Volume 31 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
WANG X L,DING N,XIONG D Y,2025. TTG petrogenesis and early plate tectonics[J]. Journal of Geomechanics,31(5):1044−1062 doi: 10.12090/j.issn.1006-6616.2025150
Citation: WANG X L,DING N,XIONG D Y,2025. TTG petrogenesis and early plate tectonics[J]. Journal of Geomechanics,31(5):1044−1062 doi: 10.12090/j.issn.1006-6616.2025150

TTG petrogenesis and early plate tectonics

doi: 10.12090/j.issn.1006-6616.2025150
Funds:  This research is financially supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 42025202).
More Information
  • Author Bio:

    王孝磊,南京大学教授、博士生导师,中国矿物岩石地球化学学会理事、岩浆岩专业委员会主任,《岩石学报》副主编,《地质力学学报》等期刊编委。获国家自然科学基金委杰出青年和优秀青年基金、中国矿物岩石地球化学学会侯德封奖。主要从事岩石学和前寒武纪地质学研究,在NatureScience AdvancesNature CommunicationsNational Science ReviewGeology等发表学术论文140余篇,参与出版教材2部,部分成果获教育部自然科学奖一等奖(排名第1)和二等奖(排名第2),2021—2024连续四年入选爱思唯尔“中国高被引学者”榜单

  • Received: 2025-10-10
  • Revised: 2025-10-28
  • Accepted: 2025-10-29
  • Available Online: 2025-10-31
  • Published: 2025-10-28
  •   Objective  TTG (tonalite-trondhjemite-granodiorite) suites, major constituents of Archean continental crust, serve as key archives for understanding the formation and evolution of the early continental crust and related plate tectonic regimes and mechanisms.   Methods  This work presents a systematic review on the petrological definitions, classification schemes, experimental petrology, source characteristics, and genetic mechanisms of TTGs, with a particular focus on the relationship between TTG petrogenesis and early plate tectonics. Traditionally, high-pressure TTGs have been interpreted as evidence for Archean subduction. However, emerging paradigms, including the "mush model" and geodynamic numerical simulations, suggest that the compositional diversity of TTG can be reasonably explained by late-stage magmatic processes (e.g., crystal-melt separation) and that TTG can also be formed through non-subduction mechanisms (e.g., crustal dripping, mantle plumes).   Results  Recent applications of non-traditional stable isotopes (e.g., B, Si, K, Ca), big data analytics, and machine learning in the early Earth studies provided novel insights into tracing TTG source characteristics (such as the incorporation of supracrustal materials) and early tectonic settings.   Conclusion  This review suggests that future TTG research should further integrate petrology, geochemistry, and numerical modeling, enhance the identification of primary melt compositions, develop more robust geochemical indicators to effectively discriminate between different mechanisms (e.g., subduction vs. mantle plumes), and conduct multi-scale, interdisciplinary studies in key areas.  Significance  These efforts are crucial for deepening our understanding of the tectonic evolution of the early Earth and the mechanisms of continental crust growth.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    AARONS S M, REIMINK J R, GREBER N D, et al., 2020. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex[J]. Science Advances, 6(50): eabc9959. doi: 10.1126/sciadv.abc9959
    [2]
    ANDRÉ L, ABRAHAM K, HOFMANN A, et al., 2019. Early continental crust generated by reworking of basalts variably silicified by seawater[J]. Nature Geoscience, 12(9): 769-773. doi: 10.1038/s41561-019-0408-5
    [3]
    ANTONELLI M A, KENDRICK J, YAKYMCHUK C, et al., 2021. Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust[J]. Nature Communications, 12(1): 2534. doi: 10.1038/s41467-021-22748-2
    [4]
    ARTH J G, HANSON G N, 1975. Geochemistry and origin of the early Precambrian crust of northeastern Minnesota[J]. Geochimica et Cosmochimica Acta, 39(3): 325-362. doi: 10.1016/0016-7037(75)90200-8
    [5]
    ARTH J G, BARKER F, PETERMAN Z E, et al., 1978. Geochemistry of the gabbro—diorite—tonalite—trondhjemite suite of southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas[J]. Journal of Petrology, 19(2): 289-316. doi: 10.1093/petrology/19.2.289
    [6]
    ARTH J G, 1979. Chapter 3-Some trace elements in trondhjemites-their implications to magma genesis and paleotectonic setting[J]. Developments in Petrology, 6: 123-132.
    [7]
    BACHMANN O, HUBER C, 2016. Silicic magma reservoirs in the Earth’s crust[J]. American Mineralogist, 101(11): 2377-2404. doi: 10.2138/am-2016-5675
    [8]
    BARKER F, 1979. Chapter 1-trondhjemite: definition, environment and hypotheses of origin[J]. Developments in Petrology, 6: 1-12.
