Volume 31 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
XIAO C H,DENG J,2025. Structural controls on hydrothermal tin deposit[J]. Journal of Geomechanics,31(5):898−925 doi: 10.12090/j.issn.1006-6616.2025148
Citation: XIAO C H,DENG J,2025. Structural controls on hydrothermal tin deposit[J]. Journal of Geomechanics,31(5):898−925 doi: 10.12090/j.issn.1006-6616.2025148

Structural controls on hydrothermal tin deposit

doi: 10.12090/j.issn.1006-6616.2025148
Funds:  This research is financially supported by the National Science and Technology Major Project on Deep Earth Exploration (Grant No. 2024ZD1001701), the Key Research and Development Program of Guangxi Zhuang Autonomous Region (Grant No. 2024AB21027),the CGS Research Fund (Grant No. DZLXJK202521),and the Geological Survey Project of the China Geological Survey (Grant No. DD20240127).
More Information
  • Author Bio:

    肖昌浩,研究员,博士生导师,现任中国地质科学院地质力学研究所矿田构造研究室副主任,中国地质大学(北京)兼职教授,深地探测与矿产勘查全国重点实验室第四研究部副主任,中国地球物理学会青年工作委员会委员。研究方向为矿田构造与成矿规律研究,先后主持深地国家科技重大专项课题、自然资源部新一轮找矿突破战略行动科技支撑项目等10余项,第一作者/通讯作者发表论文23篇,其中SCI/EI论文18篇。曾获广西科学技术进步二等奖1项、中国黄金协会科学技术进步二等奖5项。以第一完成人获2024年度自然资源科技进步奖(找矿奖)二等奖并入选中国地质调查局2024年度地质科技十大进展和中国地质科学院2024年度十大科技进展。获自然资源部高层次科技创新人才工程青年科技人才称号

  • Corresponding author: 邓军,中国地质大学(北京)教授,国家重点基础研究发展计划项目(973项目)首席科学家。主要从事区域成矿、矿田构造和成矿预测研究。以第一/通讯作者在PNASScience AdvancesGeology等期刊发表 SCI 论文170余篇。获李四光地质科学奖,国家科技进步二等奖4项,排名第一的省部级特等奖和一等奖 6 项。
  • Received: 2025-10-09
  • Revised: 2025-10-31
  • Accepted: 2025-10-31
  • Available Online: 2025-11-06
  • Published: 2025-10-28
  •   Objective   As a critical mineral supporting strategic sectors such as the information industry, aerospace, and defense technology, tin exhibits an extremely uneven distribution of global resources. Conducting comparative studies on major global tin-producing regions is of great significance for understanding the metallogeny of tin deposits and for global tin exploration. To better comprehend the tectonic settings of tin deposit formation in different structural environments and to understand the structural styles of tin deposits, this paper systematically reviews the tectonic environments of typical tin deposits in continental rifts and three types of convergent plate boundaries (Andean-type continental margin, Western Pacific continental margin, collisional orogenic belt). We summarize the structural styles of tin deposits and present the following findings:   Conclusion  (1) Numerical simulations of tin transport and cassiterite precipitation from hydrothermal fluids indicate that incomplete buffering of ore-forming hydrothermal fluids by granitic wallrock is a common characteristic of many magmatic-hydrothermal tin deposits. This highlights the importance of structural pathways for hydrothermal tin mineralization. (2) Regardless of the tectonic setting—be it an extensional rift, a compressional Andean-type continental margin, an extensional Western Pacific continental margin back-arc, or an extensional post-collisional tectonic settings—hydrothermal tin mineralization aligns with the magmatic-hydrothermal tin deposit model, which posits that highly fractionated felsic rocks dominate tin mineralization. Extensional/transtensional tectonic settings are favorable for the formation of hydrothermal tin deposits. Additionally, recent studies have reported pre-concentration of tin due to metamorphism during syn-accretionary orogenesis, detailing the release of tin during prograde metamorphism and the formation of cassiterite during retrograde metamorphism through biotite chloritization. These findings lay the groundwork for the development of theories about collision-related tin metallogenesis. (3) Magmatic-hydrothermal tin deposits are primarily skarn-type and quartz vein-type, often occurring together. Within and around tin-bearing intrusion, tin-bearing magmatic cooling contraction fractures, water-rock separation fractures, magmatic emplacement compression fractures, and regional tectonic stress superposition fractures commonly develop. Away from the tin-bearing intrusions, mineralization is strongly controlled by rheological differences in rocks or faults (cross-cutting and bedding-parallel faults), forming diverse structure-mineralization networks. Based on the absence or presence of breccias in the structure-mineralization network, ore-bearing vein structures can be classified into two categories. The first category includes structures without breccias, which, in the order of increasing complexity, are: simple veins, composite simple-vein systems, “lit-par-lit” vein systems, symmetrical complex vein systems, and asymmetrical complex vein systems. The morphologies and extensions of single veins are closely related to the mechanical properties of the host structures. The second category includes structures with breccias, which, in order of increasing complexity, are: anastomosing veins in shear zone systems, brecciated vein systems, vein and hanging-wall stockwork systems, and multiple brecciation vein systems.  Significance  The determination of tectonic sequences and deformation partitioning plays a crucial role in studying the structural control of hydrothermal tin deposits. Enhancing detailed mapping of structures in typical deposits/districts, combined with numerical simulations and rheological experiments on rocks, represents the future direction for research on structural controls of hydrothermal tin deposits.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    AHLFELD F, 1936. The Bolivian tin belt[J]. Economic Geology, 31(1): 48-72. doi: 10.2113/gsecongeo.31.1.48
    [2]
    ARCE-BURGOA O R, GOLDFARB R J, 2009. Metallogeny of Bolivia[J]. SEG Discovery(79): 1-15.
    [3]
    ASHLEY P M, 1984. Sodic granitoids and felsic gneisses associated with uranium-thorium mineralisation, Crockers Well, South Australia[J]. Mineralium Deposita, 19(1): 7-18.
    [4]
    BASTOS NETO A C, FERRON J T M M, CHAUVET A, et al., 2014. U–Pb dating of the Madeira Suite and structural control of the albite-enriched granite at Pitinga (Amazonia, Brazil): evolution of the A-type magmatism and implications for the genesis of the Madeira Sn–Ta–Nb (REE, cryolite) world-class deposit[J]. Precambrian Research, 243: 181-196. doi: 10.1016/j.precamres.2013.12.021
    [5]
    BELL T H, 1985. Deformation partitioning and porphyroblast rotation in meta-morphic rocks: a radical reinterpretation[J]. Journal of Metamorphic Geology, 3(2): 109-118. doi: 10.1111/j.1525-1314.1985.tb00309.x
    [6]
    BELL T H, PERKINS W G, SWAGER C P, 1988. Structural controls on development and localization of syntectonic copper mineralization at Mount Isa, Queensland[J]. Economic Geology, 83(1): 69-85. doi: 10.2113/gsecongeo.83.1.69
    [7]
    BETTENCOURT J S, SPARRENBERGER I, LEITE JUNIOR W B, et al. , 2005. 40Ar/39Ar step heating laser system dating of zinnwaldite and muscovite from tin deposits of the Rondonia Tin Province, Brazil: evidence for multiple mineralization episodes[M]//Resumos. Sao Paulo: Instituto de Geociências, Universidade de São Paulo.
