
Citation: | ZHANG Duo, WU Zhong-hai, LI Jia-cun, et al., 2013. AN OVERVIEW ON EARTHQUAKE-INDUCED LANDSLIDE RESEARCH. Journal of Geomechanics, 19 (3): 225-241. |
大宝山钼多金属矿床是粤北地区最重要的多金属矿床之一。从开采至今已半个多世纪,目前矿区内已探明的资源量已经极度短缺,矿山生产面临严重危机,寻找可接替资源成为当前的首要任务。本文以大宝山矿区的岩性、构造、蚀变及矿化为重点,结合它们与成矿作用之间相互关系,对大宝山矿区外围——白面山成矿预测区开展地质找矿工作。通过对白面山地区的野外地质调查,发现该区断裂构造发育,中基性岩脉广泛分布。沿断裂带及其两侧围岩产生多种类型、不同程度的蚀变及矿化。对区内断裂构造、岩浆活动及与矿化、蚀变特征之间相互关系的研究认为,预测区内成矿条件较好,找矿潜力大。因此,将其圈定为大宝山矿田内首个找矿预测区,开展进一步研究。采集围岩(蚀变灰岩)及岩浆岩(石英闪长玢岩、辉绿岩)样品,进行等离子体质谱(ICP-MS)分析。通过对样品中的成矿元素、微量和稀土元素地球化学特征以及与成矿作用之间关系的研究,结合该区成矿地质特征和相关物化探工作的研究成果,开展综合分析,对白面山地区进行找矿预测。
白面山地区位于广东省韶关市曲江区大坑口乡,隶属大宝山钼多金属矿床矿田,距大宝山矿区西南约7 km。区域构造位置位于华南褶皱系与湘粤桂褶皱带南缘,粤北古生代凹陷带和吴川—四会深大断裂带内,地处北东向北江断裂带和东西向大东山—贵东断裂带的交汇处,曲仁盆地南缘。
研究区出露地层主要为上泥盆统东岗岭组、天子岭组的灰岩、泥灰岩、生物碎屑灰岩、白云岩;下石炭统帽子峰组、大赛坝组和长来组的粉砂质泥岩、泥灰岩等(见图 1)。
区内构造以断裂为主,褶皱不发育。断裂构造主要发育北东向、北西向和近东西向3组,以北西向断裂为主。区内发育3条近平行的北西向断裂,倾向南西,倾角50°~80°,具有多期活动的特征;东西向断裂为北东、北西2组断裂的次级断裂,多终止于与北东向或北西向断裂交汇处。受区域性深大断裂带长期活动的影响,中基性岩脉较发育,主要为石英闪长玢岩脉和辉绿岩脉,分别沿北西向和北东向断裂产出。其中石英闪长玢岩脉条数较多,宽度较大,10~50 m不等,延伸较远;辉绿岩脉发育较少,宽度相对较小,一般小于10 m。
研究区内断裂构造发育,伴随岩浆活动,地表沿断裂带发育大面积的蚀变、矿化现象。矿化、蚀变是围岩遭受岩浆热液活动影响最直观的表现形式。蚀变类型包括白云岩化、硅化以及少量方解石化、重晶石化。其中白云岩化、硅化最为发育。大部分蚀变都具有2种或2种以上蚀变类型共生的特征。矿化主要表现为黄铁矿化、褐铁矿化、方铅矿化、闪锌矿化、辉锑矿化以及少数铜蓝矿化、金银矿化等。金属矿物呈细脉状、浸染状。黄铁矿化最多,与其他金属矿物以伴生或共生的方式产出;方铅矿化、闪锌矿化也相对集中,表现为多个矿化点;其他类型矿化极为分散,偶尔可见。矿化与蚀变受热液活动影响共同产出于断裂带内或断裂带附近,呈带状分布。
本文样品均采自于断裂带内或断裂带附近具有一定程度蚀变、矿化的灰岩及相对新鲜的石英闪长玢岩、半氧化状态的辉绿岩,包括12块蚀变灰岩样品,2块石英闪长玢岩样品,2块辉绿岩样品(其中1块氧化成为铁帽)。测试分析其成矿元素、微量和稀土元素含量,研究其地球化学元素特征。
样品由核工业北京地质研究院分析测试研究中心测试。将测定的样品粉碎、研磨到0.074 mm(200目)以下粉末备用。称取样品0.05 g放入25 mL专用溶样罐中,先用少量水湿润,轻轻震动使样品均匀,加入1 mL氢氟酸,3 mL硝酸,1 mL高氯酸,盖上专用溶样罐盖,在低温电热板上以200 ℃恒温加热溶解,待样品分解后,打开溶样罐,在低温电热板上加热蒸至近干,滴加2滴高氯酸,再次蒸至近干,后加入1:1硝酸3 mL,盖上专用溶样罐盖焖置一段时间。用1%硝酸提取至50 mL容量瓶中,摇匀后采用美国热电公司ELEMENT XR等离子体质谱(ICP-MS)分析仪利用在线内标(Rh)法对样品进行分析测试,测试结果见表 1—表 4。
序号 | 岩性 | Rb | Ba | Th | U | Ta | Nb | La | Ce | Sr | Nd | Zr | Hf | Sm | Y | Yb | Lu | Mo | Tl | Bi | Cd | Sb | W | Zr/Hf | Nb/Ta |
B004 | 中厚层灰黑色灰岩 | 6.950 | 17.300 | 0.565 | 1.120 | 0.164 | 0.540 | 2.050 | 4.030 | 663 | 1.800 | 6.130 | 0.168 | 0.372 | 1.870 | 0.163 | 0.024 | 0.166 | 0.078 | 0.047 | 0.206 | 0.675 | 1.200 | 36.488 | 3.293 |
B016 | 厚层状灰黑色灰岩 | 27.800 | 333.0 | 2.360 | 1.370 | 0.205 | 2.330 | 6.320 | 12.70 | 415 | 5.850 | 30.70 | 0.815 | 1.240 | 5.620 | 0.596 | 0.097 | 0.418 | 0.267 | 0.221 | 0.317 | 5.700 | 0.590 | 37.669 | 11.367 |
B043 | 厚层状灰白色灰岩 | 7.690 | 3488.0 | 0.762 | 0.463 | 0.045 | 0.514 | 4.770 | 9.000 | 410 | 3.890 | 6.820 | 0.222 | 0.804 | 3.730 | 0.341 | 0.057 | 0.248 | 0.326 | 1.240 | 0.791 | 3.330 | 0.441 | 30.721 | 11.422 |
B054-2 | 厚层状灰白色灰岩 | 17.500 | 64.2 | 1.560 | 0.830 | 0.122 | 1.590 | 3.220 | 6.630 | 180 | 2.960 | 23.10 | 0.657 | 0.634 | 3.150 | 0.366 | 0.061 | 0.138 | 0.137 | 0.095 | 11.40 | 3.030 | 0.670 | 35.160 | 13.033 |
B057-1 | 灰白色灰岩 | 14.200 | 49.5 | 2.600 | 1.230 | 0.162 | 2.100 | 8.540 | 16.70 | 392 | 8.200 | 25.20 | 0.737 | 1.710 | 8.030 | 0.682 | 0.107 | 0.976 | 0.131 | 0.134 | 0.089 | 2.520 | 0.303 | 34.193 | 12.963 |
B058 | 土黄色泥质灰岩 | 16.100 | 90.2 | 2.100 | 0.513 | 0.164 | 1.840 | 4.800 | 10.80 | 250 | 5.590 | 13.90 | 0.395 | 1.550 | 8.250 | 0.644 | 0.093 | 0.499 | 0.133 | 0.166 | 0.180 | 2.890 | 0.455 | 35.190 | 11.220 |
B077 | 中厚层灰白色灰岩 | 8.220 | 25.1 | 0.709 | 1.230 | 0.039 | 0.527 | 3.690 | 6.470 | 336 | 2.520 | 8.350 | 0.243 | 0.474 | 2.190 | 0.210 | 0.039 | 0.674 | 0.154 | 0.076 | 0.188 | 1.240 | 0.271 | 34.362 | 13.513 |
B081 | 厚层灰白色灰岩 | 23.400 | 57.6 | 1.920 | 0.997 | 0.194 | 2.220 | 8.960 | 15.10 | 488 | 6.060 | 27.10 | 0.794 | 1.080 | 4.850 | 0.496 | 0.077 | 1.010 | 0.216 | 0.466 | 0.368 | 16.20 | 0.657 | 34.131 | 11.443 |
B0128 | 中厚层状灰岩 | 39.900 | 232.0 | 2.560 | 1.010 | 0.154 | 2.030 | 9.970 | 16.60 | 151 | 8.830 | 26.00 | 0.783 | 2.190 | 10.20 | 1.060 | 0.158 | 0.224 | 0.269 | 0.267 | 0.175 | 2.810 | 0.821 | 33.206 | 13.182 |
B0153 | 厚层状灰白色灰岩 | 5.210 | 27.30 | 0.828 | 0.705 | 0.095 | 1.060 | 3.550 | 6.890 | 531 | 3.180 | 18.60 | 0.483 | 0.666 | 3.470 | 0.305 | 0.047 | 0.322 | 0.093 | 0.160 | 27.20 | 1.840 | 0.323 | 38.509 | 11.158 |
B0159 | 中厚层状微晶灰岩 | 1.780 | 51.90 | 0.128 | 0.273 | 0.020 | 0.097 | 1.540 | 2.310 | 466 | 0.966 | 1.160 | 0.036 | 0.173 | 0.924 | 0.062 | 0.010 | 0.118 | 0.047 | 0.057 | 2.930 | 1.080 | 0.101 | 32.222 | 4.850 |
B0185 | 方解石化泥晶灰岩 | 5.920 | 35.30 | 0.569 | 0.942 | 0.049 | 0.448 | 1.720 | 2.920 | 527 | 1.270 | 5.670 | 0.157 | 0.245 | 1.360 | 0.130 | 0.023 | 0.227 | 0.105 | 0.072 | 1.460 | 1.140 | 0.276 | 36.115 | 9.143 |
注:B0153号样品为预测区内石英闪长玢岩岩脉南侧采集的铅锌矿石 |
序号 | 岩性 | Rb | Ba | Th | U | Ta | Nb | La | Ce | Sr | Nd | Zr | Hf | Sm | Y | Yb | Lu | Mo | Tl | Bi | Cd | Sb | W | Zr/Hf | Nb/Ta |
B020 | 石英闪长玢岩 | 35.2 | 100 | 3.15 | 0.802 | 1.74 | 26.2 | 64.8 | 84.5 | 24.8 | 90.3 | 433 | 11.8 | 22.4 | 103 | 9.09 | 1.38 | 0.681 | 0.34 | 0.023 | 0.656 | 24.10 | 1.21 | 36.695 | 15.057 |