    [9]
    BENN K, MOYEN J F, 2008. The Late Archean Abitibi-Opatica terrane, Superior Province: A modified oceanic plateau[J]. Geological Society of America Special Papers, 440: 173-197.
    [10]
    BYERLY G R, LOWE D R, HEUBECK C, 2019. Chapter 24-geologic evolution of the Barberton greenstone belt—a unique record of crustal development, surface processes, and early life 3.55-3.20 Ga[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's oldest rocks. 2nd ed. Amsterdam: Elsevier: 569-613.
    [11]
    CAPITANIO F A, NEBEL O, CAWOOD P A, et al., 2019. Reconciling thermal regimes and tectonics of the early Earth[J]. Geology, 47(10): 923-927. doi: 10.1130/G46239.1
    [12]
    CAWOOD P A, CHOWDHURY P, MULDER J A, et al., 2022. Secular evolution of continents and the Earth system[J]. Reviews of Geophysics, 60(4): e2022RG000789. doi: 10.1029/2022RG000789
    [13]
    CHAMPION D C, SMITHIES R H, 2007. Chapter 4.3-Geochemistry of paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth[J]. Developments in Precambrian Geology, 15: 369-409. doi: 10.1016/S0166-2635(07)15043-X
    [14]
    CHEN G X, KUSKY T, LUO L, et al., 2023. Hadean tectonics: insights from machine learning[J]. Geology, 51(8): 718-722. doi: 10.1130/G51095.1
    [15]
    CHEN H, LIU X M, WANG K, 2020. Potassium isotope fractionation during chemical weathering of basalts[J]. Earth and Planetary Science Letters, 539: 116192. doi: 10.1016/j.jpgl.2020.116192
    [16]
    CHOWDHURY P, CAWOOD P A, MULDER J A, 2025. Subaerial emergence of continents on Archean Earth[J]. Annual Review of Earth and Planetary Sciences, 53: 443-478. doi: 10.1146/annurev-earth-040722-093345
    [17]
    CONDIE K C, 2005. TTGs and adakites: are they both slab melts?[J]. Lithos, 80(1-4): 33-44. doi: 10.1016/j.lithos.2003.11.001
    [18]
    CONNOLLY J A D, PETRINI K, 2002. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions[J]. Journal of Metamorphic Geology, 20(7): 697-708. doi: 10.1046/j.1525-1314.2002.00398.x
    [19]
    DE CAPITANI C, BROWN T H, 1987. The computation of chemical equilibrium in complex systems containing non-ideal solutions[J]. Geochimica et Cosmochimica Acta, 51(10): 2639-2652. doi: 10.1016/0016-7037(87)90145-1
    [20]
    DE CAPITANI C, PETRAKAKIS K, 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software[J]. American Mineralogist, 95(7): 1006-1016. doi: 10.2138/am.2010.3354
    [21]
    DENG Z B, CHAUSSIDON M, GUITREAU M, et al., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes[J]. Nature Geoscience, 12(9): 774-778. doi: 10.1038/s41561-019-0407-6
    [22]
    DESSIMOZ M, MÜNTENER O, ULMER P, 2012. A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades)[J]. Contributions to Mineralogy and Petrology, 163(4): 567-589. doi: 10.1007/s00410-011-0685-5
    [23]
    DHUIME B, HAWKESWORTH C J, CAWOOD P A, et al., 2012. A change in the geodynamics of continental growth 3 billion years ago[J]. Science, 335(6074): 1334-1336. doi: 10.1126/science.1216066
    [24]
    DHUIME B, WUESTEFELD A, HAWKESWORTH C J, 2015. Emergence of modern continental crust about 3 billion years ago[J]. Nature Geoscience, 8(7): 552-555. doi: 10.1038/ngeo2466
    [25]
    DING N, HAWKESWORTH C, WANG X L, et al., 2025. Tectonic thickening in stagnant to mobile lid transition facilitated the stabilization of Archean cratons[J]. Chemical Geology, 696: 123093. doi: 10.1016/j.chemgeo.2025.123093
    [26]
    DING N, WANG X L, DU D H, et al. , 2024. Compositional diversity of TTGs controlled by heterogeneous accumulation of accessory minerals[J]. Lithos, 482-483: 107718.
