| Citation: | WANG X L,DING N,XIONG D Y,2025. TTG petrogenesis and early plate tectonics[J]. Journal of Geomechanics,31(5):1044−1062 doi: 10.12090/j.issn.1006-6616.2025150 |
| [1] |
AARONS S M, REIMINK J R, GREBER N D, et al., 2020. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex[J]. Science Advances, 6(50): eabc9959. doi: 10.1126/sciadv.abc9959
|
| [2] |
ANDRÉ L, ABRAHAM K, HOFMANN A, et al., 2019. Early continental crust generated by reworking of basalts variably silicified by seawater[J]. Nature Geoscience, 12(9): 769-773. doi: 10.1038/s41561-019-0408-5
|
| [3] |
ANTONELLI M A, KENDRICK J, YAKYMCHUK C, et al., 2021. Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust[J]. Nature Communications, 12(1): 2534. doi: 10.1038/s41467-021-22748-2
|
| [4] |
ARTH J G, HANSON G N, 1975. Geochemistry and origin of the early Precambrian crust of northeastern Minnesota[J]. Geochimica et Cosmochimica Acta, 39(3): 325-362. doi: 10.1016/0016-7037(75)90200-8
|
| [5] |
ARTH J G, BARKER F, PETERMAN Z E, et al., 1978. Geochemistry of the gabbro—diorite—tonalite—trondhjemite suite of southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas[J]. Journal of Petrology, 19(2): 289-316. doi: 10.1093/petrology/19.2.289
|
| [6] |
ARTH J G, 1979. Chapter 3-Some trace elements in trondhjemites-their implications to magma genesis and paleotectonic setting[J]. Developments in Petrology, 6: 123-132.
|
| [7] |
BACHMANN O, HUBER C, 2016. Silicic magma reservoirs in the Earth’s crust[J]. American Mineralogist, 101(11): 2377-2404. doi: 10.2138/am-2016-5675
|
| [8] |
BARKER F, 1979. Chapter 1-trondhjemite: definition, environment and hypotheses of origin[J]. Developments in Petrology, 6: 1-12.
|
| [9] |
BENN K, MOYEN J F, 2008. The Late Archean Abitibi-Opatica terrane, Superior Province: A modified oceanic plateau[J]. Geological Society of America Special Papers, 440: 173-197.
|
| [10] |
BYERLY G R, LOWE D R, HEUBECK C, 2019. Chapter 24-geologic evolution of the Barberton greenstone belt—a unique record of crustal development, surface processes, and early life 3.55-3.20 Ga[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's oldest rocks. 2nd ed. Amsterdam: Elsevier: 569-613.
|
| [11] |
CAPITANIO F A, NEBEL O, CAWOOD P A, et al., 2019. Reconciling thermal regimes and tectonics of the early Earth[J]. Geology, 47(10): 923-927. doi: 10.1130/G46239.1
|
| [12] |
CAWOOD P A, CHOWDHURY P, MULDER J A, et al., 2022. Secular evolution of continents and the Earth system[J]. Reviews of Geophysics, 60(4): e2022RG000789. doi: 10.1029/2022RG000789
|
| [13] |
CHAMPION D C, SMITHIES R H, 2007. Chapter 4.3-Geochemistry of paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth[J]. Developments in Precambrian Geology, 15: 369-409. doi: 10.1016/S0166-2635(07)15043-X
|
| [14] |
CHEN G X, KUSKY T, LUO L, et al., 2023. Hadean tectonics: insights from machine learning[J]. Geology, 51(8): 718-722. doi: 10.1130/G51095.1
|
| [15] |
CHEN H, LIU X M, WANG K, 2020. Potassium isotope fractionation during chemical weathering of basalts[J]. Earth and Planetary Science Letters, 539: 116192. doi: 10.1016/j.jpgl.2020.116192
|
| [16] |
CHOWDHURY P, CAWOOD P A, MULDER J A, 2025. Subaerial emergence of continents on Archean Earth[J]. Annual Review of Earth and Planetary Sciences, 53: 443-478. doi: 10.1146/annurev-earth-040722-093345
|
| [17] |
CONDIE K C, 2005. TTGs and adakites: are they both slab melts?[J]. Lithos, 80(1-4): 33-44. doi: 10.1016/j.lithos.2003.11.001
|
| [18] |
