Volume 31 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
CHEN X S,KUANG H W,LIU Y Q,et al.,2025. Research progresses on glacial erosion and Neoproterozoic glacial erosion forms[J]. Journal of Geomechanics,31(5):1083−1108 doi: 10.12090/j.issn.1006-6616.2025141
Citation: CHEN X S,KUANG H W,LIU Y Q,et al.,2025. Research progresses on glacial erosion and Neoproterozoic glacial erosion forms[J]. Journal of Geomechanics,31(5):1083−1108 doi: 10.12090/j.issn.1006-6616.2025141

Research progresses on glacial erosion and Neoproterozoic glacial erosion forms

doi: 10.12090/j.issn.1006-6616.2025141
Funds:  This research was financially supported by the National Natural Science Foundation of China (Grants Nos. 42472150, 42302123 and 42072135), and the Fundamental Research Fund of CAGS (Grant No. JKYQN202421).
More Information
  • Author Bio:

    陈骁帅,国家地质实验测试中心助理研究员。在中国地质科学院地质研究所获博士学位,学习期间在奥地利维也纳大学开展冰川沉积学研究联合培养。曾在中国地质科学院地质研究所从事博士后研究工作,目前主要研究方向为前寒武纪沉积学、地层学与沉积地球化学。已发表论文46篇,其中第一作者论文7篇。获程裕淇优秀研究生奖,现任中国矿物岩石地球化学学会岩相古地理专业委员会副秘书长

  • Corresponding author: 旷红伟,中国地质科学院地质研究所教授,博士生导师,主要从事沉积学、前寒武纪地层学与事件地质、油气地质研究。主持国家自然科学基金、科技部重点研发计划课题等。在GeologyGSABGPCPR、《中国科学》国内外期刊发表论文200余篇,其中第一或通讯作者论文112篇。目前担任国际古地理学会创始会员、理事,中国古生物学会生物沉积学分会理事,中国地质学会沉积地质专业委员会委员,中国矿物岩石地球化学学会沉积学专业委员会委员,Journal of Palaeogeography学术委员,《古地理学报》副主编,《沉积学报》《岩石矿物学杂志》编委。
  • Received: 2025-09-24
  • Revised: 2025-10-26
  • Accepted: 2025-10-27
  • Available Online: 2025-10-31
  • Published: 2025-10-28
  •   Objective  Glacial erosion forms serve as crucial bases for reconstructing the laws of glacial movement and transport-deposition processes in geological history. They are the most explicit diagnostic indicators of glacial thermal regimes and important tools for reconstructing the scale, morphology, dynamics, and evolutionary history of ancient ice sheets. After centuries of development, an internationally recognized classification system of glacial erosion mechanisms and forms has emerged, providing significant references for research on deep-time glaciation. Late Neoproterozoic glacial events have become a heated topic in international geoscience in recent years; however, there has been little systematic introduction to glacial erosion processes and the subglacial erosional forms associated with these events.   Methods  This study summarizes the current research status and previous achievements and combines them with our personal research experience. It categorizes the multi-scale glacial erosional forms created by glaciers (via abrasion, quarrying, and meltwater erosion) on the bedrock beneath the Ediacaran Luoquan Formation (southern North China Craton) and the Cryogenian Yuermeinak Formation (northwestern Tarim Craton).   Results  These forms are categorized into three scales: (1) striations, nailhead striae, crescentic gouges and fractures, and plastically moulded forms (microscale); (2) roche moutonnées, grooves, and ridges (mesoscale); and (3) giant glacial pavements (macroscale). Additionally, the study analyzes and discusses the significance of these forms in understanding the laws of glacial movement. Studies have shown that the heads of nailhead striae and the convex surfaces of the crescentic gouges indicate the ice flow direction, while the convex surfaces of chatter marks and crescentic fractures face away from the ice flow direction. For plastically moulded forms (p-forms) represented by Muschelbruch, the ice mass flows from the sharp convex edge to the transitional edge. The stoss side of roche moutonnée forms an acute angle with the bedrock, and the lee side is characterized by an abrupt fracture surface nearly perpendicular to the bedrock.   Conclusion  Glacial erosional forms are the most direct reflection of glacial thermal regimes and kinematic characteristics. Compared with the Yuermeinak Formation, the glacial erosion forms of the Luoquan Formation are more extensively developed and more diverse. This may be attributed to the gradually intensifying temperate glacial thermal regime from the Cryogenian to the Ediacaran, responding to the special tectonic setting during the final breakup of Rodinia and the gradual assembly of Gondwana. [ Significance ] Spatial analysis and qualitative and quantitative research on late Neoproterozoic glacial erosion forms, as well as comparison with Paleozoic glacial erosional forms, can provide key evidence for addressing critical scientific issues, such as the reconstruction of glacial paleogeography.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ALLEY R B, CUFFEY K M, ZOET L K, 2019. Glacial erosion: status and outlook[J]. Annals of Glaciology, 60(80): 1-13. doi: 10.1017/aog.2019.38
    [2]
    ANDREWS E, 1883. Glacial markings of unusual forms in the Laurentian Hills[J]. American Journal of Science, S3-26(152): 99-105.