    [27]
    DOUCET L S, LAURENT O, IONOV D A, et al., 2020. Archean lithospheric differentiation: insights from Fe and Zn isotopes[J]. Geology, 48(10): 1028-1032. doi: 10.1130/G47647.1
    [28]
    ERIKSSON K A, KRAPEZ B, FRALICK P W, 1994. Sedimentology of Archean greenstone belts: signatures of tectonic evolution[J]. Earth-Science Reviews, 37(1-2): 1-88. doi: 10.1016/0012-8252(94)90025-6
    [29]
    FOLEY B J, 2024. Generation of Archean TTGs via sluggish subduction[J]. Geology, 52(9): 656-660. doi: 10.1130/G52196.1
    [30]
    GARÇON M, 2021. Episodic growth of felsic continents in the past 3.7 Ga[J]. Science Advances, 7(39): eabj1807. doi: 10.1126/sciadv.abj1807
    [31]
    GE R F, ZHU W B, WILDE S A, et al., 2018. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 4(2): eaao3159. doi: 10.1126/sciadv.aao3159
    [32]
    GE R F, WILDE S A, ZHU W B, et al., 2023. Earth’s early continental crust formed from wet and oxidizing arc magmas[J]. Nature, 623(7986): 334-339. doi: 10.1038/s41586-023-06552-0
    [33]
    GOUMANS J, SMIT M A, MUSIYACHENKO K A, et al., 2025. Boron isotopes trace an increase in subduction-driven recycling of fluid-mobile elements in the Neoarchean[J]. Geochimica et Cosmochimica Acta, 408: 1-11. doi: 10.1016/j.gca.2025.09.021
    [34]
    HARTNADY M I H, JOHNSON T E, SCHORN S, et al., 2022. Fluid processes in the early Earth and the growth of continents[J]. Earth and Planetary Science Letters, 594: 117695. doi: 10.1016/j.jpgl.2022.117695
    [35]
    HASTIE A R, FITTON J G, BROMILEY G D, et al., 2016. The origin of Earth’s first continents and the onset of plate tectonics[J]. Geology, 44(10): 855-858. doi: 10.1130/G38226.1
    [36]
    HASTIE A R, LAW S, BROMILEY G D, et al., 2023. Deep formation of Earth’s earliest continental crust consistent with subduction[J]. Nature Geoscience, 16(9): 816-821. doi: 10.1038/s41561-023-01249-5
    [37]
    HEARD A W, AARONS S M, HOFMANN A, et al., 2021. Anoxic continental surface weathering recorded by the 2.95 Ga Denny Dalton Paleosol (Pongola Supergroup, South Africa)[J]. Geochimica et Cosmochimica Acta, 295: 1-23. doi: 10.1016/j.gca.2020.12.005
    [38]
    HERZBERG C, CONDIE K, KORENAGA J, 2010. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 292(1-2): 79-88. doi: 10.1016/j.jpgl.2010.01.022
    [39]
    HOARE L, RZEHAK L J A, KOMMESCHER S, et al., 2023. Titanium isotope constraints on the mafic sources and geodynamic origins of Archean crust[J]. Geochemical Perspectives Letters, 28: 37-42. doi: 10.7185/geochemlet.2342
    [40]
    HU Y, TENG F Z, PLANK T, et al., 2020. Potassium isotopic heterogeneity in subducting oceanic plates[J]. Science Advances, 6(49): eabb2472. doi: 10.1126/sciadv.abb2472
    [41]
    HU Y, TENG F Z, HELZ R T, et al., 2021. Potassium isotope fractionation during magmatic differentiation and the composition of the mantle[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB021543. doi: 10.1029/2020JB021543
    [42]
    HUANG G Y, MITCHELL R N, PALIN R M, et al., 2025. Modelling partial melting in sinking greenstone belts with implications for Archaean continental crust formation[J]. Journal of Geophysical Research: Solid Earth, 130(4): e2024JB030204. doi: 10.1029/2024JB030204
    [43]
    HUANG T Y, TENG F Z, RUDNICK R L, et al., 2020. Heterogeneous potassium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 278: 122-136. doi: 10.1016/j.gca.2019.05.022
    [44]
    JAGOUTZ O, SCHMIDT M W, ENGGIST A, et al., 2013. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust[J]. Contributions to Mineralogy and Petrology, 166(4): 1099-1118. doi: 10.1007/s00410-013-0911-4
    [45]
    JAHN B M, GLIKSON A Y, PEUCAT J J, et al., 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 45(9): 1633-1652. doi: 10.1016/S0016-7037(81)80002-6
    [46]
    JAHN B M, VIDAL P, KRÖNER A, 1984. Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland: a case for long crustal residence time[J]. Contributions to Mineralogy and Petrology, 86(4): 398-408. doi: 10.1007/BF01187143
    [47]
    JIANG J L, ZOU X Y, MITCHELL R N, et al., 2024. Sediment subduction in Hadean revealed by machine learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 121(30): e2405160121.