B032 | 石英闪长玢岩 | 29.3 | 24.8 | 1.95 | 0.423 | 1.33 | 19.8 | 16.3 | 42.5 | 89.3 | 32.5 | 202 | 5.88 | 8.49 | 48.2 | 4.3 | 0.599 | 0.86 | 0.257 | 0.036 | 0.388 | 33.70 | 5.12 | 34.354 | 14.887 |
B0165 | 辉绿岩 | 1.95 | 11.2 | 0.161 | 0.639 | 0.012 | 0.106 | 1.61 | 2.96 | 516 | 1.2 | 1.07 | 0.033 | 0.202 | 0.9 | 0.072 | 0.013 | 0.061 | 0.031 | 0.084 | 0.389 | 0.708 | 0.08 | 32.424 | 8.833 |
B0176 | 辉绿岩 | 10.8 | 4608 | 1.51 | 1.26 | 0.062 | 0.673 | 10.3 | 25.6 | 9.7 | 12.3 | 16.4 | 0.518 | 3.02 | 8.11 | 1.03 | 0.148 | 1.21 | 0.428 | 0.158 | 0.604 | 7.75 | 0.504 | 31.660 | 10.855 |
注:B0165号辉绿岩样品发育褐铁矿化,B0176号样品氧化成为铁帽 |
序号 | 岩性 | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE | LREE | HREE | LREE/HREE | (La/Yb)N | δEu | δCe |
B004 | 中厚层灰黑色灰岩 | 2.050 | 4.030 | 0.456 | 1.800 | 0.372 | 0.072 | 0.327 | 0.054 | 0.324 | 0.061 | 0.165 | 0.030 | 0.163 | 0.024 | 9.928 | 8.780 | 1.148 | 7.648 | 9.020 | 0.617 | 0.980 |
B016 | 厚层状灰黑色灰岩 | 6.320 | 12.700 | 1.430 | 5.850 | 1.240 | 0.215 | 1.010 | 0.173 | 1.000 | 0.195 | 0.545 | 0.102 | 0.596 | 0.097 | 31.473 | 27.755 | 3.718 | 7.465 | 7.610 | 0.569 | 0.990 |
B043 | 厚层状灰白色灰岩 | 4.770 | 9.000 | 0.968 | 3.890 | 0.804 | 0.284 | 0.730 | 0.118 | 0.727 | 0.139 | 0.364 | 0.065 | 0.341 | 0.057 | 22.257 | 19.716 | 2.541 | 7.759 | 10.030 | 1.112 | 0.970 |
B054-2 | 厚层状灰白色灰岩 | 3.220 | 6.630 | 0.760 | 2.960 | 0.634 | 0.124 | 0.556 | 0.098 | 0.607 | 0.116 | 0.326 | 0.063 | 0.366 | 0.061 | 16.521 | 14.328 | 2.193 | 6.533 | 6.310 | 0.624 | 1.000 |
B057-1 | 灰白色灰岩 | 8.540 | 16.700 | 2.050 | 8.200 | 1.710 | 0.347 | 1.440 | 0.253 | 1.460 | 0.286 | 0.724 | 0.118 | 0.682 | 0.107 | 42.617 | 37.547 | 5.070 | 7.406 | 8.980 | 0.658 | 0.950 |
B058 | 土黄色泥质灰岩 | 4.800 | 10.800 | 1.260 | 5.590 | 1.550 | 0.428 | 1.290 | 0.243 | 1.500 | 0.272 | 0.695 | 0.121 | 0.644 | 0.093 | 29.284 | 24.428 | 4.856 | 5.030 | 5.350 | 0.900 | 1.050 |
B077 | 中厚层灰白色灰岩 | 3.690 | 6.470 | 0.669 | 2.520 | 0.474 | 0.090 | 0.442 | 0.072 | 0.411 | 0.079 | 0.209 | 0.037 | 0.210 | 0.039 | 15.412 | 13.913 | 1.499 | 9.282 | 12.600 | 0.591 | 0.940 |
B081 | 厚层灰白色灰岩 | 8.960 | 15.100 | 1.650 | 6.060 | 1.080 | 0.234 | 1.030 | 0.168 | 0.942 | 0.184 | 0.494 | 0.088 | 0.496 | 0.077 | 36.563 | 33.084 | 3.479 | 9.510 | 12.960 | 0.669 | 0.890 |
B0128 | 中厚层状灰岩 | 9.970 | 16.600 | 2.190 | 8.830 | 2.190 | 0.518 | 1.860 | 0.347 | 2.090 | 0.395 | 1.030 | 0.186 | 1.060 | 0.158 | 47.424 | 40.298 | 7.126 | 5.655 | 6.750 | 0.765 | 0.830 |
B0153 | 厚层状灰白色灰岩 | 3.550 | 6.890 | 0.786 | 3.180 | 0.666 | 0.312 | 0.617 | 0.106 | 0.638 | 0.124 | 0.317 | 0.056 | 0.305 | 0.047 | 17.594 | 15.384 | 2.210 | 6.961 | 8.350 | 1.463 | 0.970 |
B0159 | 中厚层状微晶灰岩 | 1.540 | 2.310 | 0.244 | 0.966 | 0.173 | 0.041 | 0.173 | 0.026 | 0.147 | 0.028 | 0.072 | 0.012 | 0.062 | 0.010 | 5.804 | 5.274 | 0.530 | 9.951 | 17.820 | 0.717 | 0.830 |
B0185 | 方解石化泥晶灰岩 | 1.720 | 2.920 | 0.336 | 1.270 | 0.245 | 0.049 | 0.251 | 0.039 | 0.232 | 0.046 | 0.126 | 0.022 | 0.130 | 0.023 | 7.409 | 6.540 | 0.869 | 7.526 | 9.490 | 0.599 | 0.880 |
注:B0153号样品为预测区内石英闪长玢岩岩脉南侧采集的铅锌矿石;测试单位为核工业北京地质研究院分析测试研究中心 |
序号 | 岩性 | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE | LREE | HREE | LREE/HREE | (La/Yb)N | δEu | δCe |
B020 | 石英闪长玢岩 | 64.80 | 84.50 | 19.00 | 90.30 | 22.40 | 7.54 | 19.30 | 3.81 | 24.00 | 4.32 | 10.70 | 1.740 | 9.090 | 1.380 | 362.880 | 288.540 | 74.340 | 3.881 | 5.11 | 1.0819 | 0.58 |
B032 | 石英闪长玢岩 | 16.30 | 42.50 | 6.56 | 32.50 | 8.49 | 3.01 | 7.36 | 1.57 | 11.00 | 2.04 | 4.92 | 0.841 | 4.300 | 0.599 | 141.990 | 109.360 | 32.630 | 3.352 | 2.72 | 1.1368 | 1.01 |
B0165 | 辉绿岩 | 1.610 | 2.96 | 0.33 | 1.20 | 0.20 | 0.05 | 0.19 | 0.03 | 0.16 | 0.03 | 0.08 | 0.013 | 0.072 | 0.013 | 6.927 | 6.345 | 0.582 | 10.902 | 16.04 | 0.7251 | 0.95 |
B0176 | 辉绿岩 | 10.30 | 25.60 | 3.16 | 12.30 | 3.03 | 0.65 | 2.08 | 0.38 | 2.13 | 0.38 | 1.02 | 0.174 | 1.030 | 0.148 | 62.385 | 55.041 | 7.344 | 7.495 | 7.17 | 0.7501 | 1.09 |
注:B0165号辉绿岩样品发育褐铁矿化,B0176号样品氧化成为铁帽 |
从蚀变灰岩及岩浆岩(石英闪长玢岩、辉绿岩)中主要成矿及微量元素测试结果(见表 1、表 2)可以看出,蚀变灰岩(样品B043、B054-2、B0153) 中成矿元素铅、锌的含量明显偏高,比其他样品高出1~2个数量级,说明蚀变灰岩发生不同程度的铅、锌矿化。所有样品中微量元素Ba含量普遍偏高,而B043样品中Ba的含量比其他样品高出1~2个数量级。
对比蚀变灰岩、辉绿岩和石英闪长玢岩的测试结果(见表 1、表 2)发现,岩浆岩中铅、锌等成矿元素平均含量明显高于蚀变灰岩。因此,可以推测岩浆岩(石英闪长玢岩)可能为蚀变灰岩的矿化提供物质来源。
蚀变灰岩微量元素配分曲线总体一致(见图 2),呈现平缓的右倾型、M型多峰谷模式。蚀变灰岩中除Rb、La、Sr、Sm、U等元素相对富集外,其他微量元素均有亏损。Nb、Ta、Zr、Hf、Th等高场强元素,由于离子半径小、电荷高,且难溶于水,化学性质稳定,为非活动性元素,因此可指示原始物质的组成[1~2]。这些高场强元素均表现为负异常,且Zr/Hf比值相近,Nb/Ta比值除了蚀变灰岩中的B004、B0159(黑色灰岩、微晶灰岩)相对较低以外,其余白色蚀变灰岩中Nb/Ta比值大致相等。因此,白面山预测区的蚀变灰岩具有相同的物质来源,同时个别样品(B0159中厚层状微晶灰岩)Nb更具负异常。大离子亲石元素Ba既有负异常,也存在少数正异常,主要是受热液活动或重晶石化蚀变的影响。
W、Mo、Bi属高温成矿元素,通常与岩浆热液活动有关,Cd、Tl、Sb是典型的亲硫重金属元素,常作为Pb、Zn的伴生元素赋存于Pb、Zn的硫化物矿床中[3];Sb又是热液活动的指示元素[4],因此Sb的富集说明灰岩的蚀变、矿化是受岩浆热液作用所引起的。
石英闪长玢岩和辉绿岩中成矿及微量元素变化特征规律性较差(见表 2,图 3)。两种不同岩性表现出明显的差异。总体而言,Rb、La、Sm、U等元素相对富集,其他微量元素相对亏损。2块石英闪长玢岩样品及褐铁矿化的辉绿岩样品中Sr元素表现为明显亏损,与蚀变灰岩中Sr元素的特征恰好相反。其余微量元素变化特征大致相同,只是含量差异较大。
