Volume 23 Issue 4
Aug.  2017
Turn off MathJax
Article Contents
ZHANG Shuwei, LIU Qingsong, WANG Xisheng, et al., 2017. A STUDY ON PARTIAL ANHYSTERETIC REMANENCE IN SEDIMENTS FROM GANHAI LAKE, NINGWU TIANCHI. Journal of Geomechanics, 23 (4): 612-616.
Citation: ZHANG Shuwei, LIU Qingsong, WANG Xisheng, et al., 2017. A STUDY ON PARTIAL ANHYSTERETIC REMANENCE IN SEDIMENTS FROM GANHAI LAKE, NINGWU TIANCHI. Journal of Geomechanics, 23 (4): 612-616.

A STUDY ON PARTIAL ANHYSTERETIC REMANENCE IN SEDIMENTS FROM GANHAI LAKE, NINGWU TIANCHI

More Information
  • Received: 2017-02-06
  • Published: 2017-08-01
  • A study of partial anhysteretic remanent magnetization (pARM) spectra in samples from a sediment profile of Ganhai Lake (38°53'N, 112°11'E) shows variations in effective magnetic grain sizes of the lake sediment magnetite particles, consistent with the hysteresis results. Within the full profile, most magnetite particles are of coarse, multi-domain (MD) size, as shown by the dominant low coercivity (AF < 20 mT) spectra, with a few samples showing finer single domain (SD)-pseudo-single domain (PSD) particles with higher coercivity (AF>20 mT). The uppermost level (~7.3~4.0 ka) contains more coarse MD magnetite grains due to higher pARM peaks than the middle (~12.0~7.3 ka) and the lowermost level (~13.0~12.0 ka) that shows lower peaks. The middle level shows slight more fine SD-PSD magnetite grains than both the uppermost and lowermost level. High-field pARM spectrum can effectively identify fine PSD-SD magnetite grains and reduce effects of MD grains. Therefore, pARM spectrum analysis can be utilized to quickly and effectively determine the relative amount of fine magnetic grains in the samples, which is helpful to the study of the paleo-climate, rock magnetism and paleomagnetism of the lake sediments.

     

  • loading
  • [1]
    Dankers P. Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite[J]. Geophysical Journal International, 1981, 64(2): 447~461. doi: 10.1111/j.1365-246X.1981.tb02676.x
    [2]
    Jackson M, Gruber W, Marvin J, et al. Partial anhysteretic remanence and its anisotropy: applications and grainsize-dependence[J]. Geophysical Research Letters, 1988, 15(5): 440~443. doi: 10.1029/GL015i005p00440
    [3]
    刘青松, YU Yongjae, 潘永信, 等.单畴和多畴磁铁矿合成样品的部分非磁滞剩磁研究[J].科学通报, 2005, 50(20): 2267~2270. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520014.htm

    LIU Qingsong, YU Yongjae, PAN Yongxin, et al. Partial anhysteretic remanent magnetization (pARM) of synthetic single-and multidomain magnetites and its paleoenvironmental significance[J]. Chinese Science Bulletin, 2005, 50(20): 2381~2384. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520014.htm
    [4]
    Everitt C W F. Thermoremanent magnetization. Ⅰ. Experiments on single domain grains[J]. Philosophical Magazine, 1961, 6(66): 713~726. doi: 10.1080/14786436108238365
    [5]
    Sugiura N. ARM, TRM and magnetic interactions: concentration dependence[J]. Earth and Planetary Science Letters, 1979, 42(3): 451~455. doi: 10.1016/0012-821X(79)90054-2
    [6]
    Yamazaki T, Ioka N. Cautionary note on magnetic grain-size estimation using the ratio of ARM to magnetic susceptibility[J]. Geophysical Research Letters, 1997, 24(7): 751~754. doi: 10.1029/97GL00602
    [7]
    Liu Q S, Banerjee S K, Jackson M J, et al. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences[J]. Journal of Geophysical Research, 2004, 109(B3):B03101, doi: 10.1029/2003JB002747.
    [8]
    Wang X S, Løvlie R, Su P, et al. Magnetic signature of environmental change reflected by Pleistocene lacustrine sediments from the Nihewan Basin, North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 260(3/4): 452~462. doi: 10.1007/s11434-011-4592-y
    [9]
    Booth C A, Walden J, Neal A, et al. Use of mineral magnetic concentration data as a particle size proxy: a case study using marine, estuarine and fluvial sediments in the Carmarthen Bay area, South Wales, U.K.[J]. Science of the Total Environment, 2005, 347(1/3): 241~253. http://www.sciencedirect.com/science/article/pii/S0048969704008599
    [10]
    朱大岗, 孟宪刚, 邵兆刚, 等.山西宁武地区高山湖泊全新世湖相地层划分及干海组的建立[J].地质通报, 2006, 25(11): 1303~1310. doi: 10.3969/j.issn.1671-2552.2006.11.009