    [3]
    ATKINSON B K, 1984. Subcritical crack growth in geological materials[J]. Journal of Geophysical Research: Solid Earth, 89(B6): 4077-4114. doi: 10.1029/JB089iB06p04077
    [4]
    BENN D I, EVANS D J A, 2010. Glaciers and glaciation[M]. 2nd ed. London: Routledge: 1-802.
    [5]
    BENNETT M R, 2003. Ice streams as the arteries of an ice sheet: their mechanics, stability and significance[J]. Earth-Science Reviews, 61(3-4): 309-339. doi: 10.1016/S0012-8252(02)00130-7
    [6]
    BENNETT M R, GLASSER N F, 2009. Glacial geology: ice sheets and landforms[M]. 2nd ed. Oxford: Wiley-Blackwell: 1-385.
    [7]
    BOULTON G S, 1974. Processes and patterns of glacial erosion[C]//COATES D R. Glacial geomorphology. Dordrecht: Springer: 41-87.
    [8]
    BOULTON G S, 1979. Processes of glacier erosion on different substrata[J]. Journal of Glaciology, 23(89): 15-38. doi: 10.3189/S0022143000029713
    [9]
    BOULTON G S, 1996. Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation[J]. Journal of Glaciology, 42(140): 43-62. doi: 10.3189/S0022143000030525
    [10]
    BOULTON G S, CABAN P E, VAN GIJSSEL K, 1995. Groundwater flow beneath ice sheets: part I: large scale patterns[J]. Quaternary Science Reviews, 14(6): 545-562. doi: 10.1016/0277-3791(95)00039-R
    [11]
    BOULTON G S, DONGELMANS P, PUNKARI M, et al., 2001. Palaeoglaciology of an ice sheet through a glacial cycle: the European ice sheet through the Weichselian[J]. Quaternary Science Reviews, 20(4): 591-625. doi: 10.1016/S0277-3791(00)00160-8
    [12]
    BRAAKMAN J H, LEVELL B K, MARTIN J H, et al., 1982. Late Palaeozoic Gondwana glaciation in Oman[J]. Nature, 299(5878): 48-50. doi: 10.1038/299048a0
    [13]
    CHAMBERLIN T C, 1888. The rock scourings of the great ice invasions[M]//POWELL J W. Seventh Annual report of the United States Geological Survey to the Secretary of the Interior. Washington: U. S. Geological Survey: 155-248.
    [14]
    CHANDLER B M P, LOVELL H, BOSTON C M, et al., 2018. Glacial geomorphological mapping: a review of approaches and frameworks for best practice[J]. Earth-Science Reviews, 185: 806-846. doi: 10.1016/j.earscirev.2018.07.015
    [15]
    CHEN X S, KUANG H W, LIU Y Q, et al., 2020. Subglacial bedforms and landscapes formed by an ice sheet of Ediacaran-Cambrian age in West Henan, North China[J]. Precambrian Research, 344: 105727. doi: 10.1016/j.precamres.2020.105727
    [16]
    CHEN X S, KUANG H W, LIU Y Q, et al., 2023. Sedimentary characteristics and evolution of Ediacaran glaciation in western Henan Province, southern North China Craton[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 632: 111866. doi: 10.1016/j.palaeo.2023.111866
    [17]
    CHEN X S, KUANG H W, LIU Y Q, et al., 2025. Dynamics of Marinoan-age glaciers in NW Tarim, China[J]. Precambrian Research, 430: 107933. doi: 10.1016/j.precamres.2025.107933
    [18]
    CHRISTIE-BLICK N, 1983. Glacial-marine and subglacial sedimentation Upper Proterozoic Mineral Fork Formation, Utah[M]//MOLNIA B F. Glacial-marine sedimentation. Boston: Springer: 703-776.