所有石英闪长玢岩、辉绿岩岩石样品中Zr/Hf及Nb/Ta比值非常相近,说明石英闪长玢岩和辉绿岩2种岩脉可能来源于同一岩浆房[5]。
蚀变灰岩(白云岩化、方解石化、弱硅化灰岩)和岩浆岩(石英闪长玢岩、辉绿岩)稀土元素含量采用文献[6]球粒陨石数据标准化。
白面山地区蚀变灰岩稀土总量(ΣREE)较低(见表 3),ΣREE平均值为23.524×10-6,轻重稀土含量比值LREE/HREE平均为7.561,(La/Yb)N平均值9.606。δEu变化范围0.569~1.463,平均值0.774;δCe变化范围0.83~1.05,平均值0.94,二者均存在个别正异常,大多数表现为负异常。稀土元素配分曲线呈右倾型(见图 4),表现为轻稀土富集,重稀土相对亏损。同时反映出大多数蚀变灰岩样品的稀土元素配分曲线变化一致,仅表现出不同样品中稀土元素总量存在一定差异。除此之外,大多数蚀变灰岩δEu值介于0.569~0.765之间,接近于平均值,δEu表现为显著的负异常;而2块厚层状白色灰岩样品(B043和B0153) 中δEu值分别为1.112和1.463,明显表现为正异常。此2块灰岩样品同时发育强烈的方铅矿矿化,且采样点靠近石英闪长玢岩脉。由此推断它们之所以出现δEu正异常,有可能是受到了石英闪长玢岩脉中高温流体的影响[7]。石英闪长玢岩脉岩浆热液中的Pb可能为该区成矿元素Pb的重要成矿物质来源。2块中厚层白色灰岩和土黄色泥质灰岩样品(B054-2和B058) 中δCe值分别为1.00和1.05,几乎无异常;而其他蚀变灰岩中δCe值介于0.83~0.99之间,表现出微弱的负异常。
白面山地区的石英闪长玢岩和辉绿岩2种脉岩的稀土元素特征见表 4、图 5。二者稀土元素配分曲线均为平缓的右倾式,表现为轻稀土富集,重稀土相对略微亏损。2个石英闪长玢岩样品的ΣREE值较高,分别为362.88×10-6和141.99×10-6;LREE/HREE比值相近;(La/Yb)N值相差较大;δEu值分别为1.0819和1.1368,均表现出弱的正异常;δCe值分别为0.58和1.01,前者表现为明显的负异常,后者则几乎无异常。2个辉绿岩样品的ΣREE值分别为6.927×10-6和62.385×10-6,LREE/HREE及(La/Yb)N值差异明显;δEu值分别为0.7251和0.7501,均表现为负异常,δCe值分别为0.95和1.09,前者表现为弱负异常,后者表现为弱正异常。
对比两种脉岩的稀土元素特征发现,石英闪长玢岩的ΣREE值远大于辉绿岩,并且2件辉绿岩样品的ΣREE值差别也很大。这是由于2块辉绿岩样品均遭受不同程度风化作用的影响,前者表现为褐铁矿化,后者则被氧化成为铁帽。因此推断其原岩中的一部分稀土元素可能受风化作用影响而损失。但是辉绿岩样品B0176的ΣREE值是B0165样品ΣREE值的近10倍,而δEu和δCe值的差异很小,几乎相等。表 2中B0176样品成矿元素Cu、Ba、Tl含量都远远高于B0165样品,Ba、Tl是反应热液作用特征的重要指示元素[4],而Cu的矿化也反映出高温成矿作用的特点。因此推断该样品可能受到成矿期热液作用的影响使稀土元素发生二次叠加。
徐晓春等[8]认为岩浆岩稀土元素地球化学特征发生规律性的变化,反映其可能是同源岩浆演化的结果。对比岩浆岩样品稀土元素地球化学特征,推断预测区内2种脉岩可能为同一岩浆源经岩浆分异作用所产生的2种不同产物[9]。
通过对白面山预测区内蚀变灰岩、岩浆岩脉中成矿及微量元素、稀土元素地球化学特征分析,认为该区围岩(灰岩)的蚀变及矿化是岩浆热液沿断裂带活动的结果,且为成矿作用提供物质来源。
白面山地区断裂构造发育,且以北西向断裂为主,在石英闪长玢岩北部接触带附近的该组断裂内铅、锌矿化岩石标本(见图 6a),化学分析结果:铅1.4%,锌0.84%;在石英闪长玢岩南部接触带附近的北西向断裂中的铅、锌矿化岩石标本(见图 6b),化学分析结果:铅2.14%,锌12.0%。北东向断裂为压性,延伸方向与区域构造线方向一致;北东东及北西西—北西向次级断裂均为其伴生构造。北西向断裂是良好的储矿(岩)构造,断裂不仅为成矿热液运移提供通道,也为成矿物质的就位提供空间,尤其是断裂的交汇复合部位是矿体最有利的赋存场所。
研究区岩性有沉积岩和岩浆岩。沉积岩主要为上泥盆统至下石炭统的碳酸盐岩,是良好的容矿围岩;岩浆岩主要为北北西向断裂带中充填的中酸性次英安斑岩、石英闪长玢岩及中性辉绿岩脉,是成矿热液来源。碳酸盐岩带状蚀变及脉状矿化,显示岩浆热液作用的结果;稀土元素地球化学特征证明岩浆岩来源于同一岩浆源区,并利用物探方法推测在其深部可能有中酸性隐伏岩体存在,可以为成矿提供充足的物质来源。
基于广东省地矿局1960、1961、1988、1989年在白面山地区多次开展大比例尺化探填图的成果,结合野外地质调查及室内工作,确认白面山地区发育多处铅、锌异常点,主要集中在飞凤形一带的南部,该处具有适合的成矿条件,地表矿化、蚀变较强且集中。指示该区具有理想的成矿地球化学环境,深部可能存在隐伏的铅、锌矿体。
广东省物化探院2008年1:10000高精度磁测资料显示,飞凤形一带深部可能存在隐伏岩体。中国地质调查局武汉地质调查中心2012年在该地区榕树下村一带开展激发极化法测量,发现深部具有多个高阻体和高极化体。结合蚀变、矿化分布及岩脉产出特征,推测深部可能存在北西、东西向岩体以及北西和近南北向的矿化体(见图 7)。
主要有矿化和蚀变标志。矿化是成矿作用在地表最直接的反应,通过地表矿化可初步推断深部矿床特征。矿化标志主要有黄铁矿化、方铅矿化、闪锌矿化以及少量的辉锑矿、铜蓝矿等矿化。除黄铁矿化普遍发育,可见立方体状的单颗粒黄铁矿呈浸染状产出外,其他类型矿化仅在个别样品中出现,并且大多数样品中很难见到单颗粒金属矿物,仅可通过化学分析所得到的测试数据来推断其具有某种类型的矿化。
在该区进行野外地质调查过程中发现大面积、多种类的矿化,主要为多个铅、锌异常带,且异常带均发育于石英闪长玢岩脉附近;蚀变灰岩(矿石)呈密集浸染状铅锌矿化(见图 6c—6f)。对石英闪长玢岩岩脉附近的矿化蚀变灰岩进行采样分析测试,测试结果显示出其中Zn含量最高,为12%,Pb含量大于2%,Ag含量高达5.98 g/t。结合该区的物化探研究成果及硅化、白云岩化和弱的方解石化、重晶石化等蚀变,显示所有的铅、锌异常带均与物化探所揭示出的异常区域非常吻合。因此,推断该预测区地表及地表以下深部可能存在矿化体(矿体),是最有可能形成中—低温矽卡岩型铅、锌、银多金属矿床的地区。
白面山地区位于大宝山矿田范围内,同属一个基底构造隆起带。从研究成果来看,白面山预测区成矿地质条件与大宝山矿区相似。
大宝山矿区主要矿产有铜、铅、锌、钼、钨等,铜、铅、锌为矽卡岩型矿床,产于泥盆系中,受北西向、北东向及近东西向断裂构造控制,矿体呈透镜状;成矿岩体主要为受北西向逆冲推覆断裂带所控制的次英安斑岩;成矿时代为燕山早期(距今162~168 Ma)[10~11]。白面山远景区沿北西、北东向断裂带发育有较多的铅、锌矿化,可能与北北西向的次英安斑岩岩脉有关。白面山地区岩浆岩稀土元素地球化学特征研究显示,石英闪长玢岩和辉绿岩脉为同一岩浆源区经岩浆分异作用的产物。但是白面山次英安斑岩是否与大宝山次英安斑岩来自同一岩浆源区还需要进一步验证。如果它们来自同一岩浆源,则大宝山矿区内发育一套高—中—低温的矿化-蚀变组合,白面山表现为中—低温矿化-蚀变组合,推断大宝山为成矿区的中心,白面山为成矿区的边缘,这样白面山就很难形成具工业价值铅锌银矿体。但如果它们来自不同岩浆源区,则说明白面山地区深部可能存在单独的成矿岩体为该区成矿提供物质来源。
预测区内蚀变灰岩和岩浆岩中微量元素、稀土元素地球化学特征显示,该区断裂带中的灰岩发育强烈的蚀变及矿化,是岩浆热液活动的结果。
岩浆岩微量及稀土元素地球化学特征证明,白面山预测区的石英闪长玢岩和辉绿岩来自于同一岩浆源区,是岩浆分异作用的产物;石英闪长玢岩可能为该区的成矿岩体,为矿化及成矿物质的来源。
结合地表围岩矿化及蚀变特征分析,预测区中西部地表以下500~800 m之间可能存在一个中—低温矽卡岩型铅锌银多金属矿体。
[1] |
Keefer D K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 1984, 95(4):406~421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
|
[2] |
李为乐, 伍霁, 吕宝雄.地震滑坡研究回顾与展望[J].灾害学, 2011, 26(3):103~108. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201103021.htm
LI Wei-le, WU Ji, LÜ Bao-xiong. Research on landslide triggered by earthquake:Review and prospect[J]. Journal of Catastrophology, 2011, 26(3):103~108. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201103021.htm
|
[3] |
黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报, 2009, 28(6):1239~1249. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906023.htm
HUANG Run-qiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1239~1249. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906023.htm
|
[4] |
李树德.活动断层分段研究[J].北京大学学报:自然科学版, 1999, 35(6):768~773. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199906006.htm
LI Shu-de. Study on segmentation of active faults[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999, 35(6):768~773. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199906006.htm
|
[5] |
Keefer D K, Wilson R C. Predicting earthquake-induced landslides, with emphasis on arid semi-arid environments[C]//Sadler P M, Morton D M. Landslides in a semi-arid environment with emphasis on the inland Valleys of Southern California. California:Publications of the Inland Geological Society, 1989.