    [8]
    BORGES R M K, VILLAS R N N, FUZIKAWA K, et al., 2009. Phase separation, fluid mixing, and origin of the greisens and potassic episyenite associated with the Água Boa pluton, Pitinga tin province, Amazonian Craton, Brazil[J]. Journal of South American Earth Sciences, 27(2-3): 161-183. doi: 10.1016/j.jsames.2008.11.006
    [9]
    BOWIE S, MOTTRAM C, RASBURY E T, et al., 2025. U redox state tracked in mineralized hydrothermal carbonate with implications for U-Pb geochronology[J]. Communications Earth & Environment, 6(1): 362.
    [10]
    BRACE W F, 1984. Permeability of crystalline rocks: new in situ measurements[J]. Journal of Geophysical Research: Solid Earth, 89(B6): 4327-4330. doi: 10.1029/JB089iB06p04327
    [11]
    BROWN D A, SIMPSON A, HAND M, et al., 2022. Laser-ablation Lu-Hf dating reveals Laurentian garnet in subducted rocks from southern Australia[J]. Geology, 50(7): 837-842. doi: 10.1130/G49784.1
    [12]
    CACHO A, MELGAREJO J C, CAMPRUBÍ A, et al., 2019. Mineralogy and distribution of critical elements in the Sn–W–Pb–Ag–Zn Huanuni Deposit, Bolivia[J]. Minerals, 9(12): 753. doi: 10.3390/min9120753
    [13]
    CAI M H, LIANG T, WU D C, et al., 2004. Structure characteristics and mineralization controls of the Nandan-Hechi metallogenic belt in Guangxi Province[J]. Geology and Prospecting, 40(6): 5-10. (in Chinese with English abstract)
    [14]
    CANNELL J, COOKE D R, WALSHE J L, et al., 2005. Geology, mineralization, alteration, and structural evolution of the El teniente porphyry Cu-Mo deposit[J]. Economic Geology, 100(5): 979-1003. doi: 10.2113/gsecongeo.100.5.979
    [15]
    CAO D Y, LI Q Y, ZHU X D, et al., 2001. Study on the 3D visual model of geological structure[J]. Geology and Exploration, 37(4): 60-62. (in Chinese with English abstract)
    [16]
    CAO H W, LI G M, ZHANG Z, et al., 2020. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet: a case study of the Cuonadong deposit[J]. Ore Geology Reviews, 119: 103403. doi: 10.1016/j.oregeorev.2020.103403
    [17]
    CAO H W, LI G M, ZHANG R Q, et al., 2021. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: evidence from geology, geochronology, fluid inclusions and multiple isotopes[J]. Gondwana Research, 92: 72-101. doi: 10.1016/j.gr.2020.12.020
    [18]
    CAROCCI E, 2019. Tungsten transport and deposition in magmatic-hydrothermal environments: the example of Panasqueira (Portugal)[D]. Nancy: Université de Lorraine.
    [19]
    CAROCCI E, TRUCHE L, CATHELINEAU M, et al., 2022. Tungsten (VI) speciation in hydrothermal solutions up to 400°C as revealed by in-situ Raman spectroscopy[J]. Geochimica et Cosmochimica Acta, 317: 306-324. doi: 10.1016/j.gca.2021.11.004
    [20]
    CARR P A, NORMAN M D, BENNETT V C, 2017. Assessment of crystallographic orientation effects on secondary ion mass spectrometry (SIMS) analysis of cassiterite[J]. Chemical Geology, 467: 122-133. doi: 10.1016/j.chemgeo.2017.08.003
    [21]
    CAWTHORN R G, 2015. The bushveld complex, South Africa[M]//CHARLIER B, NAMUR O, LATYPOV R, et al. Layered intrusions. Dordrecht: Springer: 517-587.
    [22]
    CHANG Z S, SHU Q H, MEINERT L D, 2019. Chapter 6 skarn deposits of China[M]//CHANG Z S, GOLDFARB R J. Mineral deposits of China. Beijing: Society of Economic Geologists: 189-234.
    [23]
    CHATTERJEE S, GOSWAMI A, SCOTESE C R, 2013. The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia[J]. Gondwana Research, 23(1): 238-267. doi: 10.1016/j.gr.2012.07.001
    [24]
    CHE X D, LINNEN R L, WANG R C, et al., 2013. Tungsten solubility in evolved granitic melts: an evaluation of magmatic wolframite[J]. Geochimica et Cosmochimica Acta, 106: 84-98. doi: 10.1016/j.gca.2012.12.007
    [25]
    CHEN B L, 2024. Structural generation and its application in ore-prospecting: take hydrothermal uranium deposits in South China as an example[J]. Acta Geologica Sinica, 98(7): 2173-2192. (in Chinese with English abstract)
    [26]
    CHEN J P, LV P, WU W, et al., 2007. A 3D method for predicting blind orebodies, based on a 3D visualization model and its application[J]. Earth Science Frontiers, 14(5): 54-62. (in Chinese with English abstract) doi: 10.1016/S1872-5791(07)60035-9
    [27]
    CHEN Y, CLARK A H, FARRAR E, et al., 1993. Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England[J]. Journal of the Geological Society, 150(6): 1183-1191. doi: 10.1144/gsjgs.150.6.1183
    [28]
    CHEN Y J, 2013. The development of continental collision metallogeny and its application[J]. Acta Petrologica Sinica, 29(1): 1-17. (in Chinese with English abstract)
    [29]
    CHENG Y B, MAO J W, SPANDLER C, 2013. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China[J]. Lithos, 175-176: 213-229.
    [30]
    CHI G X, GUHA J, LU H Z, 1993. Separation mechanism in the formation of proximal and distal tin polymetallic deposits, Xinlu ore field, southern China; evidence from fluid inclusion data[J]. Economic Geology, 88(4): 916-933. doi: 10.2113/gsecongeo.88.4.916
    [31]
    CLARKE B, UKEN R, REINHARDT J, 2009. Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa[J]. Lithos, 111(1-2): 21-36. doi: 10.1016/j.lithos.2008.11.006
    [32]
    CLINE J S, BODNAR R J, RIMSTIDT J D, 1992. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: application to epithermal gold deposits[J]. Journal of Geophysical Research: Solid Earth, 97(B6): 9085-9103. doi: 10.1029/91JB03129
    [33]
    COBBING E J, MALLICK D I J, PITFIELD P E J, et al., 1986. The granites of the Southeast Asian Tin Belt[J]. Journal of the Geological Society, 143(3): 537-550. doi: 10.1144/gsjgs.143.3.0537
    [34]
    COBBING E J, 1990. A comparison of granites and their tectonic settings from the South American Andes and the Southeast Asian tin belt[M]//KAY S M, RAPELA C W. Plutonism from Antarctica to Alaska. Geological Society of America: 193-204.