    [19]
    CORKERON M, 2008. Deposition and palaeogeography of a glacigenic Neoproterozoic succession in the east Kimberley, Australia[J]. Sedimentary Geology, 204(3-4): 61-82. doi: 10.1016/j.sedgeo.2007.12.010
    [20]
    CORKERON M, 2011. Neoproterozoic glacial deposits of the Kimberly region and northwestern northern Territory, Australia[M]//ARNAUD E, HALVERSON G P, SHIELDS-ZHOU G. The geological record of Neoproterozoic glaciations. London: Geological Society of London: 659-672.
    [21]
    CORKERON M L, GEORGE A D, 2001. Glacial incursion on a Neoproterozoic carbonate platform in the Kimberley region, Australia[J]. GSA Bulletin, 113(9): 1121-1132. doi: 10.1130/0016-7606(2001)113<1121:GIOANC>2.0.CO;2
    [22]
    CORKERON M L, 2002. Neoproterozoic glacial events in the Kimberley Region, western Australia: sedimentology and regional correlation in the context of continental-and global-scale Neoproterozoic glaciation[D]. Crawley: the University of Western Australia: 1-380.
    [23]
    DAHL R, 1965. Plastically sculptured detail forms on rock surfaces in northern Nordland, Norway[J]. Geografiska Annaler: Series A, Physical Geography, 47(2): 83-140. doi: 10.1080/04353676.1965.11879716
    [24]
    DE ALVARENGA C J S, FIGUEIREDO M F, BABINSKI M, et al., 2007. Glacial diamictites of Serra Azul Formation (Ediacaran, Paraguay belt): evidence of the Gaskiers glacial event in Brazil[J]. Journal of South American Earth Sciences, 23(2-3): 236-241. doi: 10.1016/j.jsames.2006.09.015
    [25]
    DEMOREST M, 1938. Ice flowage as revealed by glacial striae[J]. The Journal of Geology, 46(5): 700-725. doi: 10.1086/624679
    [26]
    DÜHNFORTH M, ANDERSON R S, WARD D, et al., 2010. Bedrock fracture control of glacial erosion processes and rates[J]. Geology, 38(5): 423-426. doi: 10.1130/G30576.1
    [27]
    ETEMAD-SAEED N, HOSSEINI-BARZI M, ADABI M H, et al., 2016. Evidence for ca. 560 Ma Ediacaran glaciation in the Kahar Formation, central Alborz Mountains, northern Iran[J]. Gondwana Research, 31: 164-183. doi: 10.1016/j.gr.2015.01.005
    [28]
    ETIENNE J L, ALLEN P A, LE GUERROUÉ E, et al. , 2011. The Blaini formation of the Lesser Himalaya, NW India[M]//ARNAUD E, HALVERSON G P, SHIELDS-ZHOU G. The geological record of Neoproterozoic glaciations. London: Geological Society of London: 347-355.
    [29]
    EYLES N, 2006. The role of meltwater in glacial processes[J]. Sedimentary Geology, 190(1-4): 257-268. doi: 10.1016/j.sedgeo.2006.05.018
    [30]
    EYLES N, PUTKINEN N, SOOKHAN S, et al., 2016. Erosional origin of drumlins and megaridges[J]. Sedimentary Geology, 338: 2-23. doi: 10.1016/j.sedgeo.2016.01.006
    [31]
    FORBES E, 1843. Travels through the Alps of Savoy and Other Parts of the Pennine Chain: With Observations on the Phenomena of Glaciers[M]. Edinburgh: Adam and Charles Black: 1-424.
