1):11~17, 29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH4S1.001.htm

    HUANG Run-qiu. Full-course Simulation of Hazardous Rockfalls and Avalanches[J]. The Chinese Journal of Geological Hazard and Control, 1994, (Supp.1):11~17, 29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH4S1.001.htm
    [45]
    刘忠玉, 马崇武, 苗天德, 等.高速滑坡远程预测的块体运动模型[J].岩石力学与工程学报, 2000, 19(6):742~746. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200006011.htm

    LIU Zhong-yu, MA Chong-wu, MIAO Tian-de, et al. Kinematic block model of long run-out prediction for high-speed landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6):742~746. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200006011.htm
    [46]
    邬爱清, 林绍忠, 马贵生, 等.唐家山堰塞坝形成机制DDA模拟研究[J].人民长江, 2008, 39(22):91~95. doi: 10.3969/j.issn.1001-4179.2008.22.033

    WU Ai-qing, LIN Shao-zhong, MA Gui-sheng, et al. DDA simulation research for formation mechanism of Tangjiashan barrier lake[J]. Yangtze River, 2008, 39(22):91~95. doi: 10.3969/j.issn.1001-4179.2008.22.033
    [47]
    崔芳鹏, 胡瑞林, 殷跃平, 等.纵横波时差耦合作用的斜坡崩滑效应离散元分析——以北川唐家山滑坡为例[J].岩石力学与工程学报, 2010, 29(2):319~327. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002015.htm

    CUI Fang-peng, HU Rui-lin, YIN Yue-ping, et al. Discrete element analysis of collapsing and sliding response of slope triggered by time difference coupling effects of P and S seismic waves:Taking Tangjiashan landslide in Beichuan County for Example[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2):319~327. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002015.htm
    [48]
    曹琰波, 戴福初, 许冲, 等.唐家山滑坡变形运动机制的离散元模拟[J].岩石力学与工程学报, 2011, 30(增1):2878~2887. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm

    CAO Yan-po, DAI Fu-chu, XU Chong, et al. Discrete element simulation of deformation mechanism of Tangjiashan landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Supp.1):2878~2887. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
    [49]
    王兰民, 孙军杰, 徐舜华, 等.爆破模拟地震动条件下黄土场地震陷研究[J].岩石力学与工程学报, 2008, 27(5):913~921. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805008.htm

    WANG Lan-min, SUN Jun-jie, XU Shun-hua, et al. Characteristics of seismic subsidence of loess induced by blasting ground motion[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5):913~921. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805008.htm
    [50]
    许冲, 戴福初, 徐锡伟.汶川地震滑坡灾害研究综述[J].地质论评, 2010, 56(6):860~874. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm

    XU Chong, DAI Fu-chu, XU Xi-wei. Wenchuan earthquake-induced landslides:An overview[J]. Geological Review, 2010, 56(6):860~874. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
    [51]
    郝立贞, 白世彪, 徐红波, 等.基于CBERS-02卫星数据的地震滑坡识别——以青川县为例[J].防灾科技学院学报, 2010, 12(4):46~52. http://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201004010.htm

    HAO Li-zhen, BAI Shi-biao, XU Hong-bo, et al. Landslide identification after earthquake based on CBERS-02 remote sensing data:The case of Qingchuan[J]. Journal of Institute of Disaster Prevention, 2010, 12(4):46~52. http://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201004010.htm
    [52]
    沈永林, 李晓静, 吴立新.基于航空影像和LiDAR数据的海地地震滑坡识别研究[J].地理与地理信息科学, 2011, 27(1):16~20. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201101005.htm

    SHEN Yong-lin, LI Xiao-jing, WU Li-xin. Detection of Haiti earthquake induced landsides from aerial images and LiDAR data[J]. Geography and Geo-Information Science, 2011, 27(1):16~20. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201101005.htm
    [53]
    石菊松, 吴树仁, 石玲.遥感在滑坡灾害研究中的应用进展[J].地质论评, 2008, 54(4):505~514. http://www.cnki.com.cn/Article/CJFDTOTAL-KJZF201508104.htm

    SHI Ju-song, WU Shu-ren, SHI Ling. Remote sensing for landslide study:An Overview[J]. Geological Review, 2008, 54(4):505~514. http://www.cnki.com.cn/Article/CJFDTOTAL-KJZF201508104.htm
    [54]
    曾庆利, 张西娟, 杨志法.云南虎跳峡"滑石板"岩质滑坡的基本特征与成因[J].自然灾害学报, 2007, 16(3):1~6.