    [35]
    COSTI H T, DALL'AGNOL R, BORGES R M K, et al., 2002. Tin-bearing sodic Episyenites associated with the Proterozoic, A-type Água Boa Granite, Pitinga Mine, Amazonian Craton, Brazil[J]. Gondwana Research, 5(2): 435-451. doi: 10.1016/S1342-937X(05)70734-6
    [36]
    COSTI H T, DALL’AGNOL R, PICHAVANT M, et al., 2009. The peralkaline tin-mineralized madeira cryolite albite-rich granite of Pitinga, Amazonian craton, Brazil: petrography, mineralogy and crystallization processes[J]. The Canadian Mineralogist, 47(6): 1301-1327. doi: 10.3749/canmin.47.6.1301
    [37]
    DAI Z W, 2020. Study on mineralization of the Cuonadong Be-Sn-W polymetallic deposit, Tibet, China[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    [38]
    DE ROO J A, 1988. Structural controls on the emplacement of the vein-type tungsten-tin ore at Mount Carbine, Queensland, Australia[J]. Economic Geology, 83(6): 1170-1180. doi: 10.2113/gsecongeo.83.6.1170
    [39]
    DE SILVA S L, KAY S M, 2018. Turning up the heat: high-flux magmatism in the central Andes[J]. Elements, 14(4): 245-250. doi: 10.2138/gselements.14.4.245
    [40]
    FARGES F O, LINNEN R L, BROWN JR G E, 2006. Redox and speciation of tin in hydrous silicate glasses: a comparison with Nb, Ta, Mo and W[J]. The Canadian Mineralogist, 44(3): 795-810. doi: 10.2113/gscanmin.44.3.795
    [41]
    FITCH T J, 1972. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific[J]. Journal of Geophysical Research, 77(23): 4432-4460. doi: 10.1029/JB077i023p04432
    [42]
    FOURNIER R O, 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment[J]. Economic Geology, 94(8): 1193-1211. doi: 10.2113/gsecongeo.94.8.1193
    [43]
    FU J G, LI G M, WANG G H, et al., 2020. Syntectonic skarn characteristics and mineralization age of associated Be-W-Sn rare metal deposit in Cuonadong Dome, Southern Tibet, China[J]. Journal of Jilin University (Earth Science Edition), 50(5): 1304-1322. (in Chinese with English abstract)
    [44]
    FU M, KWAK T A P, MERNAGH T P, 1993. Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field, People's Republic of China[J]. Economic Geology, 88(2): 283-300. doi: 10.2113/gsecongeo.88.2.283
    [45]
    GARSON M S, MITCHELL A H G, 1977. Mineralization at destructive plate boundaries: a brief review[J]. Geological Society, London, Special Publications, 7(1): 81-97. doi: 10.1144/GSL.SP.1977.007.01.11
    [46]
    GEMMRICH L, TORRÓ L, MELGAREJO J C, et al., 2021. Trace element composition and U-Pb ages of cassiterite from the Bolivian tin belt[J]. Mineralium Deposita, 56(8): 1491-1520. doi: 10.1007/s00126-020-01030-3
    [47]
    GIGER S B, TENTHOREY E, COX S F, et al., 2007. Permeability evolution in quartz fault gouges under hydrothermal conditions[J]. Journal of Geophysical Research: Solid Earth, 112(B7): B07202.
    [48]
    GILLIS R J, HORTON B K, GROVE M, 2006. Thermochronology, geochronology, and upper crustal structure of the Cordillera Real: implications for Cenozoic exhumation of the central Andean plateau[J]. Tectonics, 25(6): TC6007.
    [49]
    GOROJOVSKY L, ALARD O, 2020. Optimisation of laser and mass spectrometer parameters for the in situ analysis of Rb/Sr ratios by LA-ICP-MS/MS[J]. Journal of Analytical Atomic Spectrometry, 35(10): 2322-2336. doi: 10.1039/D0JA00308E
    [50]
    GUILLOU-FROTTIER L, BUROV E, 2003. The development and fracturing of plutonic apexes: implications for porphyry ore deposits[J]. Earth and Planetary Science Letters, 214(1-2): 341-356. doi: 10.1016/S0012-821X(03)00366-2
    [51]
    GUIMARÃES F S, ZHANG R Q, LEHMANN B, et al., 2022. Cassiterite U-Pb geochronology of the Santa Barbara tin district, Rondônia tin province, Brazil[J]. Economic Geology, 117(3): 719-729. doi: 10.5382/econgeo.4876
    [52]
    GUO J, 2019. Tin mineralization events and fertility of granitoids in the Youjiang Basin, South China: the Gejiu and Dachang Sn-polymetallic districts as examples[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences). (in Chinese with English abstract)
    [53]
    GUO J, WU K, SELTMANN R, et al., 2022. Unraveling the link between mantle upwelling and formation of Sn-bearing granitic rocks in the world-class Dachang tin district, South China[J]. GSA Bulletin, 134(3-4): 1043-1064. doi: 10.1130/B35492.1
    [54]
    HAIMSON B, CHANG C, 2000. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences, 37(1-2): 285-296. doi: 10.1016/S1365-1609(99)00106-9
    [55]
    HAIMSON B, 2006. True triaxial stresses and the brittle fracture of rock[J]. Pure and Applied Geophysics, 163(5-6): 1101-1130. doi: 10.1007/s00024-006-0065-7
    [56]
    HALTER W E, WILLIAMS-JONES A E, KONTAK D J, 1998. Modeling fluid–rock interaction during greisenization at the East Kemptville tin deposit: implications for mineralization[J]. Chemical Geology, 150(1-2): 1-17. doi: 10.1016/S0009-2541(98)00050-3
    [57]
    HAN L, PAN J Y, NI P, et al., 2023. Cassiterite deposition induced by cooling of a single-phase magmatic fluid: evidence from SEM-CL and fluid inclusion LA-ICP-MS analysis[J]. Geochimica et Cosmochimica Acta, 342: 108-127. doi: 10.1016/j.gca.2022.12.011
    [58]
    HARLAUX M, KONTAK D J, CLARK A H, et al., 2023. depositing >1.5 mt of tin within <1 m. y. of initial granitic intrusion in the San Rafael Tin (-copper) deposit, southeastern Peru[J]. Economic Geology, 118(6): 1371-1396. doi: 10.5382/econgeo.5021
    [59]
    HAWKES J R, 1974. Volcanism and metallogenesis: the tin province of South-West England[J]. Bulletin Volcanologique, 38(3): 1125-1146. doi: 10.1007/BF02597110
    [60]
    HEINRICH C A, 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition[J]. Economic Geology, 85(3): 457-481. doi: 10.2113/gsecongeo.85.3.457
    [61]
    HOBBS B E, 2023. The use of structural geology in the mineral exploration industry[J]. Australian Journal of Earth Sciences, 70(7): 899-907. doi: 10.1080/08120099.2023.2228857
    [62]
    HOSKING K F G, 1988. The world’s major types of tin deposit[M]//HUTCHISON C S. Geology of tin deposits in Asia and the Pacific. Berlin, Heidelberg: Springer: 3-49.
    [63]
    HOU Z Q, 2010. Metallogensis of continental collision[J]. Acta Geologica Sinica, 84(1): 30-58. (in Chinese with English abstract)
    [64]
    HOU Z Q, YANG Z M, ZHANG H R, et al. , 2025. Metallogenesis in collisional orogens: new insights and advances[J/OL]. Earth Science Frontiers, 1-36. [2025-10-07]. https://doi.org/10.13745/j.esf.sf.2025.4.49. (in Chinese with English abstract)
    [65]
    HTUN K T, ZAW K, BELOUSOV I, et al., 2025. U-Pb zircon and cassiterite geochronology of Sn-W bearing granitoids at the Tagu mining area in the Myeik region, Southern Myanmar: insight into ore genesis and metallogenic implication[J]. Geosystems and Geoenvironment, 4(3): 100416. doi: 10.1016/j.geogeo.2025.100416
    [66]
    HUA R M, ZHU J C, ZHAO Y Y, et al., 1997. Preliminary study on metallogenetic series of nonferrous metal deposits in Youjiang fold belt[J]. Geological Journal of China Universities, 3(2): 183-191. (in Chinese with English abstract)
    [67]
    JIANG S Y, HAN F, SHEN J Z, et al., 1999. Chemical and Rb-Sr, Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, P. R. China[J]. Chemical Geology, 157(1-2): 49-67. doi: 10.1016/S0009-2541(98)00200-9
    [68]
    KEMPE U, LEHMANN B, WOLF D, et al., 2008. U-Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: an example from the Llallagua tin-porphyry deposit, Bolivia[J]. Geochimica et Cosmochimica Acta, 72(17): 4352-4366. doi: 10.1016/j.gca.2008.05.059
    [69]
    KINNAIRD J A, 2005. The Bushveld large igneous province[D]. Johannesburg, South Africa: The University of the Witwatersrand: 39.