    [48]
    JOHNSON T E, BROWN M, KAUS B J P, et al., 2014. Delamination and recycling of Archaean crust caused by gravitational instabilities[J]. Nature Geoscience, 7(1): 47-52. doi: 10.1038/ngeo2019
    [49]
    JOHNSON T E, BROWN M, GARDINER N J, et al., 2017. Earth’s first stable continents did not form by subduction[J]. Nature, 543(7644): 239-242. doi: 10.1038/nature21383
    [50]
    JOHNSON T E, GARDINER N J, MILJKOVIĆ K, et al., 2018. An impact melt origin for Earth’s oldest known evolved rocks[J]. Nature Geoscience, 11(10): 795-799. doi: 10.1038/s41561-018-0206-5
    [51]
    KELLER C B, SCHOENE B, 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago[J]. Nature, 485(7399): 490-493. doi: 10.1038/nature11024
    [52]
    KENDRICK J, DUGUET M, YAKYMCHUK C, 2022. Diversification of Archean tonalite-trondhjemite-granodiorite suites in a mushy middle crust[J]. Geology, 50(1): 76-80. doi: 10.1130/G49287.1
    [53]
    KIRKLAND C L, JOHNSON T E, BROWN M, et al., 2025. The evolution of Earth’s early continental crust[J]. Nature Reviews Earth & Environment, 6(9): 612-625.
    [54]
    KLEINHANNS I C, KRAMERS J D, KAMBER B S, 2003. Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa[J]. Contributions to Mineralogy and Petrology, 145(3): 377-389. doi: 10.1007/s00410-003-0459-9
    [55]
    KRÖNER A, ELIS HOFFMANN J, XIE H Q, et al., 2013. Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, craton, southern Africa[J]. Earth and Planetary Science Letters, 381: 188-197. doi: 10.1016/j.jpgl.2013.08.029
    [56]
    LAURENT O, MARTIN H, MOYEN J F, et al., 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 205: 208-235. doi: 10.1016/j.lithos.2014.06.012
    [57]
    LAURENT O, BJÖRNSEN J, WOTZLAW J F, et al., 2020. Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 13(2): 163-169. doi: 10.1038/s41561-019-0520-6
    [58]
    LAURENT O, GUITREAU M, BRUAND E, et al., 2024. At the dawn of continents: Archean tonalite-trondhjemite-granodiorite suites[J]. Elements, 20(3): 174-179. doi: 10.2138/gselements.20.3.174
    [59]
    LAURIE A, STEVENS G, 2012. Water-present eclogite melting to produce Earth's early felsic crust[J]. Chemical Geology, 314-317: 83-95.
    [60]
    LEI K, WANG H, WANG X L, et al., 2023. Decoupled zircon Si–O isotopes tracing the supracrustal silicification and komatiitic-derived fluids in the source of TTGs[J]. Geophysical Research Letters, 50(16): e2023GL104002. doi: 10.1029/2023GL104002
    [61]
    LI W S, LIU X M, WANG K, et al., 2022. Potassium isotope signatures in modern marine sediments: insights into early diagenesis[J]. Earth and Planetary Science Letters, 599: 117849. doi: 10.1016/j.jpgl.2022.117849
    [62]
    LIOU P, GUO J H, 2019. Generation of Archaean TTG gneisses through amphibole-dominated fractionation[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3605-3619. doi: 10.1029/2018JB017024
    [63]
    LIOU P, WANG Z C, MITCHELL R N, et al., 2022. Fe isotopic evidence that “high pressure” TTGs formed at low pressure[J]. Earth and Planetary Science Letters, 592: 117645. doi: 10.1016/j.jpgl.2022.117645
    [64]
    LIU B, MA J X, LI P F, et al., 2025. First boron isotopes in the southern Jilin TTG series uncover a Neoarchean oceanic arc in the eastern North China Craton[J]. Gondwana Research, 139: 243-259. doi: 10.1016/j.gr.2024.11.008
    [65]
    LIU H Y, XUE Y Y, ZHANG G L, et al., 2021. Potassium isotopic composition of low-temperature altered oceanic crust and its impact on the global K cycle[J]. Geochimica et Cosmochimica Acta, 311: 59-73. doi: 10.1016/j.gca.2021.08.001
    [66]
    LIU Y D, GUO Z X, TIAN H C, et al., 2023. Potassium isotopic fractionation during multistage alteration of oceanic crust in the southern Mariana Trench[J]. Chemical Geology, 620: 121350. doi: 10.1016/j.chemgeo.2023.121350
    [67]
    LIU Y S, HE D T, CHEN K, et al., 2025. Top-down water enrichment caused by the proto-crust thickening triggered the first TTG formation[J]. Science Bulletin, 70(21): 3557-3565. (in Chinese with English abstract)
    [68]
    LONG X P, ZHAO G C, ZHAI M G, et al., 2024. Research progresses and key scientific issues of pre-plate tectonics and origin of continents[J]. Chinese Science Bulletin, 69(12): 1572-1585. (in Chinese with English abstract)
    [69]
    LU D G, LIU J, XIA Q K, et al., 2025. Earth's Hadean crust formed via operation of convergent tectonics[J]. National Science Review, 12(8): nwaf230. doi: 10.1093/nsr/nwaf230
    [70]
    MARTIN E, SIGMARSSON O, 2007. Low-pressure differentiation of tholeiitic lavas as recorded in segregation veins from Reykjanes (Iceland), Lanzarote (Canary Islands) and Masaya (Nicaragua)[J]. Contributions to Mineralogy and Petrology, 154(5): 559-573. doi: 10.1007/s00410-007-0209-5
    [71]
    MARTIN H, CHAUVEL C, JAHN B M, 1983. Major and trace element geochemistry and crustal evolution of Archaean granodioritic rocks from eastern Finland[J]. Precambrian Research, 21(3-4): 159-180. doi: 10.1016/0301-9268(83)90039-6
    [72]
    MARTIN H, 1994. Chapter 6-The Archean grey gneisses and the genesis of continental crust[J]. Developments in Precambrian Geology, 11: 205-259.