CONNOLLY J A D, PETRINI K, 2002. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions[J]. Journal of Metamorphic Geology, 20(7): 697-708. doi: 10.1046/j.1525-1314.2002.00398.x
|
| [19] |
DE CAPITANI C, BROWN T H, 1987. The computation of chemical equilibrium in complex systems containing non-ideal solutions[J]. Geochimica et Cosmochimica Acta, 51(10): 2639-2652. doi: 10.1016/0016-7037(87)90145-1
|
| [20] |
DE CAPITANI C, PETRAKAKIS K, 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software[J]. American Mineralogist, 95(7): 1006-1016. doi: 10.2138/am.2010.3354
|
| [21] |
DENG Z B, CHAUSSIDON M, GUITREAU M, et al., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes[J]. Nature Geoscience, 12(9): 774-778. doi: 10.1038/s41561-019-0407-6
|
| [22] |
DESSIMOZ M, MÜNTENER O, ULMER P, 2012. A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades)[J]. Contributions to Mineralogy and Petrology, 163(4): 567-589. doi: 10.1007/s00410-011-0685-5
|
| [23] |
DHUIME B, HAWKESWORTH C J, CAWOOD P A, et al., 2012. A change in the geodynamics of continental growth 3 billion years ago[J]. Science, 335(6074): 1334-1336. doi: 10.1126/science.1216066
|
| [24] |
DHUIME B, WUESTEFELD A, HAWKESWORTH C J, 2015. Emergence of modern continental crust about 3 billion years ago[J]. Nature Geoscience, 8(7): 552-555. doi: 10.1038/ngeo2466
|
| [25] |
DING N, HAWKESWORTH C, WANG X L, et al., 2025. Tectonic thickening in stagnant to mobile lid transition facilitated the stabilization of Archean cratons[J]. Chemical Geology, 696: 123093. doi: 10.1016/j.chemgeo.2025.123093
|
| [26] |
DING N, WANG X L, DU D H, et al. , 2024. Compositional diversity of TTGs controlled by heterogeneous accumulation of accessory minerals[J]. Lithos, 482-483: 107718.
|
| [27] |
DOUCET L S, LAURENT O, IONOV D A, et al., 2020. Archean lithospheric differentiation: insights from Fe and Zn isotopes[J]. Geology, 48(10): 1028-1032. doi: 10.1130/G47647.1
|
| [28] |
ERIKSSON K A, KRAPEZ B, FRALICK P W, 1994. Sedimentology of Archean greenstone belts: signatures of tectonic evolution[J]. Earth-Science Reviews, 37(1-2): 1-88. doi: 10.1016/0012-8252(94)90025-6
|
| [29] |
FOLEY B J, 2024. Generation of Archean TTGs via sluggish subduction[J]. Geology, 52(9): 656-660. doi: 10.1130/G52196.1
|
| [30] |
GARÇON M, 2021. Episodic growth of felsic continents in the past 3.7 Ga[J]. Science Advances, 7(39): eabj1807. doi: 10.1126/sciadv.abj1807
|
| [31] |
GE R F, ZHU W B, WILDE S A, et al., 2018. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 4(2): eaao3159. doi: 10.1126/sciadv.aao3159
|
| [32] |
GE R F, WILDE S A, ZHU W B, et al., 2023. Earth’s early continental crust formed from wet and oxidizing arc magmas[J]. Nature, 623(7986): 334-339. doi: 10.1038/s41586-023-06552-0
|
| [33] |
GOUMANS J, SMIT M A, MUSIYACHENKO K A, et al., 2025. Boron isotopes trace an increase in subduction-driven recycling of fluid-mobile elements in the Neoarchean[J]. Geochimica et Cosmochimica Acta, 408: 1-11. doi: 10.1016/j.gca.2025.09.021
|
| [34] |
HARTNADY M I H, JOHNSON T E, SCHORN S, et al., 2022. Fluid processes in the early Earth and the growth of continents[J]. Earth and Planetary Science Letters, 594: 117695. doi: 10.1016/j.jpgl.2022.117695
|
| [35] |
HASTIE A R, FITTON J G, BROMILEY G D, et al., 2016. The origin of Earth’s first continents and the onset of plate tectonics[J]. Geology, 44(10): 855-858. doi: 10.1130/G38226.1
|
| [36] |