    [70]
    KONTAK D J, FARRAR E, CLARK A H, et al., 1990. Eocene tectono-thermal rejuvenation of an upper Paleozoic-lower Mesozoic terrane in the Cordillera de Carabaya, Puno, southeastern Peru, revealed by K-Ar and 40Ar/39Ar dating[J]. Journal of South American Earth Sciences, 3(4): 231-246. doi: 10.1016/0895-9811(90)90005-L
    [71]
    KONTAK D J, CREASER R A, HEAMAN L M, et al., 2005. U-Pb tantalite, Re-Os molybdenite, and 40Ar/39Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite[J]. Atlantic Geoscience, 41(1): 655.
    [72]
    KORGES M, WEIS P, LÜDERS V, et al., 2018. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation[J]. Geology, 46(1): 75-78. doi: 10.1130/G39601.1
    [73]
    KRONER U, ROMER R L, 2013. Two plates: many subduction zones: the Variscan orogeny reconsidered[J]. Gondwana Research, 24(1): 298-329. doi: 10.1016/j.gr.2013.03.001
    [74]
    KRONER U, ROMER R, 2025. Continental accretionary tectonics of western Pangea and the formation of Sn, W and Li deposits[C]//Proceedings of EGU general assembly 2025. Vienna: EGU.
    [75]
    KWAK T A P, 1987. W-Sn skarn deposits and related metamorphic skarns and granitoids[M]. Amsterdam: Elsevier.
    [76]
    LAUNAY G, SIZARET S, GUILLOU-FROTTIER L, et al., 2018. Deciphering fluid flow at the magmatic-hydrothermal transition: a case study from the world-class Panasqueira W-Sn-(Cu) ore deposit (Portugal)[J]. Earth and Planetary Science Letters, 499: 1-12. doi: 10.1016/j.jpgl.2018.07.012
    [77]
    LAUNAY G, BRANQUET Y, SIZARET S, et al., 2023. How greisenization could trigger the formation of large vein-and-greisen Sn-W deposits: a numerical investigation applied to the Panasqueira deposit[J]. Ore Geology Reviews, 153: 105299. doi: 10.1016/j.oregeorev.2023.105299
    [78]
    LEGROS H, RICHARD A, TARANTOLA A, et al., 2019. Multiple fluids involved in granite-related W-Sn deposits from the world-class Jiangxi province (China)[J]. Chemical Geology, 508: 92-115. doi: 10.1016/j.chemgeo.2018.11.021
    [79]
    LEHMANN B, 1987. Tin granites, geochemical heritage, magmatic differentiation[J]. Geologische Rundschau, 76(1): 177-185. doi: 10.1007/BF01820581
    [80]
    LEHMANN B, ISHIHARA S, MICHEL H, et al., 1990. The Bolivian tin province and regional tin distribution in the Central Andes; a reassessment[J]. Economic Geology, 85(5): 1044-1058. doi: 10.2113/gsecongeo.85.5.1044
    [81]
    LEHMANN B, 2021. Formation of tin ore deposits: a reassessment[J]. Lithos, 402-403: 105756.
    [82]
    LENHARO S L R, MOURA M A, BOTELHO N F, 2002. Petrogenetic and mineralization processes in Paleo- to Mesoproterozoic rapakivi granites: examples from Pitinga and Goiás, Brazil[J]. Precambrian Research, 119(1-4): 277-299. doi: 10.1016/S0301-9268(02)00126-2
    [83]
    LENHARO S L R, POLLARD P J, BORN H, 2003. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil[J]. Lithos, 66(1-2): 37-61. doi: 10.1016/S0024-4937(02)00201-3
    [84]
    LI G M, ZHANG L K, JIAO Y J, et al., 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet[J]. Mineral Deposits, 36(4): 1003-1008. (in Chinese with English abstract)
    [85]
    LI J H, ZHANG Y Q, DONG S W, et al., 2014. Cretaceous tectonic evolution of South China: a preliminary synthesis[J]. Earth-Science Reviews, 134: 98-136. doi: 10.1016/j.earscirev.2014.03.008
    [86]
    LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract)
    [87]
    LI Z X, LI X H, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1
    [88]
    LINNEN R L, PICHAVANT M, HOLTZ F, et al., 1995. The effect of ƒO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850°C and 2 kbar[J]. Geochimica et Cosmochimica Acta, 59(8): 1579-1588. doi: 10.1016/0016-7037(95)00064-7
    [89]
    LINNEN R L, 1998. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F; constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 93(7): 1013-1025. doi: 10.2113/gsecongeo.93.7.1013
    [90]
    LIU X C, YU P P, XIAO C H, 2023. Tin transport and cassiterite precipitation from hydrothermal fluids[J]. Geoscience Frontiers, 14(6): 101624. doi: 10.1016/j.gsf.2023.101624
    [91]
    MAKUTU D K, SEO J H, LEE B H, et al., 2024. Magmatic-hydrothermal evolution of Sn-W granites in the Kibara belt, Democratic Republic of Congo: 40Ar-39Ar dating and LA-ICP-MS microanalysis of cassiterites and cassiterite-hosted fluid inclusions[J]. Ore Geology Reviews, 175: 106400. doi: 10.1016/j.oregeorev.2024.106400
    [92]
    MAO J W, OUYANG H G, SONG S W, et al. , 2019. Chapter 10 Geology and metallogeny of tungsten and tin deposits in China[M]//CHANG Z S, GOLDFARB R J. Mineral deposits of China. Beijing: Society of Economic Geologists: 411-482.
    [93]
    MAO J W, LIU P, GOLDFARB R J, et al., 2021. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia[J]. Ore Geology Reviews, 136: 104270. doi: 10.1016/j.oregeorev.2021.104270
    [94]
    MAO J W, SONG S W, LIU P, et al., 2023. Current progress and development trend of the research on tin deposits[J]. Acta Petrologica Sinica, 39(5): 1233-1240. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.05.01
    [95]
    MARKOVIC S, SZYMANOWSKI D, TAVAZZANI L, et al., 2025. Timescales of magmatic-hydrothermal activity at the giant San Rafael tin deposit (Peru)[J]. Earth and Planetary Science Letters, 671: 119624. doi: 10.1016/j.jpgl.2025.119624
    [96]
    MARSHAK S, HAQ S S B, SEN P, 2019. Ramp initiation in fold-thrust belts: insight from PIV analysis of sandbox models[J]. Journal of Structural Geology, 118: 308-323. doi: 10.1016/j.jsg.2018.11.006
    [97]
    MCQUARRIE N, 2002. The kinematic history of the central Andean fold-thrust belt, Bolivia: implications for building a high plateau[J]. GSA Bulletin, 114(8): 950-963. doi: 10.1130/0016-7606(2002)114<0950:TKHOTC>2.0.CO;2
    [98]
    MEINERT L D, DIPPLE G M, NICOLESCU S, et al. , 2005. World skarn deposits[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton, Colorado: Society of Economic Geologists: 299-336.