|
[6] |
Rodíigueza C E, Bommer J J, Chandler R J. Earthquake-induced landslides:1980-1997[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(5):325~346. doi: 10.1016/S0267-7261(99)00012-3
|
[7] |
Papadopoulos G A, Plessa A. Magnitude-distance relations for earthquake-induced landslides in Greece[J]. Engineering Geology, 2000, 58(3-4):377~386. doi: 10.1016/S0013-7952(00)00043-0
|
[8] |
Prestininzi A, Romeo R. Earthquake-induced ground failures in Italy[J]. Engineering Geology, 2000, 58(3-4):387~397. doi: 10.1016/S0013-7952(00)00044-2
|
[9] |
李天池. 地震与滑坡的关系及地震滑坡预测探讨[C]//滑坡文集, 第二集. 北京: 中国铁道出版社, 1979: 127~132.
LI Tian-chi. The relationship between earthquakes and landslides and explore seismic landslide forecast[C]//Landslide Anthology, Episode 2. Beijing:China Railway Publishing House, 1979:127~132.
|
[10] |
周本刚, 王裕明.中国西南地区地震滑坡的基本特征[J].西北地震学报, 1994, 16(1):95~103. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ401.016.htm
ZHOU Ben-gang, WANG Yu-ming. Some characteristics of earthquake-induced landslide in southwestern China[J]. Northwestern Seismological Journal, 1994, 16(1):95~103. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ401.016.htm
|
[11] |
孙崇绍, 蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报, 1997, 6(1):25~30. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH701.004.htm
SUN Chong-shao, CAI Hong-wei. Developing and distributing characteristics of collapses and landslides during strong historic earthquake in China[J]. Journal of Natural Disasters, 1997, 6(1):25~30. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH701.004.htm
|
[12] |
辛鸿博, 王余庆.岩土边坡地震崩滑及其初判准则[J].岩土工程学报, 1999, 21(5):591~594. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199905014.htm
XIN Hong-bo, WANG Yu-qing. Earthquake induced landslide and avalanche[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5):591~594. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199905014.htm
|
[13] |
Owen L A, Kamp U, Khattak G A, et al. Landslides triggered by the 8 October 2005 Kashmir earthquake[J]. Geomorphology, 2008, 94(1-2):1~9. doi: 10.1016/j.geomorph.2007.04.007
|
[14] |
Masahiro Chigira, Hiroshi Yagii. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan[J]. Engineering Geology, 2006, 82(4):202~221. doi: 10.1016/j.enggeo.2005.10.006
|
[15] |
Liao H W, Lee C T. Landslides triggered by the Chi-Chi earthquake, Asian association on remote sensing, Asian conference on remote sensing ACRS 2000[EB/OL]. (2002-01-13)[2010-10-23]. http://www.gisdevelopment.net/aars/acrs/2000/ts8/hami0007.asp.
|
[16] |
Hiroshi P S, Hiroyuki H, Fujiwara S, et al. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT5 imagery[J]. Landslides, 2007, 4(2):113~122. doi: 10.1007/s10346-006-0069-5
|
[17] |
康来迅.昌马断裂带滑坡之研究[J].内陆地震, 1988, 2(4):376~381. http://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ198804005.htm
KANG Lai-xun. Study on the characteristics of landslide of Changma fault zone[J]. Inland Earthquake, 1988, 2(4):376~381. http://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ198804005.htm
|
[18] |
黄润秋, 李为乐."5. 12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 2008, 27(12):2585~2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
HUANG Run-qiu, LI Wei-le. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12):2585~2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
|
[19] |
许强, 李为乐.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报, 2010, 18(6):818~826. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006002.htm
XU Qiang, LI Wei-le. Distribution of large-scale landslide induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(6):818~826. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006002.htm
|
[20] |
吴树仁, 石菊松, 姚鑫, 等.四川汶川地震地质灾害活动强度分析评价[J].地质通报, 2008, 27(11):1900~1906. doi: 10.3969/j.issn.1671-2552.2008.11.020
WU Shu-ren, SHI Ju-song, YAO Xin, et al. Analysis and evaluation of geohazard intensity of the Wenchuan earthquake, Sichuan, China[J]. Geological Bulletin of China, 2008, 27(11):1900~1906. doi: 10.3969/j.issn.1671-2552.2008.11.020
|
[21] |
刘洪兵, 朱晞.地震中地形放大效应的观测和研究进展[J].世界地震工程, 1999, 15(3):20~25. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htm
LIU Hong-bing, ZHU Xi. Advances on topographic amoplification effects of seismic response[J]. World Information on Earthquake Engineering, 1999, 15(3):20~25. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199903002.htm
|
[22] |
Celebi M. Topographic and geological amplification determined from strong motion and aftershock records of 3 March 1985 Chile earthquake[J]. Bulletin of the Seismological Society of America, 1987, 77(4):1141~1147.
|
[23] |
Hartzell S H, Carver D L, King K W. Initial investigation of site and topographic effects at Robinwood Ridge, California[J]. Bulletin of the Seismological Society of America, 1994, 84(5):1336~1349.
|
[24] |
Hutchinson J N. General report:Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology[C]//Bonnard C. Proceedings of the 5th International Symposium on Landslides. Lausanne:Rotterdam/Brookfield, 1988:3~35.
|
[25] |
周维垣.高等岩石力学[M].北京:水利电力出版社, 1990.
ZHOU Wei-yuan. Advanced rock mechanics[M]. Beijing:China Water Power Press, 1990.
|
[26] |
胡广韬.滑坡动力学[M].北京:地质出版社, 1995.
HU Guang-tao. Landslide dynamics[M]. Beijing:Geological Publishing House, 1995.
|
[27] |
张倬元, 王士天, 王兰生.工程地质分析原理[M].北京:地质出版社, 1993.
ZHANG Zhuo-yuan, WANG Shi-tian, WANG Lan-sheng. Principle of engineering geological analysis[M]. Beijing:Geological Publishing House, 1993.
|
[28] |
毛彦龙, 胡广韬, 毛新虎, 等.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质报, 2001, 9(1):74~80. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200101012.htm
MAO Yan-long, HU Guang-tao, MAO Xin-hu, et al. Mechanism of set-out violent-slide of slope mass during earthquake and its simulation by using discrete element method[J]. Journal of Engineering Geology, 2001, 9(1):74~80. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200101012.htm
|
[29] |
祁生文, 伍法权, 刘春玲, 等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报, 2004, 23(16):2792~2796. doi: 10.3321/j.issn:1000-6915.2004.16.024
QI Sheng-wen, WU Fa-quan, LIU Chun-ling, et al. Engineering geology analysis of seismic slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16):2792~2796. doi: 10.3321/j.issn:1000-6915.2004.16.024
|
[30] |
Shin Aoi, Takashi Kunugi, Hiroyuki Fujiwara. Trampoline effect in extreme ground motion[J]. Science, 2008, 322:727~730. doi: 10.1126/science.1163113
|
[31] |
唐春安, 左宇军, 秦泗凤, 等. 汶川地震中的边坡浅层散裂与抛射模式及其动力学解释[C]//第十届全国岩石力学与工程学术大会论文集. 北京: 中国电力出版社, 2009: 258~262.
TANG Chun-an, ZUO Yu-jun, QIN Si-feng, et al. Slope in Wenchuan earthquake shallow spallation and projectile model and dynamic interpretation[C]//Proceedings of the 10th Academic Conference of Rock Mechanics and Engineering. Beijing:China Electric Power Press, 2009:258~262.
|
[32] |
殷跃平.汶川八级地震地质灾害研究[J].工程地质学报, 2008, 16(4):433~444. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200904001024.htm
YIN Yue-ping. Researchs on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4):433~444. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200904001024.htm
|
[33] |
黄润秋, 李为乐.汶川地震触发地质灾害的断层效应分析[J].工程地质学报, 2009, 17(1):19~28. http://www.cnki.com.cn/Article/CJFDTOTAL-CSDI201508040.htm
HUANG Run-qiu, LI Wei-le. Faulty effect analysis of geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1):19~28. http://www.cnki.com.cn/Article/CJFDTOTAL-CSDI201508040.htm
|
[34] |
黄润秋, 向喜琼, 巨能攀.我国区域地质灾害评价的现状及问题[J].地质通报, 2004, 23(11):1078~1082. doi: 10.3969/j.issn.1671-2552.2004.11.005
HUANG Run-qiu, XIANG Xi-qiong, JU Neng-pan. Assessment of China's regional geohazards:Present situation and problems[J]. Geological Bulletin of China, 2004, 23(11):1078~1082. doi: 10.3969/j.issn.1671-2552.2004.11.005
|
[35] |
Terzaghi K, Peek R B. Soil mechanics in engineering practice[M]. New York:John Wile, 1948.