HASTIE A R, LAW S, BROMILEY G D, et al., 2023. Deep formation of Earth’s earliest continental crust consistent with subduction[J]. Nature Geoscience, 16(9): 816-821. doi: 10.1038/s41561-023-01249-5
|
| [37] |
HEARD A W, AARONS S M, HOFMANN A, et al., 2021. Anoxic continental surface weathering recorded by the 2.95 Ga Denny Dalton Paleosol (Pongola Supergroup, South Africa)[J]. Geochimica et Cosmochimica Acta, 295: 1-23. doi: 10.1016/j.gca.2020.12.005
|
| [38] |
HERZBERG C, CONDIE K, KORENAGA J, 2010. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 292(1-2): 79-88. doi: 10.1016/j.jpgl.2010.01.022
|
| [39] |
HOARE L, RZEHAK L J A, KOMMESCHER S, et al., 2023. Titanium isotope constraints on the mafic sources and geodynamic origins of Archean crust[J]. Geochemical Perspectives Letters, 28: 37-42. doi: 10.7185/geochemlet.2342
|
| [40] |
HU Y, TENG F Z, PLANK T, et al., 2020. Potassium isotopic heterogeneity in subducting oceanic plates[J]. Science Advances, 6(49): eabb2472. doi: 10.1126/sciadv.abb2472
|
| [41] |
HU Y, TENG F Z, HELZ R T, et al., 2021. Potassium isotope fractionation during magmatic differentiation and the composition of the mantle[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB021543. doi: 10.1029/2020JB021543
|
| [42] |
HUANG G Y, MITCHELL R N, PALIN R M, et al., 2025. Modelling partial melting in sinking greenstone belts with implications for Archaean continental crust formation[J]. Journal of Geophysical Research: Solid Earth, 130(4): e2024JB030204. doi: 10.1029/2024JB030204
|
| [43] |
HUANG T Y, TENG F Z, RUDNICK R L, et al., 2020. Heterogeneous potassium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 278: 122-136. doi: 10.1016/j.gca.2019.05.022
|
| [44] |
JAGOUTZ O, SCHMIDT M W, ENGGIST A, et al., 2013. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust[J]. Contributions to Mineralogy and Petrology, 166(4): 1099-1118. doi: 10.1007/s00410-013-0911-4
|
| [45] |
JAHN B M, GLIKSON A Y, PEUCAT J J, et al., 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 45(9): 1633-1652. doi: 10.1016/S0016-7037(81)80002-6
|
| [46] |
JAHN B M, VIDAL P, KRÖNER A, 1984. Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland: a case for long crustal residence time[J]. Contributions to Mineralogy and Petrology, 86(4): 398-408. doi: 10.1007/BF01187143
|
| [47] |
JIANG J L, ZOU X Y, MITCHELL R N, et al., 2024. Sediment subduction in Hadean revealed by machine learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 121(30): e2405160121.
|
| [48] |
JOHNSON T E, BROWN M, KAUS B J P, et al., 2014. Delamination and recycling of Archaean crust caused by gravitational instabilities[J]. Nature Geoscience, 7(1): 47-52. doi: 10.1038/ngeo2019
|
| [49] |
JOHNSON T E, BROWN M, GARDINER N J, et al., 2017. Earth’s first stable continents did not form by subduction[J]. Nature, 543(7644): 239-242. doi: 10.1038/nature21383
|
| [50] |
JOHNSON T E, GARDINER N J, MILJKOVIĆ K, et al., 2018. An impact melt origin for Earth’s oldest known evolved rocks[J]. Nature Geoscience, 11(10): 795-799. doi: 10.1038/s41561-018-0206-5
|
| [51] |
KELLER C B, SCHOENE B, 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago[J]. Nature, 485(7399): 490-493. doi: 10.1038/nature11024
|
| [52] |
KENDRICK J, DUGUET M, YAKYMCHUK C, 2022. Diversification of Archean tonalite-trondhjemite-granodiorite suites in a mushy middle crust[J]. Geology, 50(1): 76-80. doi: 10.1130/G49287.1
|
| [53] |
KIRKLAND C L, JOHNSON T E, BROWN M, et al., 2025. The evolution of Earth’s early continental crust[J]. Nature Reviews Earth & Environment, 6(9): 612-625.