    [32]
    GAO Z J, LI Y A, QIAN J X, et al., 1982. New data of the Sinian glacial deposits in Aksu-Kalpin region, Xinjiang Uygur Zizhiqu[J]. Bulletin Tianjin institute Geol. Min. Res, 5: 43-56. (in Chinese with English abstract)
    [33]
    GERMS G J B, GAUCHER C, 2012. Nature and extent of a late Ediacaran (ca. 547 Ma) glacigenic erosion surface in southern Africa[J]. South African Journal of Geology, 115(1): 91-102. doi: 10.2113/gssajg.115.91
    [34]
    GLASSER N F, BENNETT M R, 2004. Glacial erosional landforms: origins and significance for palaeoglaciology[J]. Progress in Physical Geography: Earth and Environment, 28(1): 43-75. doi: 10.1191/0309133304pp401ra
    [35]
    GRAY J M, 1981. P-forms from the isle of mull[J]. Scottish Journal of Geology, 17(1): 39-47. doi: 10.1144/sjg17010039
    [36]
    GUAN B D, WU R T, HAMBREY M J, et al., 1986. Glacial sediments and erosional pavements near the Cambrian-Precambrian boundary in western Henan Province, China[J]. Journal of the Geological Society, 143(2): 311-323. doi: 10.1144/gsjgs.143.2.0311
    [37]
    GUAN B D, GENG W C, RONG Z Q, et al. , 1988. The Middle and Upper Proterozoic in the northern slope of Eastern Qinling ranges, Henan, China[M]. Zhengzhou: Henan Science and Technology Press: 1-210. (in Chinese with English abstract)
    [38]
    HALLET B, 1979. A theoretical model of glacial abrasion[J]. Journal of Glaciology, 23(89): 39-50. doi: 10.3189/S0022143000029725
    [39]
    HALLET B, 1996. Glacial quarrying: a simple theoretical model[J]. Annals of Glaciology, 22: 1-8. doi: 10.3189/1996AoG22-1-1-8
    [40]
    HAMBREY M J, GLASSER N F, 2012. Discriminating glacier thermal and dynamic regimes in the sedimentary record[J]. Sedimentary Geology, 251-252: 1-33.
    [41]
    HILDES D H D, CLARKE G K C, FLOWERS G E, et al., 2004. Subglacial erosion and englacial sediment transport modelled for North American ice sheets[J]. Quaternary Science Reviews, 23(3-4): 409-430. doi: 10.1016/j.quascirev.2003.06.005
    [42]
    HINDMARSH R C A, 1996. Sliding of till over bedrock: scratching, polishing, comminution and kinematic-wave theory[J]. Annals of Glaciology, 22: 41-47. doi: 10.3189/1996AoG22-1-41-47
    [43]
    HUGHES A L C, CLARK C D, JORDAN C J, 2010. Subglacial bedforms of the last British Ice Sheet[J]. Journal of Maps, 6(1): 543-563. doi: 10.4113/jom.2010.1111
    [44]
    IVERSON N R, 1991. Morphology of glacial striae: implications for abrasion of glacier beds and fault surfaces[J]. GSA Bulletin, 103(10): 1308-1316. doi: 10.1130/0016-7606(1991)103<1308:MOGSIF>2.3.CO;2
    [45]
    IVERSON N R, 1995. Processes of erosion[M]//MENZIES J. Modern glacial environments: processes, dynamics and sediments. Oxford: Butterworth-Heinemann: 241-259.