|
[36] |
Seed H B. Landslides during earthquakes due to soil liquefaction[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(SM5):1053~1122.
|
[37] |
丁彦慧, 王余庆, 孙进忠.地震崩滑与地震参数的关系及其在边坡震害预测中的应用[J].地球物理学报, 1999, 42(S1):101~107. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1999S1014.htm
DING Yan-hui, WANG Yu-qing, SUN Jin-zhong. Correlation between landslides and seislides and seismic parameters and its application in predicting slope earthquake disaster[J]. Chinese Journal of Geophysics, 1999, 42(S1):101~107. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1999S1014.htm
|
[38] |
Newmark N M. Effects of earthquake on dams and embankments[J]. Geotechnique, 1965, 15(2):139~160. doi: 10.1680/geot.1965.15.2.139
|
[39] |
Wieczorek G F, Wilson R C, Harp E L. Map showing slope stability during earthquakes in San Mateo County, California[C]//US Geological Survey. Miscellaneous investigation maps. Reston:USGS, 1985:I-1257-E.
|
[40] |
Jibson R W, Keefer D K. Analysis of the seismic origin of landslide:Examples from the New Madrid seismic zone[J]. Geological Society of American Bulletin, 1993, 105(4):521~536. doi: 10.1130/0016-7606(1993)105<0521:AOTSOO>2.3.CO;2
|
[41] |
Broecker W S. Abrupt climate change:Causal constraints provided by the paleoclimate record[J]. Earth Science Reviews, 2000, 51(1-4):137~154. doi: 10.1016/S0012-8252(00)00019-2
|
[42] |
Ambraseys N N, Menu J M. Earthquake-induced ground displacements[J]. Earthquake Engineering and Structural Dynamics, 1988, 16(7):985~1006. doi: 10.1002/(ISSN)1096-9845
|
[43] |
Jibson R W. Predicting earthquake-induced landslide displacement using Newmarks Sliding Block Analysis[M]//Transportation Research Board Business Office. Transportation research record No.1411:Earthquake-induced ground failure hazards. Washington, DC:Transportation Research Board, 1993:9~17.
|
[44] |
黄润秋.灾害性崩滑地质过程的全过程模拟[J].中国地质灾害与防治学报, 1994, (增1):11~17, 29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH4S1.001.htm
HUANG Run-qiu. Full-course Simulation of Hazardous Rockfalls and Avalanches[J]. The Chinese Journal of Geological Hazard and Control, 1994, (Supp.1):11~17, 29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH4S1.001.htm
|
[45] |
刘忠玉, 马崇武, 苗天德, 等.高速滑坡远程预测的块体运动模型[J].岩石力学与工程学报, 2000, 19(6):742~746. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200006011.htm
LIU Zhong-yu, MA Chong-wu, MIAO Tian-de, et al. Kinematic block model of long run-out prediction for high-speed landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6):742~746. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200006011.htm
|
[46] |
邬爱清, 林绍忠, 马贵生, 等.唐家山堰塞坝形成机制DDA模拟研究[J].人民长江, 2008, 39(22):91~95. doi: 10.3969/j.issn.1001-4179.2008.22.033
WU Ai-qing, LIN Shao-zhong, MA Gui-sheng, et al. DDA simulation research for formation mechanism of Tangjiashan barrier lake[J]. Yangtze River, 2008, 39(22):91~95. doi: 10.3969/j.issn.1001-4179.2008.22.033
|
[47] |
崔芳鹏, 胡瑞林, 殷跃平, 等.纵横波时差耦合作用的斜坡崩滑效应离散元分析——以北川唐家山滑坡为例[J].岩石力学与工程学报, 2010, 29(2):319~327. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002015.htm
CUI Fang-peng, HU Rui-lin, YIN Yue-ping, et al. Discrete element analysis of collapsing and sliding response of slope triggered by time difference coupling effects of P and S seismic waves:Taking Tangjiashan landslide in Beichuan County for Example[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2):319~327. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002015.htm
|
[48] |
曹琰波, 戴福初, 许冲, 等.唐家山滑坡变形运动机制的离散元模拟[J].岩石力学与工程学报, 2011, 30(增1):2878~2887. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
CAO Yan-po, DAI Fu-chu, XU Chong, et al. Discrete element simulation of deformation mechanism of Tangjiashan landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Supp.1):2878~2887. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
|
[49] |
王兰民, 孙军杰, 徐舜华, 等.爆破模拟地震动条件下黄土场地震陷研究[J].岩石力学与工程学报, 2008, 27(5):913~921. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805008.htm
WANG Lan-min, SUN Jun-jie, XU Shun-hua, et al. Characteristics of seismic subsidence of loess induced by blasting ground motion[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5):913~921. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805008.htm
|
[50] |
许冲, 戴福初, 徐锡伟.汶川地震滑坡灾害研究综述[J].地质论评, 2010, 56(6):860~874. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
XU Chong, DAI Fu-chu, XU Xi-wei. Wenchuan earthquake-induced landslides:An overview[J]. Geological Review, 2010, 56(6):860~874. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
|
[51] |
郝立贞, 白世彪, 徐红波, 等.基于CBERS-02卫星数据的地震滑坡识别——以青川县为例[J].防灾科技学院学报, 2010, 12(4):46~52. http://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201004010.htm
HAO Li-zhen, BAI Shi-biao, XU Hong-bo, et al. Landslide identification after earthquake based on CBERS-02 remote sensing data:The case of Qingchuan[J]. Journal of Institute of Disaster Prevention, 2010, 12(4):46~52. http://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201004010.htm
|
[52] |
沈永林, 李晓静, 吴立新.基于航空影像和LiDAR数据的海地地震滑坡识别研究[J].地理与地理信息科学, 2011, 27(1):16~20. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201101005.htm
SHEN Yong-lin, LI Xiao-jing, WU Li-xin. Detection of Haiti earthquake induced landsides from aerial images and LiDAR data[J]. Geography and Geo-Information Science, 2011, 27(1):16~20. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201101005.htm
|
[53] |
石菊松, 吴树仁, 石玲.遥感在滑坡灾害研究中的应用进展[J].地质论评, 2008, 54(4):505~514. http://www.cnki.com.cn/Article/CJFDTOTAL-KJZF201508104.htm
SHI Ju-song, WU Shu-ren, SHI Ling. Remote sensing for landslide study:An Overview[J]. Geological Review, 2008, 54(4):505~514. http://www.cnki.com.cn/Article/CJFDTOTAL-KJZF201508104.htm
|
[54] |
曾庆利, 张西娟, 杨志法.云南虎跳峡"滑石板"岩质滑坡的基本特征与成因[J].自然灾害学报, 2007, 16(3):1~6.
ZENG Qing-li, ZHANG Xi-juan, YANG Zhi-fa. Principal characteristics and formation mechanism of plate type rock landslide in Hutiao-Gorge, Yunnan[J]. Journal of Natural Disasters, 2007, 16(3):1~6.
|
[55] |
杨文涛, 汪明, 史培军.利用NDVI时间序列识别汶川地震滑坡的分布[J].遥感信息, 2012, 27(6):45~56. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201206010.htm
YANG Wen-tao, WANG Ming, SHI Pei-jun. Identification of landslides in Wenchuan earthquake affected region using NDVI time series[J]. Remote Sensing Information, 2012, 27(6):45~56. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201206010.htm
|
[56] |
花利忠, 崔胜辉, 李新虎, 等.汶川大地震滑坡体遥感识别及生态服务价值损失评估[J].生态学报, 2008, 28(12):5909~5916. doi: 10.3321/j.issn:1000-0933.2008.12.017
HUA Li-zhong, CUI Sheng-hui, LI Xin-hu, et al. Remote sensing identification of earthquake trigged landsides and their impacts on ecosystem services:A case study of Wenchuan County[J]. Acta Ecologica Sinica, 2008, 28(12):5909~5916. doi: 10.3321/j.issn:1000-0933.2008.12.017
|
[57] |
Hervás J, Barredo J I, Rosin P L, et al. Monitoring landslides from optical remotely sensed imagery:The case history of Tessina landslide, Italy[J]. Geomorphology, 2003, 54(1-2):63~75. doi: 10.1016/S0169-555X(03)00056-4
|
[58] |
LIN Wen-Tzu, CHOU Wen-Chieh, LIN Chao-Yuan, et al. Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan[J]. Forest Ecology and Management, 2005, 210(1-3):55~66. doi: 10.1016/j.foreco.2005.02.026
|
[59] |
万保峰, 袁水华, 苏建平.基于纹理分析的滑坡遥感图像识别[J].地矿测绘, 2009, 25(2):11~14. http://www.cnki.com.cn/Article/CJFDTOTAL-DKCH200902003.htm
WAN Bao-feng, YUAN Shui-hua, SU Jian-ping. Remote sensing image recognition of landslide based on texture analysis[J]. Surveying and Mapping of Geology and Mineral Resource, 2009, 25(2):11~14. http://www.cnki.com.cn/Article/CJFDTOTAL-DKCH200902003.htm
|
[60] |
李松, 李亦秋, 安裕伦.基于变化检测的滑坡灾害自动识别[J].遥感应用, 2010, (1):27~31. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201001007.htm
LI Song, LI Yi-qiu, AN Yu-Lun. Automatic recognition of landslides based on change detection[J]. Remote Sensing Application, 2010, (1):27~31. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201001007.htm
|
[61] |
傅文杰, 洪金益.基于支持向量机的滑坡灾害信息遥感图像提取研究[J].水土保持研究, 2006, 13(4):120~122. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY200604037.htm
FU Wen-jie, HONG Jin-yi. Discussion on application of support vector machine technique in extraction of information on landslide hazard from remote sensing images[J]. Research of Soil and Water Conservation, 2006, 13(4):120~122. http://www.cnki.com.cn/Article/CJFDTOTAL-STBY200604037.htm
|
[62] |
陈晓利, 赵健, 叶洪.应用径向基概率神经网络研究地震滑坡[J].地震地质, 2006, 28(3):430~439. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200603010.htm
CHEN Xiao-li, ZHAO Jian, YE Hong. Application of rbpnn in the research of earthquake-induced landslide[J]. Seismology and geology, 2006, 28(3):430~439. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200603010.htm
|
[63] |
Biswajeet Pradhan, Saro Lee. Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model[J]. Earth Science Frontiers, 2007, 14(6):143~152. doi: 10.1016/S1872-5791(08)60008-1
|
[64] |
Kamp U, Growley B J, Khattak G A, et al. GIS-based landslide susceptiblility mapping for the 2005 Kashmir earthquake region[J]. Geomorphology, 2008, 101(4):631~642. doi: 10.1016/j.geomorph.2008.03.003
|
[65] |
许冲, 徐锡伟, 于贵华.基于证据权方法的玉树地震滑坡危险性评价[J].地震地质, 2013, 35(1):151~164. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201301015.htm
XU Chong, XU Xi-wei, YU Gui-hua. The Yushu earthquake triggered landslide hazard evaluation based on weight of evidence method[J]. Seismology and geology, 2013, 35(1):151~164. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201301015.htm
|
[66] |
Ali Uromeihy, Maryam Fattahi. Landslide hazard zonation of Babolrood Watershed, Iran[C]//Asia-Pacific Chemical, Biological & Environmental Engineering Society. Proceedings of 2nd International Conference on Environmental Science and Technology. Singapore:IACSIT Press, 2011:318~320.