|
| [54] |
KLEINHANNS I C, KRAMERS J D, KAMBER B S, 2003. Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa[J]. Contributions to Mineralogy and Petrology, 145(3): 377-389. doi: 10.1007/s00410-003-0459-9
|
| [55] |
KRÖNER A, ELIS HOFFMANN J, XIE H Q, et al., 2013. Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, craton, southern Africa[J]. Earth and Planetary Science Letters, 381: 188-197. doi: 10.1016/j.jpgl.2013.08.029
|
| [56] |
LAURENT O, MARTIN H, MOYEN J F, et al., 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 205: 208-235. doi: 10.1016/j.lithos.2014.06.012
|
| [57] |
LAURENT O, BJÖRNSEN J, WOTZLAW J F, et al., 2020. Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 13(2): 163-169. doi: 10.1038/s41561-019-0520-6
|
| [58] |
LAURENT O, GUITREAU M, BRUAND E, et al., 2024. At the dawn of continents: Archean tonalite-trondhjemite-granodiorite suites[J]. Elements, 20(3): 174-179. doi: 10.2138/gselements.20.3.174
|
| [59] |
LAURIE A, STEVENS G, 2012. Water-present eclogite melting to produce Earth's early felsic crust[J]. Chemical Geology, 314-317: 83-95.
|
| [60] |
LEI K, WANG H, WANG X L, et al., 2023. Decoupled zircon Si–O isotopes tracing the supracrustal silicification and komatiitic-derived fluids in the source of TTGs[J]. Geophysical Research Letters, 50(16): e2023GL104002. doi: 10.1029/2023GL104002
|
| [61] |
LI W S, LIU X M, WANG K, et al., 2022. Potassium isotope signatures in modern marine sediments: insights into early diagenesis[J]. Earth and Planetary Science Letters, 599: 117849. doi: 10.1016/j.jpgl.2022.117849
|
| [62] |
LIOU P, GUO J H, 2019. Generation of Archaean TTG gneisses through amphibole-dominated fractionation[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3605-3619. doi: 10.1029/2018JB017024
|
| [63] |
LIOU P, WANG Z C, MITCHELL R N, et al., 2022. Fe isotopic evidence that “high pressure” TTGs formed at low pressure[J]. Earth and Planetary Science Letters, 592: 117645. doi: 10.1016/j.jpgl.2022.117645
|
| [64] |
LIU B, MA J X, LI P F, et al., 2025. First boron isotopes in the southern Jilin TTG series uncover a Neoarchean oceanic arc in the eastern North China Craton[J]. Gondwana Research, 139: 243-259. doi: 10.1016/j.gr.2024.11.008
|
| [65] |
LIU H Y, XUE Y Y, ZHANG G L, et al., 2021. Potassium isotopic composition of low-temperature altered oceanic crust and its impact on the global K cycle[J]. Geochimica et Cosmochimica Acta, 311: 59-73. doi: 10.1016/j.gca.2021.08.001
|
| [66] |
LIU Y D, GUO Z X, TIAN H C, et al., 2023. Potassium isotopic fractionation during multistage alteration of oceanic crust in the southern Mariana Trench[J]. Chemical Geology, 620: 121350. doi: 10.1016/j.chemgeo.2023.121350
|
| [67] |
LIU Y S, HE D T, CHEN K, et al., 2025. Top-down water enrichment caused by the proto-crust thickening triggered the first TTG formation[J]. Science Bulletin, 70(21): 3557-3565. (in Chinese with English abstract)
|
| [68] |
LONG X P, ZHAO G C, ZHAI M G, et al., 2024. Research progresses and key scientific issues of pre-plate tectonics and origin of continents[J]. Chinese Science Bulletin, 69(12): 1572-1585. (in Chinese with English abstract)
|
| [69] |
LU D G, LIU J, XIA Q K, et al., 2025. Earth's Hadean crust formed via operation of convergent tectonics[J]. National Science Review, 12(8): nwaf230. doi: 10.1093/nsr/nwaf230
|
| [70] |
MARTIN E, SIGMARSSON O, 2007. Low-pressure differentiation of tholeiitic lavas as recorded in segregation veins from Reykjanes (Iceland), Lanzarote (Canary Islands) and Masaya (Nicaragua)[J]. Contributions to Mineralogy and Petrology, 154(5): 559-573. doi: 10.1007/s00410-007-0209-5
|
| [71] |
MARTIN H, CHAUVEL C, JAHN B M, 1983. Major and trace element geochemistry and crustal evolution of Archaean granodioritic rocks from eastern Finland[J]. Precambrian Research, 21(3-4): 159-180. doi: 10.1016/0301-9268(83)90039-6
|
| [72] |
MARTIN H, 1994. Chapter 6-The Archean grey gneisses and the genesis of continental crust[J]. Developments in Precambrian Geology, 11: 205-259.
|
| [73] |
MARTIN H, SMITHIES R H, RAPP R, et al., 2005. An overview of Adakite, Tonalite–Trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 79(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048
|
| [74] |
MATHIEU L, 2022. Modeling the chemical heterogeneity of tonalite-trondhjemite-granodiorite intrusive suites[J]. Lithos, 422-423: 106744.