    [46]
    JANSSON K N, KLEMAN J, MARCHANT D R, 2002. The succession of ice-flow patterns in north-central Québec-Labrador, Canada[J]. Quaternary Science Reviews, 21(4-6): 503-523. doi: 10.1016/S0277-3791(01)00013-0
    [47]
    KARAOUI B, BREITKREUZ C, MAHMOUDI A, et al., 2015. U–Pb zircon ages from volcanic and sedimentary rocks of the Ediacaran Bas Draâ inlier (Anti-Atlas Morocco): chronostratigraphic and provenance implications[J]. Precambrian Research, 263: 43-58. doi: 10.1016/j.precamres.2015.03.003
    [48]
    KEHEW A E, PIOTROWSKI J A, JØRGENSEN F, 2012. Tunnel valleys: concepts and controversies: a review[J]. Earth-Science Reviews, 113(1-2): 33-58. doi: 10.1016/j.earscirev.2012.02.002
    [49]
    KLEMAN J, 1990. On the use of glacial striae for reconstruction of paleo-ice sheet flow patterns: with application to the Scandinavian ice sheet[J]. Geografiska Annaler: Series A, Physical Geography, 72(3-4): 217-236. doi: 10.1080/04353676.1990.11880318
    [50]
    KLEMAN J, BORGSTRÖM I, 1996. Reconstruction of palaeo-ice sheets: the use of geomorphological data[J]. Earth surface Processes and Landforms, 21(10): 893-909. doi: 10.1002/(SICI)1096-9837(199610)21:10<893::AID-ESP620>3.0.CO;2-U
    [51]
    KNIGHT J, 2009. Subglacial erosion forms in northwest Ireland[J]. Boreas, 38(3): 545-554. doi: 10.1111/j.1502-3885.2009.00084.x
    [52]
    KOR P S G, SHAW J, SHARPE D R, 1991. Erosion of bedrock by subglacial meltwater, Georgian Bay, Ontario: a regional view[J]. Canadian Journal of Earth Sciences, 28(4): 623-642. doi: 10.1139/e91-054
    [53]
    KRABBENDAM M, EYLES N, PUTKINEN N, et al., 2016. Streamlined hard beds formed by palaeo-ice streams: a review[J]. Sedimentary Geology, 338: 24-50. doi: 10.1016/j.sedgeo.2015.12.007
    [54]
    KUANG H, CHEN X, LIU Y, et al. , 2024. Discover the glacial world on the eve of the Cambrian life explosion: the Ediacaran-Early Cambrian glaciation in the west of Henan Province, North China[M]//HU X M. Field trip guidebook on Chinese sedimentary geology. Singapore: Springer: 425-514.
    [55]
    LAAJOKI K, 2002. New evidence of glacial abrasion of the Late Proterozoic unconformity around Varangerfjorden, northern Norway[M]//ALTERMANN W, CORCORAN P L. Precambrian sedimentary environments: a modern approach to ancient depositional systems. Oxford: Blackwell Science: 405-436.
    [56]
    LAWSON T J, 1996. Glacial striae and former ice movement: the evidence from Assynt, Sutherland[J]. Scottish Journal of Geology, 32(1): 59-65. doi: 10.1144/sjg32010059
    [57]
    LE HERON D P, VANDYK T M, WU G H, et al., 2018. New perspectives on the Luoquan glaciation (Ediacaran-Cambrian) of North China[J]. The Depositional Record, 4(2): 274-292. doi: 10.1002/dep2.46
    [58]
    LE HERON D P, DIETRICH P, BUSFIELD M E, et al., 2019a. Scratching the surface: footprint of a late Carboniferous ice sheet[J]. Geology, 47(11): 1034-1038. doi: 10.1130/G46590.1
    [59]
    LE HERON D P, VANDYK T M, KUANG H W, et al., 2019b. Bird’s-eye view of an Ediacaran subglacial landscape[J]. Geology, 47(8): 705-709. doi: 10.1130/G46285.1
    [60]
    LE HERON D P, BUSFIELD M E, CHEN X, et al., 2022. New perspectives on glacial geomorphology in Earth’s deep time record[J]. Frontiers in Earth Science, 10: 870359. doi: 10.3389/feart.2022.870359
    [61]
    LEE J S, 1940. A summary of Quaternary glacial phenomena in western Hubei, eastern Sichuan, western Hunan and northern Guangxi[J]. Geological Review, 5(3): 171-184 (in Chinese).
    [62]
    LETSCH D, LARGE S J E, BUECHI M W, et al., 2018. Ediacaran glaciations of the west African Craton: evidence from Morocco[J]. Precambrian Research, 310: 17-38. doi: 10.1016/j.precamres.2018.02.015
    [63]
    LETSCH D, LARGE S J E, BERNASCONI S M, et al., 2019. Northwest Africa’s Ediacaran to early Cambrian fossil record, its oldest metazoans and age constraints for the basal Taroudant Group (Morocco)[J]. Precambrian Research, 320: 438-453. doi: 10.1016/j.precamres.2018.11.016
    [64]
    LI Z X, EVANS D A D, HALVERSON G P, 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 294: 219-232. doi: 10.1016/j.sedgeo.2013.05.016
    [65]
    LIU Y Q, KUANG H W, CHEN X S, et al., 2023. Ediacaran diamictites and glaciation in northern China[J]. Acta Geologica Sinica, 97(12): 3984-4005. (in Chinese with English abstract)
    [66]
    LU L H, HAN Y G, ZHAO G C, et al., 2024. Depositional processes of Marinoan-age diamictites and cap carbonates in northwestern Tarim, China: implications for chemical weathering following the Marinoan deglaciation[J]. GSA Bulletin, 136(5-6): 2443-2459.