    ZHU Dagang, MENG Xiangang, SHAO Zhaogang, et al. Holocene lacustrine deposits in mountain lakes in Ningwu, Shanxi, China and establishment of the Ganhai Formation[J]. Geological Bulletin of China, 2006, 25(11): 1303~1310. doi: 10.3969/j.issn.1671-2552.2006.11.009
    [11]
    孟宪刚, 朱大岗, 邵兆刚, 等. 山西宁武万年冰洞形成机制及其环境意义[R]. 国土资源大调查项目, 北京: 中国地质科学院地质力学研究所, 2005, 005~03.

    MENG Xiangang, ZHU Dagang, SHAO Zhaogang, et al. Formation regime and its environmental significance of the Ten Thousand Ice Cave in Ningwu, Shanxi Province [R]. The national land and resources survey item plan, Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences, 2005, 005~003.
    [12]
    Muxworthy A, Williams W, Virdee D. Effect of magnetostatic interactions on the hysteresis parameters of single-domain and pseudo-single-domain grains[J]. Journal of Geophysical Research, 2003, 108(B11): 2517, doi: 10.1029/2003JB002588.
    [13]
    Evans M E, Krása D, Williams W, et al. Magnetostatic interactions in a natural magnetite-ulvöspinel system[J]. Journal of Geophysical Research, 2006, 111(B12): B12S16, doi: 10.1029/2006JB004454.
    [14]
    张淑伟, 杨振宇, 王喜生, 等.磁化率各向异性的原理及应用实例[J].地质力学学报, 2017, 23(1): 135~140. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170109&flag=1

    ZHANG Shuwei, YANG Zhenyu, WANG Xisheng, et al. Anisotropy of magnetic susceptibility: theory and case studies[J]. Journal of Geomechanics, 2017, 23(1): 135~140. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170109&flag=1
    [15]
    曾庆猛, 刘成林, 马寅生, 等.电磁资料在柴达木盆地东部地区石炭系勘探中的应用[J].地质力学学报, 2017, 23(1): 125~134. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170108&flag=1

    ZENG Qingmeng, LIU Chenglin, MA Yansheng, et al. Electromagnetic data application in carboniferous exploration of eastern Qaidam Basin[J]. Journal of Geomechanics, 2017, 23(1): 125~134. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170108&flag=1
    [16]
    张淑伟. 环境磁学在加拿大伊利湖西盆地北岸Cedar滩的应用[D]. 北京: 中国地质大学(北京), 2010, 225.

    ZHANG Shuwei. Application of environmental magnetism to Cedar Beach, western Lake Erie, Canada[D]. Beijing: China University of Geosciences (Beijing), 2010, 225.
    [17]
    李建峰, 赵越, 裴军令, 等.塔里木盆地新生代海相沉积问题[J].地质力学学报, 2017, 23(1): 141~149. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170110&flag=1

    LI Jianfeng, ZHAO Yue, PEI Junling, et al. Cenozoic marine sedimentation problem of the Tarim Basin[J]. Journal of Geomechanics, 2017, 23(1): 141~149. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170110&flag=1
    [18]
    Yu Y, Dunlop D J, Özdemir Ö. Partial anhysteretic remanent magnetization in magnetite 2. Reciprocity[J]. Journal of Geophysical Research, 2002, 107(B10): 2245, doi: 10.1029/2001JB001269.
  • 加载中

Catalog

    Figures(4)

    Article Metrics

    Article views (175) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return