|
[67] |
王余庆, 高艳平, 辛鸿博.用灰色聚类方法预测边坡稳定性研究[J].工业建筑, 2002, 32(6):44~47. http://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200206014.htm
WANG Yu-qing, GAO Yan-ping, XIN Hong-bo. A research on prediction of seismic stability of slopes by grey clustering method[J]. Industrial Construction, 2002, 32(6):44~47. http://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200206014.htm
|
[68] |
许冲, 戴福初, 徐素宁, 等.基于逻辑回归模型的汶川地震滑坡危险性评价与检验[J].水文地质工程地质, 2013, (3):98~104. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201303021.htm
XU Chong, DAI Fu-chu, XU Su-ning, et al. Application of logistic regression model on the Wenchuan earthquake triggered landslide hazard mapping and its validation[J]. Hydrogeology & Engineering Geology, 2013, (3):98~104. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201303021.htm
|
[69] |
高艳平, 王余庆, 辛鸿博.神经元网络在预测边坡地震稳定性中的应用[J].辽宁工程技术大学学报:自然科学版, 2001, 20(4):431~433. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200104015.htm
GAO Yan-ping, WANG Yu-qing, XIN Hong-bo. The application of the artificial neural network in prediction of slope seismic stability[J]. Journal of Liaoning Technical University:Natural Science Edition, 2001, 20(4):431~433. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200104015.htm
|
[70] |
樊伟, 杨军, 刘廷廷.灰色神经网络组合模型及在滑坡预测中的应用[J].人民长江, 2005, 36(11):48~50. doi: 10.3969/j.issn.1001-4179.2005.11.018
FAN Wei, YANG Jun, LIU Ting-ting. Gray neural network model and its application in landslide forecast[J]. Yangtze River, 2005, 36(11):48~50. doi: 10.3969/j.issn.1001-4179.2005.11.018
|
[71] |
Yesilnacar E, Topal T. Landslide susceptibility mapping:A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region, Turkey[J]. Engineering Geology, 2005, 79(3-4):251~266. doi: 10.1016/j.enggeo.2005.02.002
|
[72] |
庄涛.我国地震防灾减灾科普教育的瓶颈及对策分析[J].国际地震动态, 2013, (4):30~34. http://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201304008.htm
ZHUANG Tao. Bottleneck and countermeasures of the popular science education on earthquake disaster prevention and mitigation in China[J]. Recent Developments in World Seismology, 2013, (4):30~34. http://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201304008.htm
|
序号 | 岩性 | Rb | Ba | Th | U | Ta | Nb | La | Ce | Sr | Nd | Zr | Hf | Sm | Y | Yb | Lu | Mo | Tl | Bi | Cd | Sb | W | Zr/Hf | Nb/Ta |
B004 | 中厚层灰黑色灰岩 | 6.950 | 17.300 | 0.565 | 1.120 | 0.164 | 0.540 | 2.050 | 4.030 | 663 | 1.800 | 6.130 | 0.168 | 0.372 | 1.870 | 0.163 | 0.024 | 0.166 | 0.078 | 0.047 | 0.206 | 0.675 | 1.200 | 36.488 | 3.293 |
B016 | 厚层状灰黑色灰岩 | 27.800 | 333.0 | 2.360 | 1.370 | 0.205 | 2.330 | 6.320 | 12.70 | 415 | 5.850 | 30.70 | 0.815 | 1.240 | 5.620 | 0.596 | 0.097 | 0.418 | 0.267 | 0.221 | 0.317 | 5.700 | 0.590 | 37.669 | 11.367 |
B043 | 厚层状灰白色灰岩 | 7.690 | 3488.0 | 0.762 | 0.463 | 0.045 | 0.514 | 4.770 | 9.000 | 410 | 3.890 | 6.820 | 0.222 | 0.804 | 3.730 | 0.341 | 0.057 | 0.248 | 0.326 | 1.240 | 0.791 | 3.330 | 0.441 | 30.721 | 11.422 |
B054-2 | 厚层状灰白色灰岩 | 17.500 | 64.2 | 1.560 | 0.830 | 0.122 | 1.590 | 3.220 | 6.630 | 180 | 2.960 | 23.10 | 0.657 | 0.634 | 3.150 | 0.366 | 0.061 | 0.138 | 0.137 | 0.095 | 11.40 | 3.030 | 0.670 | 35.160 | 13.033 |
B057-1 | 灰白色灰岩 | 14.200 | 49.5 | 2.600 | 1.230 | 0.162 | 2.100 | 8.540 | 16.70 | 392 | 8.200 | 25.20 | 0.737 | 1.710 | 8.030 | 0.682 | 0.107 | 0.976 | 0.131 | 0.134 | 0.089 | 2.520 | 0.303 | 34.193 | 12.963 |
B058 | 土黄色泥质灰岩 | 16.100 | 90.2 | 2.100 | 0.513 | 0.164 | 1.840 | 4.800 | 10.80 | 250 | 5.590 | 13.90 | 0.395 | 1.550 | 8.250 | 0.644 | 0.093 | 0.499 | 0.133 | 0.166 | 0.180 | 2.890 | 0.455 | 35.190 | 11.220 |
B077 | 中厚层灰白色灰岩 | 8.220 | 25.1 | 0.709 | 1.230 | 0.039 | 0.527 | 3.690 | 6.470 | 336 | 2.520 | 8.350 | 0.243 | 0.474 | 2.190 | 0.210 | 0.039 | 0.674 | 0.154 | 0.076 | 0.188 | 1.240 | 0.271 | 34.362 | 13.513 |
B081 | 厚层灰白色灰岩 | 23.400 | 57.6 | 1.920 | 0.997 | 0.194 | 2.220 | 8.960 | 15.10 | 488 | 6.060 | 27.10 | 0.794 | 1.080 | 4.850 | 0.496 | 0.077 | 1.010 | 0.216 | 0.466 | 0.368 | 16.20 | 0.657 | 34.131 | 11.443 |
B0128 | 中厚层状灰岩 | 39.900 | 232.0 | 2.560 | 1.010 | 0.154 | 2.030 | 9.970 | 16.60 | 151 | 8.830 | 26.00 | 0.783 | 2.190 | 10.20 | 1.060 | 0.158 | 0.224 | 0.269 | 0.267 | 0.175 | 2.810 | 0.821 | 33.206 | 13.182 |
B0153 | 厚层状灰白色灰岩 | 5.210 | 27.30 | 0.828 | 0.705 | 0.095 | 1.060 | 3.550 | 6.890 | 531 | 3.180 | 18.60 | 0.483 | 0.666 | 3.470 | 0.305 | 0.047 | 0.322 | 0.093 | 0.160 | 27.20 | 1.840 | 0.323 | 38.509 | 11.158 |
B0159 | 中厚层状微晶灰岩 | 1.780 | 51.90 | 0.128 | 0.273 | 0.020 | 0.097 | 1.540 | 2.310 | 466 | 0.966 | 1.160 | 0.036 | 0.173 | 0.924 | 0.062 | 0.010 | 0.118 | 0.047 | 0.057 | 2.930 | 1.080 | 0.101 | 32.222 | 4.850 |
B0185 | 方解石化泥晶灰岩 | 5.920 | 35.30 | 0.569 | 0.942 | 0.049 | 0.448 | 1.720 | 2.920 | 527 | 1.270 | 5.670 | 0.157 | 0.245 | 1.360 | 0.130 | 0.023 | 0.227 | 0.105 | 0.072 | 1.460 | 1.140 | 0.276 | 36.115 | 9.143 |
注:B0153号样品为预测区内石英闪长玢岩岩脉南侧采集的铅锌矿石 |
序号 | 岩性 | Rb | Ba | Th | U | Ta | Nb | La | Ce | Sr | Nd | Zr | Hf | Sm | Y | Yb | Lu | Mo | Tl | Bi | Cd | Sb | W | Zr/Hf | Nb/Ta |
B020 | 石英闪长玢岩 | 35.2 | 100 | 3.15 | 0.802 | 1.74 | 26.2 | 64.8 | 84.5 | 24.8 | 90.3 | 433 | 11.8 | 22.4 | 103 | 9.09 | 1.38 | 0.681 | 0.34 | 0.023 | 0.656 | 24.10 | 1.21 | 36.695 | 15.057 |
B032 | 石英闪长玢岩 | 29.3 | 24.8 | 1.95 | 0.423 | 1.33 | 19.8 | 16.3 | 42.5 | 89.3 | 32.5 | 202 | 5.88 | 8.49 | 48.2 | 4.3 | 0.599 | 0.86 | 0.257 | 0.036 | 0.388 | 33.70 | 5.12 | 34.354 | 14.887 |