    [67]
    LU S N, GAO Z J, 1990. A comparative study on the characteristics of debris flow and glacial deposits of late Proterozoic in the akso area of Xinjiang[J]. Bulletin of the 562 comprehensive geological brigade, Chinese Academy of Geological Sciences, 9: 1-16. (in Chinese)
    [68]
    LU S N, GAO Z J, 1994. Neoproterozoic tillite and tilloid in the Aksu area, Tarim Basin, Uygur Xinjiang autonomous region, Northwest China[M]//DEYNOUX M, MILLER J M G, DOMACK E W, et al. Earth's glacial record. Cambridge: Cambridge University Press: 95-100.
    [69]
    LUNDQVIST J, 2020. Glacial morphology as an indicator of the direction of glacial transport[M]//KUJANSUU R, SAARNISTO S M. Glacial indicator tracing. London: CRC Press: 61-70.
    [70]
    MATTHES F E, 1930. Geologic history of the Yosemite Valley[R]. Washington: United States Government Printing Office: 1-137.
    [71]
    MATTSSON Å, 1997. Glacial striae, glacigenous sediments and Weichselian ice movements in southernmost Sweden[J]. Sedimentary Geology, 111(1-4): 285-311. doi: 10.1016/S0037-0738(97)00022-5
    [72]
    MC CABE A M, 1998. Striae at St. Mullin’s Cave, County Kilkenny, southern Ireland: their origin and chronological significance[J]. Geomorphology, 23(1): 91-96. doi: 10.1016/S0169-555X(97)00093-7
    [73]
    MCGEE B, COLLINS A S, TRINDADE R I F, 2013. A glacially incised canyon in Brazil: further evidence for mid-Ediacaran glaciation?[J]. The Journal of Geology, 121(3): 275-287. doi: 10.1086/669979
    [74]
    MENZIES J, VAN DER MEER J J M, SHILTS W W, 2018. Subglacial processes and sediments[M]//MENZIES J, VAN DER MEER J J M. Past glacial environments. Amsterdam: Elsevier: 1-835.
    [75]
    MONCRIEFF A C M, HAMBREY M J, 1988. Late Precambrian glacially-related grooved and striated surfaces in the Tillite Group of central East Greenland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 65(3-4): 183-200. doi: 10.1016/0031-0182(88)90023-5
    [76]
    MONTES A S L, GRAVENOR C P, MONTES M L, 1985. Glacial sedimentation in the late Precambrian Bebedouro formation, Bahia, Brazil[J]. Sedimentary Geology, 44(3-4): 349-358. doi: 10.1016/0037-0738(85)90019-3
    [77]
    MU Y J, 1981. Luoquan Tillite of the Sinian System in China[M]//HAMBREY M J, HARLAND W B. Earth’s Pre-Pleistocene Glacial Record. Cambridge: Cambridge University Press: 402-441.