|
| [75] |
MOORBATH S, 1975. Evolution of Precambrian crust from strontium isotopic evidence[J]. Nature, 254(5499): 395-398. doi: 10.1038/254395a0
|
| [76] |
MOYEN J F, STEVENS G, 2006. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[M]//BENN K, MARESCHAL J C, CONDIE K C. Archean geodynamics and environments. Washington: American Geophysical Union: 149-175.
|
| [77] |
MOYEN J F, 2011. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 123(1-4): 21-36. doi: 10.1016/j.lithos.2010.09.015
|
| [78] |
MOYEN J F, MARTIN H, 2012. Forty years of TTG research[J]. Lithos, 148: 312-336. doi: 10.1016/j.lithos.2012.06.010
|
| [79] |
MOYEN J F, van HUNEN J, 2012. Short-term episodicity of Archaean plate tectonics[J]. Geology, 40(5): 451-454. doi: 10.1130/G322894.1
|
| [80] |
MOYEN J F, LAURENT O, 2018. Archaean tectonic systems: a view from igneous rocks[J]. Lithos, 302-303: 99-125.
|
| [81] |
MUKHOPADHYAY J, CROWLEY Q G, GHOSH S, et al., 2014. Oxygenation of the Archean atmosphere: new paleosol constraints from eastern India[J]. Geology, 42(10): 923-926. doi: 10.1130/G36091.1
|
| [82] |
NÆRAA T, SCHERSTÉN A, ROSING M T, et al., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago[J]. Nature, 485(7400): 627-630. doi: 10.1038/nature11140
|
| [83] |
NAGEL T J, HOFFMANN J E, MÜNKER C, 2012. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust[J]. Geology, 40(4): 375-378. doi: 10.1130/G32729.1
|
| [84] |
PALIN R M, WHITE R W, GREEN E C R, 2016. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling[J]. Precambrian Research, 287: 73-90. doi: 10.1016/j.precamres.2016.11.001
|
| [85] |
PALIN R M, SANTOSH M, CAO W T, et al., 2020. Secular change and the onset of plate tectonics on Earth[J]. Earth-Science Reviews, 207: 103172. doi: 10.1016/j.earscirev.2020.103172
|
| [86] |
PETERMAN Z E, BARKER F, 1976. Rb-Sr whole-rock age of trondhjemites and related rocks of the southwestern Trondheim region, Norway[R]. Open-File Report 76-670, Washington: U. S. Geological Survey.
|
| [87] |
POWELL R, HOLLAND T J B, 1988. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program[J]. Journal of Metamorphic Geology, 6(2): 173-204. doi: 10.1111/j.1525-1314.1988.tb00415.x
|
| [88] |
POWELL R, HOLLAND T, WORLEY B, 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC[J]. Journal of Metamorphic Geology, 16(4): 577-588. doi: 10.1111/j.1525-1314.1998.00157.x
|
| [89] |
POWELL R, HOLLAND T J B, 2008. On thermobarometry[J]. Journal of Metamorphic Geology, 26(2): 155-179. doi: 10.1111/j.1525-1314.2007.00756.x
|
| [90] |
QIAN Q, HERMANN J, 2013. Partial melting of lower crust at 10-15 kbar: constraints on adakite and TTG formation[J]. Contributions to Mineralogy and Petrology, 165(6): 1195-1224. doi: 10.1007/s00410-013-0854-9
|
| [91] |
RAPP R P, NORMAN M D, LAPORTE D, et al., 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt–rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids)[J]. Journal of Petrology, 51(6): 1237-1266. doi: 10.1093/petrology/egq017
|
| [92] |
REIMINK J R, DAVIES J H F L, IELPI A, 2021. Global zircon analysis records a gradual rise of continental crust throughout the Neoarchean[J]. Earth and Planetary Science Letters, 554: 116654. doi: 10.1016/j.jpgl.2020.116654
|
| [93] |
REIMINK J R, DAVIES J H F L, MOYEN J F, et al., 2023. A whole-lithosphere view of continental growth[J]. Geochemical Perspectives Letters, 26: 45-49. doi: 10.7185/geochemlet.2324
|
| [94] |
RICHARDS J P, KERRICH R, 2007. Special Paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis[J]. Economic Geology, 102(4): 537-576. doi: 10.2113/gsecongeo.102.4.537
|
| [95] |
ROBERTS N M W, SANTOSH M, 2018. Capturing the mesoarchean emergence of continental crust in the Coorg Block, southern India[J]. Geophysical Research Letters, 45(15): 7444-7453. doi: 10.1029/2018GL078114