    [73]
    MARTIN H, SMITHIES R H, RAPP R, et al., 2005. An overview of Adakite, Tonalite–Trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 79(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048
    [74]
    MATHIEU L, 2022. Modeling the chemical heterogeneity of tonalite-trondhjemite-granodiorite intrusive suites[J]. Lithos, 422-423: 106744.
    [75]
    MOORBATH S, 1975. Evolution of Precambrian crust from strontium isotopic evidence[J]. Nature, 254(5499): 395-398. doi: 10.1038/254395a0
    [76]
    MOYEN J F, STEVENS G, 2006. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[M]//BENN K, MARESCHAL J C, CONDIE K C. Archean geodynamics and environments. Washington: American Geophysical Union: 149-175.
    [77]
    MOYEN J F, 2011. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 123(1-4): 21-36. doi: 10.1016/j.lithos.2010.09.015
    [78]
    MOYEN J F, MARTIN H, 2012. Forty years of TTG research[J]. Lithos, 148: 312-336. doi: 10.1016/j.lithos.2012.06.010
    [79]
    MOYEN J F, van HUNEN J, 2012. Short-term episodicity of Archaean plate tectonics[J]. Geology, 40(5): 451-454. doi: 10.1130/G322894.1
    [80]
    MOYEN J F, LAURENT O, 2018. Archaean tectonic systems: a view from igneous rocks[J]. Lithos, 302-303: 99-125.
    [81]
    MUKHOPADHYAY J, CROWLEY Q G, GHOSH S, et al., 2014. Oxygenation of the Archean atmosphere: new paleosol constraints from eastern India[J]. Geology, 42(10): 923-926. doi: 10.1130/G36091.1
    [82]
    NÆRAA T, SCHERSTÉN A, ROSING M T, et al., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago[J]. Nature, 485(7400): 627-630. doi: 10.1038/nature11140
    [83]
    NAGEL T J, HOFFMANN J E, MÜNKER C, 2012. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust[J]. Geology, 40(4): 375-378. doi: 10.1130/G32729.1
    [84]
    PALIN R M, WHITE R W, GREEN E C R, 2016. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling[J]. Precambrian Research, 287: 73-90. doi: 10.1016/j.precamres.2016.11.001
    [85]
    PALIN R M, SANTOSH M, CAO W T, et al., 2020. Secular change and the onset of plate tectonics on Earth[J]. Earth-Science Reviews, 207: 103172. doi: 10.1016/j.earscirev.2020.103172
    [86]
    PETERMAN Z E, BARKER F, 1976. Rb-Sr whole-rock age of trondhjemites and related rocks of the southwestern Trondheim region, Norway[R]. Open-File Report 76-670, Washington: U. S. Geological Survey.