    [99]
    MICHAUD J A S, GUMIAUX C, PICHAVANT M, et al., 2020. From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: the Argemela area (central Portugal)[J]. Ore Geology Reviews, 116: 103215. doi: 10.1016/j.oregeorev.2019.103215
    [100]
    MITCHELL A H G, 1979. Rift-, subduction-and collision-related tin belts[J]. Bulletin of the Geological Society of Malaysia, 11: 81-102. doi: 10.7186/bgsm11197903
    [101]
    MLYNARCZYK M S J, SHERLOCK R L, WILLIAMS-JONES A E, 2003. San Rafael, Peru: geology and structure of the worlds richest tin lode[J]. Mineralium Deposita, 38(5): 555-567. doi: 10.1007/s00126-002-0334-z
    [102]
    MLYNARCZYK M S J, WILLIAMS-JONES A E, 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt[J]. Earth and Planetary Science Letters, 240(3-4): 656-667. doi: 10.1016/j.jpgl.2005.09.047
    [103]
    MONCHAL V, DROST K, CHEW D, 2023. Precise U-Pb dating of incremental calcite slickenfiber growth: evidence for far-field Eocene fold reactivation in Ireland[J]. Geology, 51(7): 611-615. doi: 10.1130/G50906.1
    [104]
    MOTTRAM C M, KELLETT D A, BARRESI T, et al., 2024. Tracking the porphyry-epithermal mineralization transition using U-Pb carbonate dating[J]. Geology, 52(9): 723-728. doi: 10.1130/G52211.1
    [105]
    MUNGALL J E, KAMO S L, MCQUADE S, 2016. U–Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa[J]. Nature Communications, 7(1): 13385. doi: 10.1038/ncomms13385
    [106]
    MYINT A Z, YONEZU K, BOYCE A J, et al., 2018. Stable isotope and geochronological study of the Mawchi Sn-W deposit, Myanmar: implications for timing of mineralization and ore genesis[J]. Ore Geology Reviews, 95: 663-679. doi: 10.1016/j.oregeorev.2018.03.014
    [107]
    NAUMOV V B, DOROFEEV V A, MIRONOVA O F, 2011. Physicochemical parameters of the formation of hydrothermal deposits: a fluid inclusion study. I. Tin and tungsten deposits[J]. Geochemistry International, 49(10): 1002-1021. doi: 10.1134/S0016702911100041
    [108]
    NAZARI-DEHKORDI T, ROBB L, 2022. Zircon mineral chemistry and implications for magmatic-hydrothermal evolution of the granite-hosted Zaaiplaats Sn deposit, Bushveld Large Igneous Province, South Africa[J]. Lithos, 416-417: 106672.
    [109]
    NAZARI-DEHKORDI T, HOFMANN A, ROBB L, et al., 2024. The union tin member of the Rooiberg group: geodynamic implications for the bushveld large Igneous Province, South Africa[J]. Precambrian Research, 412: 107538. doi: 10.1016/j.precamres.2024.107538
    [110]
    OLADE M A, 1980. Geochemical characteristics of tin-bearing and tin-barren granites, northern Nigeria[J]. Economic Geology, 75(1): 71-82. doi: 10.2113/gsecongeo.75.1.71
    [111]
    OLLILA J T, 1984. The crystallization of a tin-bearing granitoid suite: the Bushveld granites in the Zaaiplaats area, South Africa[J]. Bulletin of the Geological Society of Finland, 56(1-2): 75-88. doi: 10.17741/bgsf/56.1-2.005
    [112]
    PATTERSON D J, OHMOTO H, SOLOMON M, 1981. Geologic setting and genesis of cassiterite-sulfide mineralization at Renison Bell, western Tasmania[J]. Economic Geology, 76(2): 393-438. doi: 10.2113/gsecongeo.76.2.393
    [113]
    PHYO A P, LI H, HU X J, et al., 2025. Geology, geochemistry, and zircon U-Pb geochronology of the Nanthila and Pedet granites in the Myeik Sn-W district, Tanintharyi region, southern Myanmar[J]. Ore Geology Reviews, 178: 106488. doi: 10.1016/j.oregeorev.2025.106488
    [114]
    PIQUER J, SANCHEZ-ALFARO P, PÉREZ-FLORES P, 2021. A new model for the optimal structural context for giant porphyry copper deposit formation[J]. Geology, 49(5): 597-601. doi: 10.1130/G48287.1
    [115]
    PIRAJNO F, 1992. Greisen systems[M]//PIRAJNO F. Hydrothermal mineral deposits: principles and fundamental concepts for the exploration geologist. Berlin, Heidelberg: Springer: 280-324.
    [116]
    PIRAJNO F, 2008. Hydrothermal processes and mineral systems[M]. Dordrecht: Springer.
    [117]
    POLYA D A, 1989. Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal; implications for models of ore genesis[J]. Economic Geology, 84(5): 1134-1152. doi: 10.2113/gsecongeo.84.5.1134
    [118]
    REDWOOD S D, RICE C M, 1997. Petrogenesis of Miocene basic shoshonitic lavas in the Bolivian Andes and implications for hydrothermal gold, silver and tin deposits[J]. Journal of South American Earth Sciences, 10(3-4): 203-221. doi: 10.1016/S0895-9811(97)00024-2
    [119]
    ROGER F, MALUSKI H, LEPVRIER C, et al., 2012. LA-ICPMS zircons U/Pb dating of Permo-Triassic and Cretaceous magmatisms in Northern Vietnam – Geodynamical implications[J]. Journal of Asian Earth Sciences, 48: 72-82. doi: 10.1016/j.jseaes.2011.12.012
    [120]
    ROMER R L, KRONER U, 2015. Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization[J]. Mineralium Deposita, 50(3): 327-338. doi: 10.1007/s00126-014-0540-5
    [121]
    ROMER R L, KRONER U, 2016. Phanerozoic tin and tungsten mineralization-Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J]. Gondwana Research, 31: 60-95. doi: 10.1016/j.gr.2015.11.002
    [122]
    ROMER R L, KRONER U, 2022. Provenance control on the distribution of endogenic Sn-W, Au, and U mineralization within the Gondwana-Laurussia plate boundary zone[M]//KUIPER Y D, MURPHY J B, NANCE R D, et al. New developments in the Appalachian-Caledonian-Variscan Orogen. Geological Society of America.
    [123]
    ROMER R L, KRONER U, SCHMIDT C, et al., 2022. Mobilization of tin during continental subduction-accretion processes[J]. Geology, 50(12): 1361-1365. doi: 10.1130/G50466.1
    [124]
    SANDEMAN H A, CLARK A H, FARRAR E, et al., 1997. Lithostratigraphy, petrology and 40Ar-39Ar geochronology of the Crucero Supergroup, Puno department, SE Peru[J]. Journal of South American Earth Sciences, 10(3-4): 223-245. doi: 10.1016/S0895-9811(97)00023-0
    [125]
    SARKAR O, ROMER R L, KRONER U, et al. , 2025. Mobilization of tin during metamorphism in the Variscan Orogeny[C]//Proceedings of EGU general assembly 2025. Vienna: EGU.
    [126]
    SCHMIDT C, 2018. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species[J]. Geochimica et Cosmochimica Acta, 220: 499-511. doi: 10.1016/j.gca.2017.10.011
    [127]
    SCHMIDT C, ROMER R L, WOHLGEMUTH-UEBERWASSER C C, et al., 2020. Partitioning of Sn and W between granitic melt and aqueous fluid[J]. Ore Geology Reviews, 117: 103263. doi: 10.1016/j.oregeorev.2019.103263
    [128]
    SCHMIDT C, JAHN S, 2024. Raman spectra of oxidized sulfur species in hydrothermal fluids[J]. Journal of Volcanology and Geothermal Research, 454: 108146. doi: 10.1016/j.jvolgeores.2024.108146
    [129]
    SCHWARTZ M O, RAJAH S S, ASKURY A K, et al., 1995. The Southeast Asian tin belt[J]. Earth-Science Reviews, 38(2-4): 95-293. doi: 10.1016/0012-8252(95)00004-T
    [130]
    SEARLE M P, GODIN L, 2003. The South Tibetan detachment and the Manaslu Leucogranite: a structural reinterpretation and restoration of the Annapurna‐Manaslu Himalaya, Nepal[J]. The Journal of Geology, 111(5): 505-523. doi: 10.1086/376763
    [131]
    SEMPERE T, CARLIER G, SOLER P, et al., 2002. Late Permian–Middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics[J]. Tectonophysics, 345(1-4): 153-181. doi: 10.1016/S0040-1951(01)00211-6
    [132]
    SHAIL R K, STUART F M, WILKINSON J J, et al., 2003. The role of post-Variscan extensional tectonics and mantle melting in the generation of the Lower Permian granites and the giant W-As-Sn-Cu-Zn-Pb orefield of SW England[J]. Transactions of the Institutions of Mining and Metallurgy, Section B. Applied Earth Science, 112(2): 127-129.