|
| [96] |
ROLLINSON H, MARTIN H, 2005. Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation: introduction to the Special Issue[J]. Lithos, 79(1-2): ix-xii. doi: 10.1016/j.lithos.2004.09.001
|
| [97] |
ROMAN A, ARNDT N, 2020. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis[J]. Geochimica et Cosmochimica Acta, 278: 65-77. doi: 10.1016/j.gca.2019.07.009
|
| [98] |
ROZEL A B, GOLABEK G J, JAIN C, et al., 2017. Continental crust formation on early Earth controlled by intrusive magmatism[J]. Nature, 545(7654): 332-335. doi: 10.1038/nature22042
|
| [99] |
SANTIAGO RAMOS D P, COOGAN L A, MURPHY J G, et al., 2020. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater[J]. Earth and Planetary Science Letters, 541: 116290. doi: 10.1016/j.jpgl.2020.116290
|
| [100] |
SAVAGE P S, GEORG R B, WILLIAMS H M, et al., 2011. Silicon isotope fractionation during magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 75(20): 6124-6139. doi: 10.1016/j.gca.2011.07.043
|
| [101] |
SIZOVA E, GERYA T, STÜWE K, et al., 2015. Generation of felsic crust in the Archean: a geodynamic modeling perspective[J]. Precambrian Research, 271: 198-224. doi: 10.1016/j.precamres.2015.10.005
|
| [102] |
SMIT M A, SCHERSTÉN A, NÆRAA T, et al., 2019. Formation of Archean continental crust constrained by boron isotopes[J]. Geochemical Perspectives Letters, 12: 23-26.
|
| [103] |
SMITH T E, CHOUDHRY A G, HUANG C H, 1983. The geochemistry and petrogenesis of the Archean Gamitagama Lake igneous complex, southern Superior province[J]. Precambrian Research, 22(3-4): 219-244. doi: 10.1016/0301-9268(83)90050-5
|
| [104] |
SMITHIES R H, CHAMPION D C, VAN KRANENDONK M J, 2007. Chapter 4.2 The oldest well-preserved felsic volcanic rocks on earth: geochemical clues to the early evolution of the Pilbara supergroup and implications for the growth of a Paleoarchean protocontinent[J]. Developments in Precambrian Geology, 15: 339-367. doi: 10.1016/S0166-2635(07)15042-8
|
| [105] |
SMITHIES R H, CHAMPION D C, VAN KRANENDONK M J, 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt[J]. Earth and Planetary Science Letters, 281(3-4): 298-306. doi: 10.1016/j.jpgl.2009.03.003
|
| [106] |
SMITHIES R H, LU Y J, JOHNSON T E, et al., 2019. No evidence for high-pressure melting of Earth’s crust in the Archean[J]. Nature Communications, 10(1): 5559. doi: 10.1038/s41467-019-13547-x
|
| [107] |
SMITHIES R H, LU Y J, KIRKLAND C L, et al., 2021. Oxygen isotopes trace the origins of Earth’s earliest continental crust[J]. Nature, 592(7852): 70-75. doi: 10.1038/s41586-021-03337-1
|
| [108] |
SPRINGER W, SECK H A, 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas[J]. Contributions to Mineralogy and Petrology, 127(1-2): 30-45. doi: 10.1007/s004100050263
|
| [109] |
SUN Y, TENG F Z, HU Y, et al., 2020. Tracing subducted oceanic slabs in the mantle by using potassium isotopes[J]. Geochimica et Cosmochimica Acta, 278: 353-360. doi: 10.1016/j.gca.2019.05.013
|
| [110] |
TAMBLYN R, HERMANN J, HASTEROK D, et al., 2023. Hydrated komatiites as a source of water for TTG formation in the Archean[J]. Earth and Planetary Science Letters, 603: 117982. doi: 10.1016/j.jpgl.2022.117982
|
| [111] |
TANG M, CHEN K, RUDNICK R L, 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 351(6271): 372-375. doi: 10.1126/science.aad5513
|
| [112] |
TENG F Z, HU Y, MA J L, et al., 2020. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance[J]. Geochimica et Cosmochimica Acta, 278: 261-271. doi: 10.1016/j.gca.2020.02.029
|
| [113] |
TRAIL D, BOEHNKE P, SAVAGE P S, et al., 2018. Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(41): 10287-10292.