    [87]
    POWELL R, HOLLAND T J B, 1988. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program[J]. Journal of Metamorphic Geology, 6(2): 173-204. doi: 10.1111/j.1525-1314.1988.tb00415.x
    [88]
    POWELL R, HOLLAND T, WORLEY B, 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC[J]. Journal of Metamorphic Geology, 16(4): 577-588. doi: 10.1111/j.1525-1314.1998.00157.x
    [89]
    POWELL R, HOLLAND T J B, 2008. On thermobarometry[J]. Journal of Metamorphic Geology, 26(2): 155-179. doi: 10.1111/j.1525-1314.2007.00756.x
    [90]
    QIAN Q, HERMANN J, 2013. Partial melting of lower crust at 10-15 kbar: constraints on adakite and TTG formation[J]. Contributions to Mineralogy and Petrology, 165(6): 1195-1224. doi: 10.1007/s00410-013-0854-9
    [91]
    RAPP R P, NORMAN M D, LAPORTE D, et al., 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt–rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids)[J]. Journal of Petrology, 51(6): 1237-1266. doi: 10.1093/petrology/egq017
    [92]
    REIMINK J R, DAVIES J H F L, IELPI A, 2021. Global zircon analysis records a gradual rise of continental crust throughout the Neoarchean[J]. Earth and Planetary Science Letters, 554: 116654. doi: 10.1016/j.jpgl.2020.116654
    [93]
    REIMINK J R, DAVIES J H F L, MOYEN J F, et al., 2023. A whole-lithosphere view of continental growth[J]. Geochemical Perspectives Letters, 26: 45-49. doi: 10.7185/geochemlet.2324
    [94]
    RICHARDS J P, KERRICH R, 2007. Special Paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis[J]. Economic Geology, 102(4): 537-576. doi: 10.2113/gsecongeo.102.4.537
    [95]
    ROBERTS N M W, SANTOSH M, 2018. Capturing the mesoarchean emergence of continental crust in the Coorg Block, southern India[J]. Geophysical Research Letters, 45(15): 7444-7453. doi: 10.1029/2018GL078114
    [96]
    ROLLINSON H, MARTIN H, 2005. Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation: introduction to the Special Issue[J]. Lithos, 79(1-2): ix-xii. doi: 10.1016/j.lithos.2004.09.001
    [97]
    ROMAN A, ARNDT N, 2020. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis[J]. Geochimica et Cosmochimica Acta, 278: 65-77. doi: 10.1016/j.gca.2019.07.009
    [98]
    ROZEL A B, GOLABEK G J, JAIN C, et al., 2017. Continental crust formation on early Earth controlled by intrusive magmatism[J]. Nature, 545(7654): 332-335. doi: 10.1038/nature22042
    [99]
    SANTIAGO RAMOS D P, COOGAN L A, MURPHY J G, et al., 2020. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater[J]. Earth and Planetary Science Letters, 541: 116290. doi: 10.1016/j.jpgl.2020.116290
    [100]
    SAVAGE P S, GEORG R B, WILLIAMS H M, et al., 2011. Silicon isotope fractionation during magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 75(20): 6124-6139. doi: 10.1016/j.gca.2011.07.043
    [101]
    SIZOVA E, GERYA T, STÜWE K, et al., 2015. Generation of felsic crust in the Archean: a geodynamic modeling perspective[J]. Precambrian Research, 271: 198-224. doi: 10.1016/j.precamres.2015.10.005
    [102]
    SMIT M A, SCHERSTÉN A, NÆRAA T, et al., 2019. Formation of Archean continental crust constrained by boron isotopes[J]. Geochemical Perspectives Letters, 12: 23-26.
    [103]
    SMITH T E, CHOUDHRY A G, HUANG C H, 1983. The geochemistry and petrogenesis of the Archean Gamitagama Lake igneous complex, southern Superior province[J]. Precambrian Research, 22(3-4): 219-244. doi: 10.1016/0301-9268(83)90050-5
    [104]
    SMITHIES R H, CHAMPION D C, VAN KRANENDONK M J, 2007. Chapter 4.2 The oldest well-preserved felsic volcanic rocks on earth: geochemical clues to the early evolution of the Pilbara supergroup and implications for the growth of a Paleoarchean protocontinent[J]. Developments in Precambrian Geology, 15: 339-367. doi: 10.1016/S0166-2635(07)15042-8
    [105]
    SMITHIES R H, CHAMPION D C, VAN KRANENDONK M J, 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt[J]. Earth and Planetary Science Letters, 281(3-4): 298-306. doi: 10.1016/j.jpgl.2009.03.003
    [106]
    SMITHIES R H, LU Y J, JOHNSON T E, et al., 2019. No evidence for high-pressure melting of Earth’s crust in the Archean[J]. Nature Communications, 10(1): 5559. doi: 10.1038/s41467-019-13547-x
    [107]
    SMITHIES R H, LU Y J, KIRKLAND C L, et al., 2021. Oxygen isotopes trace the origins of Earth’s earliest continental crust[J]. Nature, 592(7852): 70-75. doi: 10.1038/s41586-021-03337-1
    [108]
    SPRINGER W, SECK H A, 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas[J]. Contributions to Mineralogy and Petrology, 127(1-2): 30-45. doi: 10.1007/s004100050263
    [109]
    SUN Y, TENG F Z, HU Y, et al., 2020. Tracing subducted oceanic slabs in the mantle by using potassium isotopes[J]. Geochimica et Cosmochimica Acta, 278: 353-360. doi: 10.1016/j.gca.2019.05.013
    [110]
    TAMBLYN R, HERMANN J, HASTEROK D, et al., 2023. Hydrated komatiites as a source of water for TTG formation in the Archean[J]. Earth and Planetary Science Letters, 603: 117982. doi: 10.1016/j.jpgl.2022.117982
    [111]
    TANG M, CHEN K, RUDNICK R L, 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 351(6271): 372-375. doi: 10.1126/science.aad5513
    [112]
    TENG F Z, HU Y, MA J L, et al., 2020. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance[J]. Geochimica et Cosmochimica Acta, 278: 261-271. doi: 10.1016/j.gca.2020.02.029
    [113]
    TRAIL D, BOEHNKE P, SAVAGE P S, et al., 2018. Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(41): 10287-10292.