    [133]
    SHELLNUTT J G, LAN C Y, VAN LONG T, et al. , 2013. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: tectonic implications for the evolution of Southeast Asia[J]. Lithos, 182-183: 229-241.
    [134]
    SIGLOCH K, MCQUARRIE N, NOLET G, 2008. Two-stage subduction history under North America inferred from multiple-frequency tomography[J]. Nature Geoscience, 1(7): 458-462. doi: 10.1038/ngeo231
    [135]
    SILLITOE R H, 1974. Tin mineralisation above mantle hot spots[J]. Nature, 248(5448): 497-499. doi: 10.1038/248497a0
    [136]
    SILLITOE R H, HALLS C, GRANT J N, 1975. Porphyry tin deposits in Bolivia[J]. Economic Geology, 70(5): 913-927. doi: 10.2113/gsecongeo.70.5.913
    [137]
    SILLITOE R H, 2010. Porphyry copper systems[J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3
    [138]
    SKURSCH O, CORFU F, TEGNER C, et al., 2022. Zircon U-Pb chronology and Hf isotopes of the Lebowa Granite Suite and petrogenesis of the Bushveld Complex, South Africa[J]. Contributions to Mineralogy and Petrology, 177(2): 26. doi: 10.1007/s00410-022-01889-7
    [139]
    STENHOUSE P, HAYTHORNTHWAITE J, JONES O, 2020. Chapter 8: recognition and integration of structural controls in 3-D geologic modeling: good practice and common pitfalls[M]//ROWLAND J V, RHYS D A. Applied structural geology of ore-forming hydrothermal systems. Society of Economic Geologists: 247-270.
    [140]
    STEWART J W, EVERNDEN J F, SNELLING N J, 1974. Age determinations from Andean Peru: a reconnaissance survey[J]. GSA Bulletin, 85(7): 1107-1116. doi: 10.1130/0016-7606(1974)85<1107:ADFAPA>2.0.CO;2
    [141]
    SUN W D, LI S G, 2023. Reconstruction of the Pacific plate: constraints from ocean floor and eastern China[J]. The Innovation Geoscience, 1(1): 100013. doi: 10.59717/j.xinn-geo.2023.100013
    [142]
    SUN X, ZHENG M J, PEI T, et al., 2025. Reassessing the spatial and temporal evolution of the Southeast Asian Tin Belt: insights into recurrent tin mineralization[J]. Earth-Science Reviews, 270: 105233. doi: 10.1016/j.earscirev.2025.105233
    [143]
    TAYLOR J R, WALL V J, 1992. The behavior of tin in granitoid magmas[J]. Economic Geology, 87(2): 403-420. doi: 10.2113/gsecongeo.87.2.403
    [144]
    TAYLOR R G, 1979. Geology of tin deposits[M]. Amsterdam: Elsevier.
    [145]
    TIKOFF B, TEYSSIER C, 1994. Strain modeling of displacement-field partitioning in transpressional orogens[J]. Journal of Structural Geology, 16(11): 1575-1588. doi: 10.1016/0191-8141(94)90034-5
    [146]
    TILLBERG M, DRAKE H, ZACK T, et al., 2020. In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults[J]. Scientific Reports, 10(1): 562. doi: 10.1038/s41598-019-57262-5
    [147]
    TITLEY S R, THOMPSON R C, HAYNES F M, et al., 1986. Evolution of fractures and alteration in the Sierrita-Esperanza hydrothermal system, Pima County, Arizona[J]. Economic Geology, 81(2): 343-370. doi: 10.2113/gsecongeo.81.2.343
    [148]
    TOWNEND J, ZOBACK M D, 2000. How faulting keeps the crust strong[J]. Geology, 28(5): 399-402. doi: 10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
    [149]
    USGS, 2025. Mineral commodity summaries[R]. Reston, Virginia: U. S. Geological Survey: 212.
    [150]
    VAN DAELE J, HULSBOSCH N, DEWAELE S, et al., 2018. Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda[J]. Ore Geology Reviews, 101: 481-501. doi: 10.1016/j.oregeorev.2018.07.020
    [151]
    VANTONGEREN J A, MATHEZ E A, 2012. Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa[J]. Geology, 40(6): 491-494. doi: 10.1130/G32980.1
    [152]
    VENÂNCIO M B, DA SILVA F C A, 2023. Structures evolution along strike-slip fault zones: the role of rheology revealed by PIV analysis of analog modeling[J]. Tectonophysics, 851: 229764. doi: 10.1016/j.tecto.2023.229764
    [153]
    VONOPARTIS L, NEX P, KINNAIRD J, et al., 2020. Evaluating the changes from Endogranitic magmatic to magmatic-hydrothermal mineralization: the Zaaiplaats tin granites, bushveld igneous complex, South Africa[J]. Minerals, 10(4): 379. doi: 10.3390/min10040379
    [154]
    WAI-PAN NG S, CHUNG S L, ROBB L J, et al., 2015a. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: part 1. Geochemical and Sr-Nd isotopic characteristics[J]. GSA Bulletin, 127(9-10): 1209-1237. doi: 10.1130/B31213.1
    [155]
    WAI-PAN NG S, WHITEHOUSE M J, SEARLE M P, et al., 2015b. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: part 2. U-Pb zircon geochronology and tectonic model[J]. GSA Bulletin, 127(9-10): 1238-1258. doi: 10.1130/B31214.1
    [156]
    WANG J C, YU H, JIANG N, et al., 2016. Temporal and spatial relation between the metallotectonic series and metallogenic series in the Dachang orefield, Guangxi[J]. Journal of Guilin University of Technology, 36(4): 633-643. (in Chinese with English abstract)
    [157]
    WANG J X, ZHAO P L, ZHAO H J, et al., 2025. The genesis and exploration of stratiform tin deposits in sandstones: a case study of the San Florencio tin deposit in the Bolivia Tin Belt[J]. Acta Petrologica Sinica, 41(6): 2126-2139. (in Chinese with English abstract) doi: 10.18654/1000-0569/2025.06.16
    [158]
    WANG L Q, WANG Y, FAN Y, et al., 2018. A Miocene tungsten mineralization and its implications in the western Bangong-Nujiang metallogenic belt: constraints from U-Pb, Ar-Ar, and Re-Os geochronology of the Jiaoxi tungsten deposit, Tibet, China[J]. Ore Geology Reviews, 97: 74-87. doi: 10.1016/j.oregeorev.2018.05.006
    [159]
    WANG R C, WU F Y, XIE L, et al., 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet[J]. Science China Earth Sciences, 60(9): 1655-1663. doi: 10.1007/s11430-017-9075-8
    [160]
    WANG T Y, SHU Q H, XIA X P, et al., 2024. Mantle contributions to granitoids associated with Sn mineralization: geochemical and isotopic evidence from the giant Dachang deposit, South China[J]. Geoscience Frontiers, 15(1): 101718. doi: 10.1016/j.gsf.2023.101718
    [161]
    WANG Y, ZHANG J J, ZHANG P Z, et al. , 2025. Key scientific challenges and advances in tectonics and structural geology: insights from National Natural Science Foundation of China[J/OL]. Chinese Science Bulletin, 1-15. [2025-10-07]. https:link.cnki.net/urlid/11.1784.N20250702.1157.002. (in Chinese with English abstract)