    [78]
    MU Y J, 1983. Origin and age of the glacial moraines in the Luoquan Formation[J]. Henan Geology, 1(2): 35-46. (in Chinese)
    [79]
    NEWTON M, EVANS D J A, ROBERTS D H, et al., 2018. Bedrock mega-grooves in glaciated terrain: a review[J]. Earth-Science Reviews, 185: 57-79. doi: 10.1016/j.earscirev.2018.03.007
    [80]
    OJAKANGAS R W, MATSCH C L, 1980. Upper Precambrian (Eocambrian) Mineral Fork Tillite of Utah: a continental glacial and glaciomarine sequence[J]. GSA Bulletin, 91(8): 495-501. doi: 10.1130/0016-7606(1980)91<495:UPEMFT>2.0.CO;2
    [81]
    OSTOJIC P, MCPHERSON R, 1987. A review of indentation fracture theory: its development, principles and limitations[J]. International Journal of Fracture, 33(4): 297-312. doi: 10.1007/BF00044418
    [82]
    PERRY W J, ROBERTS H G, 1968. Late Precambrian glaciated pavements in the Kimberley region, western Australia[J]. Journal of the Geological Society of Australia, 15(1): 51-56. doi: 10.1080/00167616808728679
    [83]
    REA B R, EVANS D J A, DIXON T S, et al., 2000. Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms[J]. Journal of Glaciology, 46(154): 470-476. doi: 10.3189/172756500781833197
    [84]
    SHARPE D R, SHAW J, 1989. Erosion of bedrock by subglacial meltwater, Cantley, Quebec[J]. GSA Bulletin, 101(8): 1011-1020. doi: 10.1130/0016-7606(1989)101<1011:EOBBSM>2.3.CO;2
    [85]
    SHAW J, KVILL D, 1984. A glaciofluvial origin for drumlins of the Livingstone Lake area, Saskatchewan[J]. Canadian Journal of Earth Sciences, 21(12): 1442-1459. doi: 10.1139/e84-150
    [86]
    SHAW J, 1994. Hairpin erosional marks, horseshoe vortices and subglacial erosion[J]. Sedimentary Geology, 91(1-4): 269-283. doi: 10.1016/0037-0738(94)90134-1
    [87]
    SHAW J, GILBERT R G, SHARPE D R, et al., 2020. The origins of s-forms: form similarity, process analogy, and links to high-energy, subglacial meltwater flows[J]. Earth-Science Reviews, 200: 102994. doi: 10.1016/j.earscirev.2019.102994
    [88]
    SHI Y F, REN B H, XIE Z C, 1979. Progress of China's glaciological research over the past thirty years[J]. Journal of Glaciology and Geocryology, 1(2): 1-6. (in Chinese)
    [89]
    SHI Y F, REN B H, 1983. A short history on glaciological research in China[J]. Journal of Glaciology and Geocryology, 5(1): 21-31. (in Chinese with English abstract)
    [90]
    SHIELDS-ZHOU G A, DEYNOUX M, OCH L, 2011. The record of Neoproterozoic glaciation in the Taoudéni Basin, NW Africa[M]//ARNAUD E, HALVERSON G P, SHIELDS-ZHOU G. The geological record of Neoproterozoic glaciations. London: Geological Society of London: 163-171.
    [91]
    SUGDEN D E, JOHN B S, 1976. Glaciers and landscape[M]. London: Edward Arnold: 1-376.
    [92]
    UHLEIN A, ALVARENGA C J S, DARDENNE M A, et al. , 2011. The glaciogenic Jequitaí Formation, southeastern Brazil[M]//ARNAUD E, HALVERSON G P, SHIELDS-ZHOU G. The geological record of Neoproterozoic glaciations. London: Geological Society of London: 541-546.
    [93]
    VANDYK T M, WU G, DAVIES B J, et al., 2019. Temperate glaciation on a Snowball Earth: glaciological and palaeogeographic insights from the Cryogenian Yuermeinak Formation of NW China[J]. Precambrian Research, 331: 105362. doi: 10.1016/j.precamres.2019.105362
    [94]
    VANDYK T M, KETTLER C, DAVIES B J, et al., 2021. Reassessing classic evidence for warm-based Cryogenian ice on the western Laurentian margin: the “striated pavement” of the Mineral Fork Formation, USA[J]. Precambrian Research, 363: 106345. doi: 10.1016/j.precamres.2021.106345
    [95]
    VERNHET E, YOUBI N, CHELLAI E H, et al. , 2012. The Bou-Azzer glaciation: evidence for an Ediacaran glaciation on the west African craton (anti-atlas, Morocco)[J]. Precambrian Research, 196-197: 106-112.
    [96]
    WANG M, WANG M, ZHAO Z Z, et al., 2022. Investigation method of Quaternary glacial geoheritage in China[J]. Geological Review, 68(2): 1530-1540. (in Chinese with English abstract)
    [97]
    WANG N A, LIU X, CHENG H Y, et al., 2022. On glacial chatter mark[J]. Journal of Glaciology and Geocryology, 44(4): 1319-1336. (in Chinese with English abstract)
    [98]
    WANG R M, YIN Z J, SHEN B, 2023. A late Ediacaran ice age: the key node in the Earth system evolution[J]. Earth-Science Reviews, 247: 104610. doi: 10.1016/j.earscirev.2023.104610
    [99]
    WARREN H A, 1928. Survey of the Life of Louis Agassiz the Centenary of the Glacial Theory[J]. The Scientific Monthly, 27(4): 355-366.