B0165 | 辉绿岩 | 1.95 | 11.2 | 0.161 | 0.639 | 0.012 | 0.106 | 1.61 | 2.96 | 516 | 1.2 | 1.07 | 0.033 | 0.202 | 0.9 | 0.072 | 0.013 | 0.061 | 0.031 | 0.084 | 0.389 | 0.708 | 0.08 | 32.424 | 8.833 |
B0176 | 辉绿岩 | 10.8 | 4608 | 1.51 | 1.26 | 0.062 | 0.673 | 10.3 | 25.6 | 9.7 | 12.3 | 16.4 | 0.518 | 3.02 | 8.11 | 1.03 | 0.148 | 1.21 | 0.428 | 0.158 | 0.604 | 7.75 | 0.504 | 31.660 | 10.855 |
注:B0165号辉绿岩样品发育褐铁矿化,B0176号样品氧化成为铁帽 |
序号 | 岩性 | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE | LREE | HREE | LREE/HREE | (La/Yb)N | δEu | δCe |
B004 | 中厚层灰黑色灰岩 | 2.050 | 4.030 | 0.456 | 1.800 | 0.372 | 0.072 | 0.327 | 0.054 | 0.324 | 0.061 | 0.165 | 0.030 | 0.163 | 0.024 | 9.928 | 8.780 | 1.148 | 7.648 | 9.020 | 0.617 | 0.980 |
B016 | 厚层状灰黑色灰岩 | 6.320 | 12.700 | 1.430 | 5.850 | 1.240 | 0.215 | 1.010 | 0.173 | 1.000 | 0.195 | 0.545 | 0.102 | 0.596 | 0.097 | 31.473 | 27.755 | 3.718 | 7.465 | 7.610 | 0.569 | 0.990 |
B043 | 厚层状灰白色灰岩 | 4.770 | 9.000 | 0.968 | 3.890 | 0.804 | 0.284 | 0.730 | 0.118 | 0.727 | 0.139 | 0.364 | 0.065 | 0.341 | 0.057 | 22.257 | 19.716 | 2.541 | 7.759 | 10.030 | 1.112 | 0.970 |
B054-2 | 厚层状灰白色灰岩 | 3.220 | 6.630 | 0.760 | 2.960 | 0.634 | 0.124 | 0.556 | 0.098 | 0.607 | 0.116 | 0.326 | 0.063 | 0.366 | 0.061 | 16.521 | 14.328 | 2.193 | 6.533 | 6.310 | 0.624 | 1.000 |
B057-1 | 灰白色灰岩 | 8.540 | 16.700 | 2.050 | 8.200 | 1.710 | 0.347 | 1.440 | 0.253 | 1.460 | 0.286 | 0.724 | 0.118 | 0.682 | 0.107 | 42.617 | 37.547 | 5.070 | 7.406 | 8.980 | 0.658 | 0.950 |
B058 | 土黄色泥质灰岩 | 4.800 | 10.800 | 1.260 | 5.590 | 1.550 | 0.428 | 1.290 | 0.243 | 1.500 | 0.272 | 0.695 | 0.121 | 0.644 | 0.093 | 29.284 | 24.428 | 4.856 | 5.030 | 5.350 | 0.900 | 1.050 |
B077 | 中厚层灰白色灰岩 | 3.690 | 6.470 | 0.669 | 2.520 | 0.474 | 0.090 | 0.442 | 0.072 | 0.411 | 0.079 | 0.209 | 0.037 | 0.210 | 0.039 | 15.412 | 13.913 | 1.499 | 9.282 | 12.600 | 0.591 | 0.940 |
B081 | 厚层灰白色灰岩 | 8.960 | 15.100 | 1.650 | 6.060 | 1.080 | 0.234 | 1.030 | 0.168 | 0.942 | 0.184 | 0.494 | 0.088 | 0.496 | 0.077 | 36.563 | 33.084 | 3.479 | 9.510 | 12.960 | 0.669 | 0.890 |
B0128 | 中厚层状灰岩 | 9.970 | 16.600 | 2.190 | 8.830 | 2.190 | 0.518 | 1.860 | 0.347 | 2.090 | 0.395 | 1.030 | 0.186 | 1.060 | 0.158 | 47.424 | 40.298 | 7.126 | 5.655 | 6.750 | 0.765 | 0.830 |
B0153 | 厚层状灰白色灰岩 | 3.550 | 6.890 | 0.786 | 3.180 | 0.666 | 0.312 | 0.617 | 0.106 | 0.638 | 0.124 | 0.317 | 0.056 | 0.305 | 0.047 | 17.594 | 15.384 | 2.210 | 6.961 | 8.350 | 1.463 | 0.970 |
B0159 | 中厚层状微晶灰岩 | 1.540 | 2.310 | 0.244 | 0.966 | 0.173 | 0.041 | 0.173 | 0.026 | 0.147 | 0.028 | 0.072 | 0.012 | 0.062 | 0.010 | 5.804 | 5.274 | 0.530 | 9.951 | 17.820 | 0.717 | 0.830 |
B0185 | 方解石化泥晶灰岩 | 1.720 | 2.920 | 0.336 | 1.270 | 0.245 | 0.049 | 0.251 | 0.039 | 0.232 | 0.046 | 0.126 | 0.022 | 0.130 | 0.023 | 7.409 | 6.540 | 0.869 | 7.526 | 9.490 | 0.599 | 0.880 |
注:B0153号样品为预测区内石英闪长玢岩岩脉南侧采集的铅锌矿石;测试单位为核工业北京地质研究院分析测试研究中心 |
序号 | 岩性 | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE | LREE | HREE | LREE/HREE | (La/Yb)N | δEu | δCe |
B020 | 石英闪长玢岩 | 64.80 | 84.50 | 19.00 | 90.30 | 22.40 | 7.54 | 19.30 | 3.81 | 24.00 | 4.32 | 10.70 | 1.740 | 9.090 | 1.380 | 362.880 | 288.540 | 74.340 | 3.881 | 5.11 | 1.0819 | 0.58 |
B032 | 石英闪长玢岩 | 16.30 | 42.50 | 6.56 | 32.50 | 8.49 | 3.01 | 7.36 | 1.57 | 11.00 | 2.04 | 4.92 | 0.841 | 4.300 | 0.599 | 141.990 | 109.360 | 32.630 | 3.352 | 2.72 | 1.1368 | 1.01 |
B0165 | 辉绿岩 | 1.610 | 2.96 | 0.33 | 1.20 | 0.20 | 0.05 | 0.19 | 0.03 | 0.16 | 0.03 | 0.08 | 0.013 | 0.072 | 0.013 | 6.927 | 6.345 | 0.582 | 10.902 | 16.04 | 0.7251 | 0.95 |
B0176 | 辉绿岩 | 10.30 | 25.60 | 3.16 | 12.30 | 3.03 | 0.65 | 2.08 | 0.38 | 2.13 | 0.38 | 1.02 | 0.174 | 1.030 | 0.148 | 62.385 | 55.041 | 7.344 | 7.495 | 7.17 | 0.7501 | 1.09 |
注:B0165号辉绿岩样品发育褐铁矿化,B0176号样品氧化成为铁帽 |
序号 | 岩性 | Rb | Ba | Th | U | Ta | Nb | La | Ce | Sr | Nd | Zr | Hf | Sm | Y | Yb | Lu | Mo | Tl | Bi | Cd | Sb | W | Zr/Hf | Nb/Ta |
B004 | 中厚层灰黑色灰岩 | 6.950 | 17.300 | 0.565 | 1.120 | 0.164 | 0.540 | 2.050 | 4.030 | 663 | 1.800 | 6.130 | 0.168 | 0.372 | 1.870 | 0.163 | 0.024 | 0.166 | 0.078 | 0.047 | 0.206 | 0.675 | 1.200 | 36.488 | 3.293 |
B016 | 厚层状灰黑色灰岩 | 27.800 | 333.0 | 2.360 | 1.370 | 0.205 | 2.330 | 6.320 | 12.70 | 415 | 5.850 | 30.70 | 0.815 | 1.240 | 5.620 | 0.596 | 0.097 | 0.418 | 0.267 | 0.221 | 0.317 | 5.700 | 0.590 | 37.669 | 11.367 |
B043 | 厚层状灰白色灰岩 | 7.690 | 3488.0 | 0.762 | 0.463 | 0.045 | 0.514 | 4.770 | 9.000 | 410 | 3.890 | 6.820 | 0.222 | 0.804 | 3.730 | 0.341 | 0.057 | 0.248 | 0.326 | 1.240 | 0.791 | 3.330 | 0.441 | 30.721 | 11.422 |
B054-2 | 厚层状灰白色灰岩 | 17.500 | 64.2 | 1.560 | 0.830 | 0.122 | 1.590 | 3.220 | 6.630 | 180 | 2.960 | 23.10 | 0.657 | 0.634 | 3.150 | 0.366 | 0.061 | 0.138 | 0.137 | 0.095 | 11.40 | 3.030 | 0.670 | 35.160 | 13.033 |
B057-1 | 灰白色灰岩 | 14.200 | 49.5 | 2.600 | 1.230 | 0.162 | 2.100 | 8.540 | 16.70 | 392 | 8.200 | 25.20 | 0.737 | 1.710 | 8.030 | 0.682 | 0.107 | 0.976 | 0.131 | 0.134 | 0.089 | 2.520 | 0.303 | 34.193 | 12.963 |
B058 | 土黄色泥质灰岩 | 16.100 | 90.2 | 2.100 | 0.513 | 0.164 | 1.840 | 4.800 | 10.80 | 250 | 5.590 | 13.90 | 0.395 | 1.550 | 8.250 | 0.644 | 0.093 | 0.499 | 0.133 | 0.166 | 0.180 | 2.890 | 0.455 | 35.190 | 11.220 |
B077 | 中厚层灰白色灰岩 | 8.220 | 25.1 | 0.709 | 1.230 | 0.039 | 0.527 | 3.690 | 6.470 | 336 | 2.520 | 8.350 | 0.243 | 0.474 | 2.190 | 0.210 | 0.039 | 0.674 | 0.154 | 0.076 | 0.188 | 1.240 | 0.271 | 34.362 | 13.513 |