    [162]
    WU F Y, LIU Z C, LIU X C, et al., 2015. Himalayan leucogranite: petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1-36. (in Chinese with English abstract)
    [163]
    WU F Y, WANG R C, LIU X C, 2021. New breakthroughs in the studies of Himalayan rare-metal mineralization[J]. Acta Petrologica Sinica, 37(11): 3261-3276. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.01
    [164]
    WU Q, XU H, 2004. Study on 3D geological modeling and visualization methods[J] Scientia Sinica (Terrae), 34(1): 54-60. (in Chinese)
    [165]
    WU Y, ZHANG S, HUANG Z, et al., 2019. Meso-cenozoic tectonic evolution of the Nandan-Libo Area, Northwestern Guangxi, China: evidence from palaeo-tectonic stress fields analyses[J]. Geotectonica et Metallogenia, 43(5): 872-893. (in Chinese with English abstract)
    [166]
    XIAO C H, SHEN Y K, WEI C S, 2019. Petrogenesis of low Sr and high Yb A-type Granitoids in the Xianghualing Sn polymetallic deposit, South China: constrains from geochronology and Sr-Nd-Pb-Hf isotopes[J]. Minerals, 9(3): 182. doi: 10.3390/min9030182
    [167]
    XIAO C H, CHEN Z L, LIU X C, et al., 2022. Structural analysis, mineralogy, and cassiterite U–Pb ages of the Wuxu Sb-Zn-polymetallic district, Danchi Fold-and-Thrust belt, South China[J]. Ore Geology Reviews, 150: 105150. doi: 10.1016/j.oregeorev.2022.105150
    [168]
    XIAO C H, CHEN Z L, YAO X F, et al., 2023a. The control of deformation partitioning on gold mineralization in the Qingchengzi district, Liaodong Peninsula, northeastern China[J]. Journal of Asian Earth Sciences, 242: 105517. doi: 10.1016/j.jseaes.2022.105517
    [169]
    XIAO C H, YU P P, LIU X H, et al., 2023b. Cassiterite U-Pb dating and Micro-XRF analysis constraint on the formation of Xinlu Sn-Zn deposit, South China[J]. Frontiers in Earth Science, 10: 1031681. doi: 10.3389/feart.2022.1031681
    [170]
    XIAO C H, WEI C S, ZHANG Y, et al., 2024. Calcite U-Pb dating and micro-XRF analysis constraint on formation of Bawang Zn-Fe-Sn deposit in Danchi metallogenic belt, South China[J]. Earth Science, 49(12): 4335-4350. (in Chinese with English abstract)
    [171]
    XIAO C H, CHEN Z L, WEI C S, et al., 2025. Tectonic setting of the Youjiang giant tin belt, South China: new findings from the Pingna W-Sn deposit[J]. Geoscience Frontiers, 16(2): 102006. doi: 10.1016/j.gsf.2025.102006
    [172]
    XIE L, WANG R C, TIAN E N, et al., 2021. Oligocene Nb-Ta-W-mineralization related to the Xiaruleucogranite in the Himalayan Orogen[J]. Chinese Science Bulletin, 66(35): 4574-4591. (in Chinese with English abstract) doi: 10.1360/TB-2021-0546
    [173]
    XU R, DENG J, CHENG H Y, et al., 2018. Geochronology, geochemistry and geodynamic setting of Late Cretaceous magmatism and Sn mineralization in the western South China and Tengchong-Baoshan[J]. Acta Petrologica Sinica, 34(5): 1271-1284. (in Chinese with English abstract)
    [174]
    XU R, ROMER R L, KRONER U, et al., 2022. Tectonic control on the spatial distribution of Sn mineralization in the Gejiu Sn district, China[J]. Ore Geology Reviews, 148: 105004. doi: 10.1016/j.oregeorev.2022.105004
    [175]
    XU S, UNSWORTH M J, HU X Y, et al., 2019. Magnetotelluric evidence for asymmetric simple shear extension and lithospheric thinning in South China[J]. Journal of Geophysical Research: Solid Earth, 124(1): 104-124. doi: 10.1029/2018JB016505
    [176]
    YANG J H, ZHOU M F, HU R Z, et al., 2020. Granite-related tin metallogenic events and key controlling factors in Peninsular Malaysia, Southeast Asia: new insights from Cassiterite U-Pb dating and zircon geochemistry[J]. Economic Geology, 115(3): 581-601. doi: 10.5382/econgeo.4736
    [177]
    YANG L, WANG Q F, ZHAO S Y, et al., 2023. Structural controls on orogenic gold deposits[J]. Acta Petrologica Sinica, 39(2): 277-292. (in Chinese with English abstract) doi: 10.18654/1000-0569/2023.02.01
    [178]
    YANG L Q, YANG W, ZHANG L, et al., 2024. Developing structural control models for hydrothermal metallogenic systems: theoretical and methodological principles and applications[J]. Earth Science Frontiers, 31(1): 239-266. (in Chinese with English abstract)
    [179]
    YANG Y T, 2013. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 126: 96-115. doi: 10.1016/j.earscirev.2013.07.010
    [180]
    YEAP E B, 1993. Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development[J]. Journal of Southeast Asian Earth Sciences, 8(1-4): 329-348. doi: 10.1016/0743-9547(93)90035-N
    [181]
    YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
    [182]
    YUAN S D, PENG J T, HU R Z, et al., 2008. A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China)[J]. Mineralium Deposita, 43(4): 375-382. doi: 10.1007/s00126-007-0166-y
    [183]
    ZEH A, OVTCHAROVA M, WILSON A H, et al., 2015. The Bushveld Complex was emplaced and cooled in less than one million years – results of zirconology, and geotectonic implications[J]. Earth and Planetary Science Letters, 418: 103-114. doi: 10.1016/j.jpgl.2015.02.035
    [184]
    ZENG Y F, LIU W J, CHEN H D, et al. , 1995. Evolution of sedimentation and tectonics of the Youjiang composite basin, South China[J]. Acta Geologica Sinica(2): 113-124. (in Chinese with English abstract)
    [185]
    ZHANG G L, RANJITH P G, LIANG W G, et al., 2019. Stress-dependent fracture porosity and permeability of fractured coal: an in-situ X-ray tomography study[J]. International Journal of Coal Geology, 213: 103279. doi: 10.1016/j.coal.2019.103279
    [186]
    ZHANG R Q, LEHMANN B, SELTMANN R, et al., 2017. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: the classic Erzgebirge tin province (Saxony and Bohemia)[J]. Geology, 45(12): 1095-1098. doi: 10.1130/G39634.1
    [187]
    ZHANG Y, XIAO C H, WEI C S, et al., 2023. Fluid evolution and mineralizing process of the Bawang Fe-Zn-Sn deposit, Danchi Fold-and-Thrust belt, South China[J]. Ore Geology Reviews, 163: 105772. doi: 10.1016/j.oregeorev.2023.105772
    [188]
    ZHANG Y, XIAO C H, 2025. Fluid pressure contrast control the formation of distal vein-type tin deposit, Dachang district, South China[C]//Goldschmidt 2025 conference. Czech: Goldschmidt.