    [114]
    TULLER-ROSS B, SAVAGE P S, CHEN H, et al., 2019. Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite[J]. Chemical Geology, 525: 37-45. doi: 10.1016/j.chemgeo.2019.07.017
    [115]
    TURNER S, WOOD B, JOHNSON T, et al., 2025. Formation and composition of Earth’s Hadean protocrust[J]. Nature, 640(8058): 390-394. doi: 10.1038/s41586-025-08719-3
    [116]
    VAN KRANENDONK M J, KIRKLAND C L, CLIFF J, 2015. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga[J]. Lithos, 228-229: 90-98.
    [117]
    VANDENBURG E D, NEBEL O, SMITHIES R H, et al., 2023. Spatial and temporal control of Archean tectonomagmatic regimes[J]. Earth-Science Reviews, 241: 104417. doi: 10.1016/j.earscirev.2023.104417
    [118]
    WANG X L, TANG M, MOYEN J, et al., 2022. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary[J]. National Science Review, 9(3): nwab136. doi: 10.1093/nsr/nwab136
    [119]
    WEI C J, GUAN X, DONG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381-1404. (in Chinese with English abstract)
    [120]
    WU Z Q, ZHAO G C, 2022. Hydrous plumes in the Archean and the origin of continents[J]. Science Bulletin, 67(20): 2023-2025. doi: 10.1016/j.scib.2022.09.016
    [121]
    WU Z Q, SONG J, ZHAO G C, et al., 2023. Water-induced mantle overturns leading to the origins of Archean continents and subcontinental lithospheric mantle[J]. Geophysical Research Letters, 50(22): e2023GL105178. doi: 10.1029/2023GL105178
    [122]
    WU Z Q, 2024. Water induced mantle overturn and origin of the Archean crust[J]. Advances in Earth Science, 39(6): 551-564. (in Chinese with English abstract)
    [123]
    XIANG H, CONNOLLY J A D, 2022. GeoPS: an interactive visual computing tool for thermodynamic modelling of phase equilibria[J]. Journal of Metamorphic Geology, 40(2): 243-255. doi: 10.1111/jmg.12626
    [124]
    XIONG D Y, WANG X L, LI W, et al., 2025. Potassium isotope evidence for origin of Archean TTG rocks from seawater-hydrothermally altered oceanic crust[J]. Geochemistry, Geophysics, Geosystems, 26(1): e2024GC011892. doi: 10.1029/2024GC011892
    [125]
    XIONG X L, KEPPLER H, AUDÉTAT A, et al., 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis[J]. American Mineralogist, 94(8-9): 1175-1186. doi: 10.2138/am.2009.3158
    [126]
    YANG W, TENG F Z, LI W Y, et al., 2016. Magnesium isotopic composition of the deep continental crust[J]. American Mineralogist, 101(2): 243-252. doi: 10.2138/am-2016-5275
    [127]
    YU C Y, YANG T, ZHANG J, et al., 2022. Coexisting diverse P–T–t paths during Neoarchean Sagduction: insights from numerical modeling and applications to the eastern North China Craton[J]. Earth and Planetary Science Letters, 586: 117529. doi: 10.1016/j.jpgl.2022.117529
    [128]
    ZHAI M G, ZHANG Q, CHEN G N, et al., 2016. Adventure on the research of continental evolution and related granite geochemistry[J]. Chinese Science Bulletin, 61(13): 1414-1420. (in Chinese with English abstract) doi: 10.1360/N972015-01272
    [129]
    ZHAI M G, PENG P, 2020. Origin of early continents and beginning of plate tectonics[J]. Science Bulletin, 65(12): 970-973. doi: 10.1016/j.scib.2020.03.022
    [130]
    ZHAI M G, ZHAO L, ZHU X Y, et al., 2020. Review and overview for the frontier hotspot: early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 36(8): 2249-2275. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.08.01