|
| [114] |
TULLER-ROSS B, SAVAGE P S, CHEN H, et al., 2019. Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite[J]. Chemical Geology, 525: 37-45. doi: 10.1016/j.chemgeo.2019.07.017
|
| [115] |
TURNER S, WOOD B, JOHNSON T, et al., 2025. Formation and composition of Earth’s Hadean protocrust[J]. Nature, 640(8058): 390-394. doi: 10.1038/s41586-025-08719-3
|
| [116] |
VAN KRANENDONK M J, KIRKLAND C L, CLIFF J, 2015. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga[J]. Lithos, 228-229: 90-98.
|
| [117] |
VANDENBURG E D, NEBEL O, SMITHIES R H, et al., 2023. Spatial and temporal control of Archean tectonomagmatic regimes[J]. Earth-Science Reviews, 241: 104417. doi: 10.1016/j.earscirev.2023.104417
|
| [118] |
WANG X L, TANG M, MOYEN J, et al., 2022. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary[J]. National Science Review, 9(3): nwab136. doi: 10.1093/nsr/nwab136
|
| [119] |
WEI C J, GUAN X, DONG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381-1404. (in Chinese with English abstract)
|
| [120] |
WU Z Q, ZHAO G C, 2022. Hydrous plumes in the Archean and the origin of continents[J]. Science Bulletin, 67(20): 2023-2025. doi: 10.1016/j.scib.2022.09.016
|
| [121] |
WU Z Q, SONG J, ZHAO G C, et al., 2023. Water-induced mantle overturns leading to the origins of Archean continents and subcontinental lithospheric mantle[J]. Geophysical Research Letters, 50(22): e2023GL105178. doi: 10.1029/2023GL105178
|
| [122] |
WU Z Q, 2024. Water induced mantle overturn and origin of the Archean crust[J]. Advances in Earth Science, 39(6): 551-564. (in Chinese with English abstract)
|
| [123] |
XIANG H, CONNOLLY J A D, 2022. GeoPS: an interactive visual computing tool for thermodynamic modelling of phase equilibria[J]. Journal of Metamorphic Geology, 40(2): 243-255. doi: 10.1111/jmg.12626
|
| [124] |
XIONG D Y, WANG X L, LI W, et al., 2025. Potassium isotope evidence for origin of Archean TTG rocks from seawater-hydrothermally altered oceanic crust[J]. Geochemistry, Geophysics, Geosystems, 26(1): e2024GC011892. doi: 10.1029/2024GC011892
|
| [125] |
XIONG X L, KEPPLER H, AUDÉTAT A, et al., 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis[J]. American Mineralogist, 94(8-9): 1175-1186. doi: 10.2138/am.2009.3158
|
| [126] |
YANG W, TENG F Z, LI W Y, et al., 2016. Magnesium isotopic composition of the deep continental crust[J]. American Mineralogist, 101(2): 243-252. doi: 10.2138/am-2016-5275
|
| [127] |
YU C Y, YANG T, ZHANG J, et al., 2022. Coexisting diverse P–T–t paths during Neoarchean Sagduction: insights from numerical modeling and applications to the eastern North China Craton[J]. Earth and Planetary Science Letters, 586: 117529. doi: 10.1016/j.jpgl.2022.117529
|
| [128] |
ZHAI M G, ZHANG Q, CHEN G N, et al., 2016. Adventure on the research of continental evolution and related granite geochemistry[J]. Chinese Science Bulletin, 61(13): 1414-1420. (in Chinese with English abstract) doi: 10.1360/N972015-01272
|
| [129] |
ZHAI M G, PENG P, 2020. Origin of early continents and beginning of plate tectonics[J]. Science Bulletin, 65(12): 970-973. doi: 10.1016/j.scib.2020.03.022
|
| [130] |
ZHAI M G, ZHAO L, ZHU X Y, et al., 2020. Review and overview for the frontier hotspot: early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 36(8): 2249-2275. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.08.01