    [189]
    ZHANG Z, LI G M, ZHANG L K, et al., 2025. The rare metals-tin-tungsten-lead-zinc-gold-antimony metallogenic system associated with cenozoic granites during the post-collision extension period in Himalaya: a case study of Cuonadong ore concentration area[J]. Sedimentary Geology and Tethyan Geology, 45(2): 375-393. (in Chinese with English abstract)
    [190]
    ZHAO P L, CHU X, WILLIAMS-JONES A E, et al., 2022. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces[J]. Geology, 50(1): 121-125. doi: 10.1130/G49248.1
    [191]
    ZHAO Y, HUANG L S, TANG Y P, et al., 2020. Prospecting prediction and exploration of the deep concealed rock mass in Wuxu antimony polymetallic ore field, Guangxi[J]. Mineral Resources and Geology, 34(1): 109-114. (in Chinese with English abstract)
    [192]
    ZHENG Y F, CHEN Y X, CHEN R X, et al., 2022. Tectonic evolution of convergent plate margins and its geological effects[J]. Science China Earth Sciences, 65(7): 1247-1276. doi: 10.1007/s11430-022-9947-6
    [193]
    ZHOU X M, LI W X, 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3-4): 269-287. doi: 10.1016/S0040-1951(00)00120-7
    [194]
    ZHU D C, WANG Q, LI S M, et al., 2025. Magma genesis and crustal evolution in continental collision zones[J]. Science China Earth Sciences, 68(5): 1346-1370. doi: 10.1007/s11430-024-1538-6
    [195]
    ZHU Y X, NI P, FAN M S, et al., 2025. Malage skarn-type Sn-polymetallic deposit in the vast Gejiu ore field: new data on its age and form[J]. Ore Geology Reviews, 181: 106612. doi: 10.1016/j.oregeorev.2025.106612
    [196]
    蔡明海, 梁婷, 吴德成, 等, 2004. 广西丹池成矿带构造特征及其控矿作用[J]. 地质与勘探, 40(6): 5-10.
    [197]
    曹代勇, 李青元, 朱小弟, 等, 2001. 地质构造三维可视化模型探讨[J]. 地质与勘探, 37(4): 60-62.
    [198]
    陈柏林, 2024. 构造序次及其在找矿预测中的应用: 以华南热液型铀矿床为例[J]. 地质学报, 98(7): 2173-2192.
    [199]
    陈建平, 吕鹏, 吴文, 等, 2007. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 14(5): 54-62.
    [200]
    陈衍景, 2013. 大陆碰撞成矿理论的创建及应用[J]. 岩石学报, 29(1): 1-17.
    [201]
    代作文, 2020. 西藏错那洞铍锡钨多金属矿床成矿作用研究[D]. 成都: 成都理工大学.
    [202]
    付建刚, 李光明, 王根厚, 等, 2020. 西藏错那洞穹窿同构造矽卡岩特征及相关铍钨锡稀有金属矿化的成矿时代[J]. 吉林大学学报(地球科学版), 50(5): 1304-1322.
    [203]
    郭佳, 2019. 华南右江盆地锡成矿事件与花岗岩锡成矿能力: 以个旧和大厂锡多金属矿区为例[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所).
    [204]
    侯增谦, 2010. 大陆碰撞成矿论[J]. 地质学报, 84(1): 30-58.
    [205]
    侯增谦, 杨志明, 张洪瑞, 等, 2025. 大陆碰撞成矿作用: 新认识与新进展[J/OL]. 地学前缘, 1-36. [2025-10-07]. https://doi.org/10.13745/j.esf.sf.2025.4.49.
    [206]
    华仁民, 朱金初, 赵一英, 等, 1997. 右江褶皱带有色金属矿床成矿系列初步研究[J]. 高校地质学报, 3(2): 183-191.
    [207]
    李光明, 张林奎, 焦彦杰, 等, 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 36(4): 1003-1008.
    [208]
    李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中—新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677.
    [209]
    毛景文, 宋世伟, 刘鹏, 等, 2023. 锡矿床研究现状及发展趋势[J]. 岩石学报, 39(5): 1233-1240.
    [210]
    汪劲草, 余何, 江楠, 等, 2016. 广西大厂矿田成矿构造系列与成矿系列的时—空联系[J]. 桂林理工大学学报, 36(4): 633-643.
    [211]
    王嘉旭, 赵盼捞, 赵海杰, 等, 2025. 砂岩中似层状锡矿的成因及找矿方向: 以玻利维亚锡矿带San Florencio锡矿为例[J]. 岩石学报, 41(6): 2126-2139.
    [212]
    王汝成, 吴福元, 谢磊, 等, 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 47(8): 871-880.
    [213]
    王洋, 张进江, 张培震, 等, 2025. 国家自然科学基金视域下我国大地构造学与构造地质学方向主要科学问题及进展解析[J/OL]. 科学通报, 1-15. [2025-10-07]. https:link.cnki.net/urlid/11.1784.N20250702.1157.002.
    [214]
    吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1-36.
    [215]
    吴福元, 王汝成, 刘小驰, 等, 2021. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 37(11): 3261-3276.
    [216]
    武强, 徐华, 2004. 三维地质建模与可视化方法研究[J]. 中国科学 D辑 地球科学, 34(1): 54-60.
    [217]
    吴玉, 张松, 黄铮, 等, 2019. 桂西北南丹—荔波地区中、新生代构造演化: 来自古构造应力场的证据[J]. 大地构造与成矿学, 43(5): 872-893.
    [218]
    肖昌浩, 韦昌山, 张宇, 等, 2024. 广西丹池成矿带拔旺铁锌锡矿床方解石U-Pb定年和微区XRF面扫描[J]. 地球科学, 49(12): 4335-4350.
    [219]
    谢磊, 王汝成, 田恩农, 等, 2021. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用[J]. 科学通报, 66(35): 4574-4591.
    [220]
    徐容, 邓军, 程韩宇, 等, 2018. 华南板块西缘和腾冲-保山地块晚白垩世岩浆活动及Sn成矿作用对比: 年代学、地球化学和动力学背景[J]. 岩石学报, 34(5): 1271-1284.
    [221]
    杨立强, 杨伟, 张良, 等, 2024. 热液成矿系统构造控矿理论[J]. 地学前缘, 31(1): 239-266.
    [222]
    杨林, 王庆飞, 赵世宇, 等, 2023. 造山型金矿构造控矿作用[J]. 岩石学报, 39(2): 277-292.
    [223]
    曾允孚, 刘文均, 陈洪德, 等, 1995. 华南右江复合盆地的沉积构造演化[J]. 地质学报(2): 113-124.
    [224]
    张志, 李光明, 张林奎, 等, 2025. 初论喜马拉雅后碰撞伸展期与新生代花岗岩相关的稀有—锡钨—铅锌—金锑成矿系统: 以错那洞矿集区为例[J]. 沉积与特提斯地质, 45(2): 375-393.
    [225]
    赵毅, 黄理善, 唐艳萍, 等, 2020. 广西五圩锑多金属矿田深部隐伏岩体探索与找矿预测[J]. 矿产与地质, 34(1): 109-114.
    [226]
    郑永飞, 陈伊翔, 陈仁旭, 等, 2022. 汇聚板块边缘构造演化及其地质效应[J]. 中国科学: 地球科学, 52(7): 1213-1242.
    [227]
    朱弟成, 王青, 李世民, 等, 2025. 大陆碰撞带岩浆成因与地壳演化[J]. 中国科学: 地球科学, 55(5): 1398-1423.
  • 加载中

Catalog

    Figures(13)

    Article Metrics

    Article views (99) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return