    [131]
    ZHANG C Z, ZHANG Q, JIN W J, et al., 2018. Can Archean TTG compare with Adakite? Global data gives results[J]. Chinese Journal of Geology, 53(4): 1254-1266. (in Chinese with English abstract)
    [132]
    ZHANG Q, ZHAI M G, 2012. What is the Archean TTG?[J]. Acta Petrologica Sinica, 28(11): 3446-3456. (in Chinese with English abstract)
    [133]
    ZHANG Q, ZHAO L, ZHOU D W, et al., 2023a. No evidence of supracrustal recycling in Si-O isotopes of Earth’s oldest rocks 4 Ga ago[J]. Science Advances, 9(26): eadf0693. doi: 10.1126/sciadv.adf0693
    [134]
    ZHANG S B, ZHANG L, YAO X Y, et al., 2025. Formation of early continental crust by remelting of hydrothermally altered oceanic crust: evidence from potassium and oxygen isotopes[J]. Chemical Geology, 690: 122888. doi: 10.1016/j.chemgeo.2025.122888
    [135]
    ZHANG Z J, DAUPHAS N, JOHNSON A C, et al., 2023b. Titanium and iron isotopic records of granitoid crust production in diverse Archean cratons[J]. Earth and Planetary Science Letters, 620: 118342. doi: 10.1016/j.jpgl.2023.118342
    [136]
    ZHAO D Y, CAWOOD P A, TENG F Z, et al., 2025. A two-stage mantle plume-sagduction origin of Archean continental crust revealed by water and oxygen isotopes of TTGs[J]. Science Advances, 11(24): eadr9513. doi: 10.1126/sciadv.adr9513
    [137]
    ZHAO G C, ZHANG G W, 2021. Origin of continents[J]. Acta Geologica Sinica, 95(1): 1-19. (in Chinese with English abstract) doi: 10.1111/1755-6724.14621
    [138]
    ZHAO G C, ZHANG J, YIN C Q, et al., 2023. Pre-plate tectonics and origin of continents[J]. Chinese Science Bulletin, 68(18): 2312-2323. (in Chinese with English abstract) doi: 10.1360/TB-2022-0249
    [139]
    ZHENG Y F, ZHAO G C, 2020. Two styles of plate tectonics in Earth’s history[J]. Science Bulletin, 65(4): 329-334. doi: 10.1016/j.scib.2018.12.029
    [140]
    ZHENG Y F, 2023. Plate tectonics in the twenty-first century[J]. Science China Earth Sciences, 66(1): 1-40. doi: 10.1007/s11430-022-1011-9
    [141]
    ZHENG Y F, 2024. Plate tectonics in the Archean: observations versus interpretations[J]. Science China Earth Sciences, 67(1): 1-30. doi: 10.1007/s11430-023-1210-5
    [142]
    ZHENG Y F, 2025. Origin of continental crust on early Earth[J]. National Science Review, 12(9): nwaf341. doi: 10.1093/nsr/nwaf341
    [143]
    刘勇胜, 何德涛, 陈康, 等, 2025. 原始地壳增厚驱动水反向富集与早期TTG形成[J]. 科学通报, 70(21): 3557-3565.
    [144]
    龙晓平, 赵国春, 翟明国, 等, 2024. 前板块构造与大陆起源研究进展及关键科学问题[J]. 科学通报, 69(12): 1572-1585.
    [145]
    魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381-1404.
    [146]
    吴忠庆, 2024. 水诱导的地幔反转与大陆起源[J]. 地球科学进展, 39(6): 551-564.
    [147]
    翟明国, 张旗, 陈国能, 等, 2016. 大陆演化与花岗岩研究的变革[J]. 科学通报, 61(13): 1414-1420.
    [148]
    翟明国, 赵磊, 祝禧艳, 等, 2020. 早期大陆与板块构造启动: 前沿热点介绍与展望[J]. 岩石学报, 36(8): 2249-2275.
    [149]
    张昌振, 张旗, 金维浚, 等, 2018. 太古宙TTG能否与埃达克岩对比?: 全球数据给出的结果[J]. 地质科学, 53(4): 1254-1266.
    [150]
    张旗, 翟明国, 2012. 太古宙TTG岩石是什么含义?[J]. 岩石学报, 28(11): 3446-3456.
    [151]
    赵国春, 张国伟, 2021. 大陆的起源[J]. 地质学报, 95(1): 1-19.
    [152]
    赵国春, 张健, 尹常青, 等, 2023. 前板块构造与大陆起源[J]. 科学通报, 68(18): 2312-2323.
    [153]
    郑永飞, 2023. 21世纪板块构造[J]. 中国科学: 地球科学, 53(1): 1-40.
    [154]
    郑永飞, 2024. 太古宙地质与板块构造: 观察与解释[J]. 中国科学: 地球科学, 54(1): 1-30.
  • 加载中

Catalog

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (172) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return