|
| [131] |
ZHANG C Z, ZHANG Q, JIN W J, et al., 2018. Can Archean TTG compare with Adakite? Global data gives results[J]. Chinese Journal of Geology, 53(4): 1254-1266. (in Chinese with English abstract)
|
| [132] |
ZHANG Q, ZHAI M G, 2012. What is the Archean TTG?[J]. Acta Petrologica Sinica, 28(11): 3446-3456. (in Chinese with English abstract)
|
| [133] |
ZHANG Q, ZHAO L, ZHOU D W, et al., 2023a. No evidence of supracrustal recycling in Si-O isotopes of Earth’s oldest rocks 4 Ga ago[J]. Science Advances, 9(26): eadf0693. doi: 10.1126/sciadv.adf0693
|
| [134] |
ZHANG S B, ZHANG L, YAO X Y, et al., 2025. Formation of early continental crust by remelting of hydrothermally altered oceanic crust: evidence from potassium and oxygen isotopes[J]. Chemical Geology, 690: 122888. doi: 10.1016/j.chemgeo.2025.122888
|
| [135] |
ZHANG Z J, DAUPHAS N, JOHNSON A C, et al., 2023b. Titanium and iron isotopic records of granitoid crust production in diverse Archean cratons[J]. Earth and Planetary Science Letters, 620: 118342. doi: 10.1016/j.jpgl.2023.118342
|
| [136] |
ZHAO D Y, CAWOOD P A, TENG F Z, et al., 2025. A two-stage mantle plume-sagduction origin of Archean continental crust revealed by water and oxygen isotopes of TTGs[J]. Science Advances, 11(24): eadr9513. doi: 10.1126/sciadv.adr9513
|
| [137] |
ZHAO G C, ZHANG G W, 2021. Origin of continents[J]. Acta Geologica Sinica, 95(1): 1-19. (in Chinese with English abstract) doi: 10.1111/1755-6724.14621
|
| [138] |
ZHAO G C, ZHANG J, YIN C Q, et al., 2023. Pre-plate tectonics and origin of continents[J]. Chinese Science Bulletin, 68(18): 2312-2323. (in Chinese with English abstract) doi: 10.1360/TB-2022-0249
|
| [139] |
ZHENG Y F, ZHAO G C, 2020. Two styles of plate tectonics in Earth’s history[J]. Science Bulletin, 65(4): 329-334. doi: 10.1016/j.scib.2018.12.029
|
| [140] |
ZHENG Y F, 2023. Plate tectonics in the twenty-first century[J]. Science China Earth Sciences, 66(1): 1-40. doi: 10.1007/s11430-022-1011-9
|
| [141] |
ZHENG Y F, 2024. Plate tectonics in the Archean: observations versus interpretations[J]. Science China Earth Sciences, 67(1): 1-30. doi: 10.1007/s11430-023-1210-5
|
| [142] |
ZHENG Y F, 2025. Origin of continental crust on early Earth[J]. National Science Review, 12(9): nwaf341. doi: 10.1093/nsr/nwaf341
|
| [143] |
刘勇胜, 何德涛, 陈康, 等, 2025. 原始地壳增厚驱动水反向富集与早期TTG形成[J]. 科学通报, 70(21): 3557-3565.
|
| [144] |
龙晓平, 赵国春, 翟明国, 等, 2024. 前板块构造与大陆起源研究进展及关键科学问题[J]. 科学通报, 69(12): 1572-1585.
|
| [145] |
魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381-1404.
|
| [146] |
吴忠庆, 2024. 水诱导的地幔反转与大陆起源[J]. 地球科学进展, 39(6): 551-564.
|
| [147] |
翟明国, 张旗, 陈国能, 等, 2016. 大陆演化与花岗岩研究的变革[J]. 科学通报, 61(13): 1414-1420.
|
| [148] |
翟明国, 赵磊, 祝禧艳, 等, 2020. 早期大陆与板块构造启动: 前沿热点介绍与展望[J]. 岩石学报, 36(8): 2249-2275.
|
| [149] |
张昌振, 张旗, 金维浚, 等, 2018. 太古宙TTG能否与埃达克岩对比?: 全球数据给出的结果[J]. 地质科学, 53(4): 1254-1266.
|
| [150] |
张旗, 翟明国, 2012. 太古宙TTG岩石是什么含义?[J]. 岩石学报, 28(11): 3446-3456.
|
| [151] |
赵国春, 张国伟, 2021. 大陆的起源[J]. 地质学报, 95(1): 1-19.
|
| [152] |
赵国春, 张健, 尹常青, 等, 2023. 前板块构造与大陆起源[J]. 科学通报, 68(18): 2312-2323.
|
| [153] |
郑永飞, 2023. 21世纪板块构造[J]. 中国科学: 地球科学, 53(1): 1-40.
|
| [154] |
郑永飞, 2024. 太古宙地质与板块构造: 观察与解释[J]. 中国科学: 地球科学, 54(1): 1-30.
|