    [100]
    WU R T, GUAN B D, 1988. Glacigenic characteristics of the Luoquan formation and sediment gravity flow reworking on it[J]. Acta Geologica Sinica (English Edition), 1(3): 325-339. doi: 10.1111/j.1755-6724.1988.mp1003007.x
    [101]
    WU R T, GUAN B D, 1988. On the glacigene characteristics of the Luoquanformation and its reworking by gravity flows[J]. Acta GeologicaSinica, 62(1): 78-89. (in Chinese with English abstract)
    [102]
    YANG Y Q, WU R T, 1992. Underlying paleo ice erosion surface and ice erosion structure of Luoquan Formation in western Henan[J]. Hennan Geology, 10(4): 282-285. (in Chinese)
    [103]
    YE G, 1984. Geological investigation of Luoquan Formation[J]. Geological Science and Technology Information(1): 69-71. (in Chinese)
    [104]
    YONKEE W A, DEHLER C D, LINK P K, et al., 2014. Tectono-stratigraphic framework of Neoproterozoic to Cambrian strata, west-central U. S. : protracted rifting, glaciation, and evolution of the North American Cordilleran margin[J]. Earth-Science Reviews, 136: 59-95. doi: 10.1016/j.earscirev.2014.05.004
    [105]
    ZHANG B Y, ZHENG D S, 2022. Sedimentological, geochemical, and geochronological constraints on the origin of the Neoproterozoic Luoquan Formation at the southern margin of the North China Craton[J]. International Geology Review, 64(7): 911-932. doi: 10.1080/00206814.2021.1894609
    [106]
    ZHENG Y F, XIAO W J, ZHAO G C, 2013. Introduction to tectonics of China[J]. Gondwana Research, 23(4): 1189-1206. doi: 10.1016/j.gr.2012.10.001
    [107]
    高振家, 李永安, 钱建新, 等, 1982. 新疆阿克苏—柯坪地区震旦系冰川沉积的新资料[J]. 中国地质科学院天津地质矿产研究所所刊, 5: 43-56.
    [108]
    关保德, 耿午辰, 戎治权, 等, 1988. 河南东秦岭北坡中—上元古界[M]. 郑州: 河南科学技术出版社: 1-210.
    [109]
    李四光, 1940. 鄂西川東湘西桂北第四紀冰川現象述要[J]. 地质论评, 5(3): 171-184.
    [110]
    柳永清, 旷红伟, 陈骁帅, 等, 2023. 中国北方埃迪卡拉纪冰碛岩及冰川作用[J]. 地质学报, 97(12): 3984-4005.
    [111]
    陆松年, 高振家, 1990. 新疆阿克苏地区晚元古代碎屑流和冰川沉积特征的对比[J]. 中国地质科学院562综合大队集刊, 9: 1-16.
    [112]
    牟用吉, 1983. 罗圈组的冰碛成因和时代[J]. 河南地质, 1(2): 35-46.
    [113]
    施雅风, 任炳辉, 谢自楚, 1979. 三十年来我国冰川学研究的进展[J]. 冰川冻土, 1(2): 1-6.
    [114]
    施雅风, 任炳辉, 1983. 中国冰川研究发展简史[J]. 冰川冻土, 5(1): 21-31.
    [115]
    王敏, 王猛, 赵志中, 等, 2022. 中国第四纪冰川地质遗迹调查方法综述[J]. 地质论评, 68(2): 1530-1540.
    [116]
    王乃昂, 刘啸, 程弘毅, 等, 2022. 论冰川颤痕[J]. 冰川冻土, 44(4): 1319-1336.
    [117]
    吴瑞棠, 关保德, 1988. 论罗圈组的冰成特征及重力流改造[J]. 地质学报, 62(1): 78-89.
    [118]
    杨玉卿, 吴瑞棠, 1992. 豫西罗圈组下伏古冰蚀面及冰蚀构造[J]. 河南地质, 10(4): 282-285.
    [119]
    叶干, 1984. 罗圈组的地质考察[J]. 地质科技情报(1): 69-71.
  • 加载中

Catalog

    Figures(17)

    Article Metrics

    Article views (106) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return