    ZENG Qing-li, ZHANG Xi-juan, YANG Zhi-fa. Principal characteristics and formation mechanism of plate type rock landslide in Hutiao-Gorge, Yunnan[J]. Journal of Natural Disasters, 2007, 16(3):1~6.
    [55]
    杨文涛, 汪明, 史培军.利用NDVI时间序列识别汶川地震滑坡的分布[J].遥感信息, 2012, 27(6):45~56. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201206010.htm

    YANG Wen-tao, WANG Ming, SHI Pei-jun. Identification of landslides in Wenchuan earthquake affected region using NDVI time series[J]. Remote Sensing Information, 2012, 27(6):45~56. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201206010.htm
    [56]
    花利忠, 崔胜辉, 李新虎, 等.汶川大地震滑坡体遥感识别及生态服务价值损失评估[J].生态学报, 2008, 28(12):5909~5916. doi: 10.3321/j.issn:1000-0933.2008.12.017

    HUA Li-zhong, CUI Sheng-hui, LI Xin-hu, et al. Remote sensing identification of earthquake trigged landsides and their impacts on ecosystem services:A case study of Wenchuan County[J]. Acta Ecologica Sinica, 2008, 28(12):5909~5916. doi: 10.3321/j.issn:1000-0933.2008.12.017
    [57]
    Hervás J, Barredo J I, Rosin P L, et al. Monitoring landslides from optical remotely sensed imagery:The case history of Tessina landslide, Italy[J]. Geomorphology, 2003, 54(1-2):63~75. doi: 10.1016/S0169-555X(03)00056-4
    [58]
    LIN Wen-Tzu, CHOU Wen-Chieh, LIN Chao-Yuan, et al. Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan[J]. Forest Ecology and Management, 2005, 210(1-3):55~66. doi: 10.1016/j.foreco.2005.02.026
    [59]
    万保峰, 袁水华, 苏建平.基于纹理分析的滑坡遥感图像识别[J].地矿测绘, 2009, 25(2):11~14. http://www.cnki.com.cn/Article/CJFDTOTAL-DKCH200902003.htm

    WAN Bao-feng, YUAN Shui-hua, SU Jian-ping. Remote sensing image recognition of landslide based on texture analysis[J]. Surveying and Mapping of Geology and Mineral Resource, 2009, 25(2):11~14. http://www.cnki.com.cn/Article/CJFDTOTAL-DKCH200902003.htm
    [60]
    李松, 李亦秋, 安裕伦.基于变化检测的滑坡灾害自动识别[J].遥感应用, 2010, (1):27~31. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201001007.htm

    LI Song, LI Yi-qiu, AN Yu-Lun. Automatic recognition of landslides based on change detection[J]. Remote Sensing Application, 2010, (1):27~31. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201001007.htm
    [61]
    傅文杰, 洪金益.基于支持向量机的滑坡灾害信息遥感图像提取研究[J].水土保持研究, 2006, 13(4):120~122. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY200604037.htm

    FU Wen-jie, HONG Jin-yi. Discussion on application of support vector machine technique in extraction of information on landslide hazard from remote sensing images[J]. Research of Soil and Water Conservation, 2006, 13(4):120~122. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY200604037.htm
    [62]
    陈晓利, 赵健, 叶洪.应用径向基概率神经网络研究地震滑坡[J].地震地质, 2006, 28(3):430~439. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200603010.htm