B081 | 厚层灰白色灰岩 | 23.400 | 57.6 | 1.920 | 0.997 | 0.194 | 2.220 | 8.960 | 15.10 | 488 | 6.060 | 27.10 | 0.794 | 1.080 | 4.850 | 0.496 | 0.077 | 1.010 | 0.216 | 0.466 | 0.368 | 16.20 | 0.657 | 34.131 | 11.443 |
B0128 | 中厚层状灰岩 | 39.900 | 232.0 | 2.560 | 1.010 | 0.154 | 2.030 | 9.970 | 16.60 | 151 | 8.830 | 26.00 | 0.783 | 2.190 | 10.20 | 1.060 | 0.158 | 0.224 | 0.269 | 0.267 | 0.175 | 2.810 | 0.821 | 33.206 | 13.182 |
B0153 | 厚层状灰白色灰岩 | 5.210 | 27.30 | 0.828 | 0.705 | 0.095 | 1.060 | 3.550 | 6.890 | 531 | 3.180 | 18.60 | 0.483 | 0.666 | 3.470 | 0.305 | 0.047 | 0.322 | 0.093 | 0.160 | 27.20 | 1.840 | 0.323 | 38.509 | 11.158 |
B0159 | 中厚层状微晶灰岩 | 1.780 | 51.90 | 0.128 | 0.273 | 0.020 | 0.097 | 1.540 | 2.310 | 466 | 0.966 | 1.160 | 0.036 | 0.173 | 0.924 | 0.062 | 0.010 | 0.118 | 0.047 | 0.057 | 2.930 | 1.080 | 0.101 | 32.222 | 4.850 |
B0185 | 方解石化泥晶灰岩 | 5.920 | 35.30 | 0.569 | 0.942 | 0.049 | 0.448 | 1.720 | 2.920 | 527 | 1.270 | 5.670 | 0.157 | 0.245 | 1.360 | 0.130 | 0.023 | 0.227 | 0.105 | 0.072 | 1.460 | 1.140 | 0.276 | 36.115 | 9.143 |
注:B0153号样品为预测区内石英闪长玢岩岩脉南侧采集的铅锌矿石 |
序号 | 岩性 | Rb | Ba | Th | U | Ta | Nb | La | Ce | Sr | Nd | Zr | Hf | Sm | Y | Yb | Lu | Mo | Tl | Bi | Cd | Sb | W | Zr/Hf | Nb/Ta |
B020 | 石英闪长玢岩 | 35.2 | 100 | 3.15 | 0.802 | 1.74 | 26.2 | 64.8 | 84.5 | 24.8 | 90.3 | 433 | 11.8 | 22.4 | 103 | 9.09 | 1.38 | 0.681 | 0.34 | 0.023 | 0.656 | 24.10 | 1.21 | 36.695 | 15.057 |
B032 | 石英闪长玢岩 | 29.3 | 24.8 | 1.95 | 0.423 | 1.33 | 19.8 | 16.3 | 42.5 | 89.3 | 32.5 | 202 | 5.88 | 8.49 | 48.2 | 4.3 | 0.599 | 0.86 | 0.257 | 0.036 | 0.388 | 33.70 | 5.12 | 34.354 | 14.887 |
B0165 | 辉绿岩 | 1.95 | 11.2 | 0.161 | 0.639 | 0.012 | 0.106 | 1.61 | 2.96 | 516 | 1.2 | 1.07 | 0.033 | 0.202 | 0.9 | 0.072 | 0.013 | 0.061 | 0.031 | 0.084 | 0.389 | 0.708 | 0.08 | 32.424 | 8.833 |
B0176 | 辉绿岩 | 10.8 | 4608 | 1.51 | 1.26 | 0.062 | 0.673 | 10.3 | 25.6 | 9.7 | 12.3 | 16.4 | 0.518 | 3.02 | 8.11 | 1.03 | 0.148 | 1.21 | 0.428 | 0.158 | 0.604 | 7.75 | 0.504 | 31.660 | 10.855 |
注:B0165号辉绿岩样品发育褐铁矿化,B0176号样品氧化成为铁帽 |
序号 | 岩性 | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE | LREE | HREE | LREE/HREE | (La/Yb)N | δEu | δCe |
B004 | 中厚层灰黑色灰岩 | 2.050 | 4.030 | 0.456 | 1.800 | 0.372 | 0.072 | 0.327 | 0.054 | 0.324 | 0.061 | 0.165 | 0.030 | 0.163 | 0.024 | 9.928 | 8.780 | 1.148 | 7.648 | 9.020 | 0.617 | 0.980 |
B016 | 厚层状灰黑色灰岩 | 6.320 | 12.700 | 1.430 | 5.850 | 1.240 | 0.215 | 1.010 | 0.173 | 1.000 | 0.195 | 0.545 | 0.102 | 0.596 | 0.097 | 31.473 | 27.755 | 3.718 | 7.465 | 7.610 | 0.569 | 0.990 |
B043 | 厚层状灰白色灰岩 | 4.770 | 9.000 | 0.968 | 3.890 | 0.804 | 0.284 | 0.730 | 0.118 | 0.727 | 0.139 | 0.364 | 0.065 | 0.341 | 0.057 | 22.257 | 19.716 | 2.541 | 7.759 | 10.030 | 1.112 | 0.970 |
B054-2 | 厚层状灰白色灰岩 | 3.220 | 6.630 | 0.760 | 2.960 | 0.634 | 0.124 | 0.556 | 0.098 | 0.607 | 0.116 | 0.326 | 0.063 | 0.366 | 0.061 | 16.521 | 14.328 | 2.193 | 6.533 | 6.310 | 0.624 | 1.000 |
B057-1 | 灰白色灰岩 | 8.540 | 16.700 | 2.050 | 8.200 | 1.710 | 0.347 | 1.440 | 0.253 | 1.460 | 0.286 | 0.724 | 0.118 | 0.682 | 0.107 | 42.617 | 37.547 | 5.070 | 7.406 | 8.980 | 0.658 | 0.950 |
B058 | 土黄色泥质灰岩 | 4.800 | 10.800 | 1.260 | 5.590 | 1.550 | 0.428 | 1.290 | 0.243 | 1.500 | 0.272 | 0.695 | 0.121 | 0.644 | 0.093 | 29.284 | 24.428 | 4.856 | 5.030 | 5.350 | 0.900 | 1.050 |
B077 | 中厚层灰白色灰岩 | 3.690 | 6.470 | 0.669 | 2.520 | 0.474 | 0.090 | 0.442 | 0.072 | 0.411 | 0.079 | 0.209 | 0.037 | 0.210 | 0.039 | 15.412 | 13.913 | 1.499 | 9.282 | 12.600 | 0.591 | 0.940 |
B081 | 厚层灰白色灰岩 | 8.960 | 15.100 | 1.650 | 6.060 | 1.080 | 0.234 | 1.030 | 0.168 | 0.942 | 0.184 | 0.494 | 0.088 | 0.496 | 0.077 | 36.563 | 33.084 | 3.479 | 9.510 | 12.960 | 0.669 | 0.890 |
B0128 | 中厚层状灰岩 | 9.970 | 16.600 | 2.190 | 8.830 | 2.190 | 0.518 | 1.860 | 0.347 | 2.090 | 0.395 | 1.030 | 0.186 | 1.060 | 0.158 | 47.424 | 40.298 | 7.126 | 5.655 | 6.750 | 0.765 | 0.830 |
B0153 | 厚层状灰白色灰岩 | 3.550 | 6.890 | 0.786 | 3.180 | 0.666 | 0.312 | 0.617 | 0.106 | 0.638 | 0.124 | 0.317 | 0.056 | 0.305 | 0.047 | 17.594 | 15.384 | 2.210 | 6.961 | 8.350 | 1.463 | 0.970 |
B0159 | 中厚层状微晶灰岩 | 1.540 | 2.310 | 0.244 | 0.966 | 0.173 | 0.041 | 0.173 | 0.026 | 0.147 | 0.028 | 0.072 | 0.012 | 0.062 | 0.010 | 5.804 | 5.274 | 0.530 | 9.951 | 17.820 | 0.717 | 0.830 |
B0185 | 方解石化泥晶灰岩 | 1.720 | 2.920 | 0.336 | 1.270 | 0.245 | 0.049 | 0.251 | 0.039 | 0.232 | 0.046 | 0.126 | 0.022 | 0.130 | 0.023 | 7.409 | 6.540 | 0.869 | 7.526 | 9.490 | 0.599 | 0.880 |
注:B0153号样品为预测区内石英闪长玢岩岩脉南侧采集的铅锌矿石;测试单位为核工业北京地质研究院分析测试研究中心 |
序号 | 岩性 | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE | LREE | HREE | LREE/HREE | (La/Yb)N | δEu | δCe |
B020 | 石英闪长玢岩 | 64.80 | 84.50 | 19.00 | 90.30 | 22.40 | 7.54 | 19.30 | 3.81 | 24.00 | 4.32 | 10.70 | 1.740 | 9.090 | 1.380 | 362.880 | 288.540 | 74.340 | 3.881 | 5.11 | 1.0819 | 0.58 |
B032 | 石英闪长玢岩 | 16.30 | 42.50 | 6.56 | 32.50 | 8.49 | 3.01 | 7.36 | 1.57 | 11.00 | 2.04 | 4.92 | 0.841 | 4.300 | 0.599 | 141.990 | 109.360 | 32.630 | 3.352 | 2.72 | 1.1368 | 1.01 |
B0165 | 辉绿岩 | 1.610 | 2.96 | 0.33 | 1.20 | 0.20 | 0.05 | 0.19 | 0.03 | 0.16 | 0.03 | 0.08 | 0.013 | 0.072 | 0.013 | 6.927 | 6.345 | 0.582 | 10.902 | 16.04 | 0.7251 | 0.95 |
B0176 | 辉绿岩 | 10.30 | 25.60 | 3.16 | 12.30 | 3.03 | 0.65 | 2.08 | 0.38 | 2.13 | 0.38 | 1.02 | 0.174 | 1.030 | 0.148 | 62.385 | 55.041 | 7.344 | 7.495 | 7.17 | 0.7501 | 1.09 |
注:B0165号辉绿岩样品发育褐铁矿化,B0176号样品氧化成为铁帽 |