    CHEN Xiao-li, ZHAO Jian, YE Hong. Application of rbpnn in the research of earthquake-induced landslide[J]. Seismology and geology, 2006, 28(3):430~439. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200603010.htm
    [63]
    Biswajeet Pradhan, Saro Lee. Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model[J]. Earth Science Frontiers, 2007, 14(6):143~152. doi: 10.1016/S1872-5791(08)60008-1
    [64]
    Kamp U, Growley B J, Khattak G A, et al. GIS-based landslide susceptiblility mapping for the 2005 Kashmir earthquake region[J]. Geomorphology, 2008, 101(4):631~642. doi: 10.1016/j.geomorph.2008.03.003
    [65]
    许冲, 徐锡伟, 于贵华.基于证据权方法的玉树地震滑坡危险性评价[J].地震地质, 2013, 35(1):151~164. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201301015.htm

    XU Chong, XU Xi-wei, YU Gui-hua. The Yushu earthquake triggered landslide hazard evaluation based on weight of evidence method[J]. Seismology and geology, 2013, 35(1):151~164. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201301015.htm
    [66]
    Ali Uromeihy, Maryam Fattahi. Landslide hazard zonation of Babolrood Watershed, Iran[C]//Asia-Pacific Chemical, Biological & Environmental Engineering Society. Proceedings of 2nd International Conference on Environmental Science and Technology. Singapore:IACSIT Press, 2011:318~320.
    [67]
    王余庆, 高艳平, 辛鸿博.用灰色聚类方法预测边坡稳定性研究[J].工业建筑, 2002, 32(6):44~47. http://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200206014.htm

    WANG Yu-qing, GAO Yan-ping, XIN Hong-bo. A research on prediction of seismic stability of slopes by grey clustering method[J]. Industrial Construction, 2002, 32(6):44~47. http://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200206014.htm
    [68]
    许冲, 戴福初, 徐素宁, 等.基于逻辑回归模型的汶川地震滑坡危险性评价与检验[J].水文地质工程地质, 2013, (3):98~104. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201303021.htm

    XU Chong, DAI Fu-chu, XU Su-ning, et al. Application of logistic regression model on the Wenchuan earthquake triggered landslide hazard mapping and its validation[J]. Hydrogeology & Engineering Geology, 2013, (3):98~104. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201303021.htm
    [69]
    高艳平, 王余庆, 辛鸿博.神经元网络在预测边坡地震稳定性中的应用[J].辽宁工程技术大学学报:自然科学版, 2001, 20(4):431~433. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200104015.htm

    GAO Yan-ping, WANG Yu-qing, XIN Hong-bo. The application of the artificial neural network in prediction of slope seismic stability[J]. Journal of Liaoning Technical University:Natural Science Edition, 2001, 20(4):431~433. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200104015.htm
    [70]
    樊伟, 杨军, 刘廷廷.灰色神经网络组合模型及在滑坡预测中的应用[J].人民长江, 2005, 36(11):48~50. doi: 10.3969/j.issn.1001-4179.2005.11.018

    FAN Wei, YANG Jun, LIU Ting-ting. Gray neural network model and its application in landslide forecast[J]. Yangtze River, 2005, 36(11):48~50. doi: 10.3969/j.issn.1001-4179.2005.11.018
    [71]
    Yesilnacar E, Topal T. Landslide susceptibility mapping:A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region, Turkey[J]. Engineering Geology, 2005, 79(3-4):251~266. doi: 10.1016/j.enggeo.2005.02.002
    [72]
    庄涛.我国地震防灾减灾科普教育的瓶颈及对策分析[J].国际地震动态, 2013, (4):30~34. http://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201304008.htm

    ZHUANG Tao. Bottleneck and countermeasures of the popular science education on earthquake disaster prevention and mitigation in China[J]. Recent Developments in World Seismology, 2013, (4):30~34. http://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201304008.htm
  • 加载中

Catalog

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (551) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return